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Fix-finite and fixed point free approximations
of symmetric product maps

by

Helga Schirmer (Ottawa)

Abstract. Let X be a locally finite simplicial complex with the weak topology. It is shown that
every symmetric product map f: X —+ X"/G is homotopic to a symmetric product map
f': X— X"|G so that all fixed points of f” are isolated and so that the fixed point set of f” is finite
(countable) if X is a finite (countable) complex. In the former case f/ can be chosen so that, for every
mz 1, its set of periodic points of period m<1 is finite as well. If X is a noncompact manifold,
then f can be homotoped to a fixed point free symmetric product map.

1. Introduction. Let X be a topological space and X" be the n-fold Cartesian
product of X with the product topology. Any (proper or improper) subgroup G of
the symmetric group S, of all permutations of {1, 2, ..., n} acts on X" as a group
of homeomorphisms by permuting its factors. Let X"/G be the orbit space with the
quotient topology induced by the quotient map ¢: X" — X”/G. Then a map
(i.e. a single-valued continuous function) f: X — X*/G is called a symmetric product
map, and a point x e X is called a fixed point of the symmetric product map £ if
f(x) = q(z), where z e X", implies that x is a coordinate of z. Fixed points of sym-
metric product maps have been studied e. g. by S. Kwasik [5], C. N. Maxwell [8], [9],
S. Masih [6], [7], Nancy Rallis [11] and C. Vora [17], [18]. Periodic points of sym-
metric product maps (see the definition in §3) have been considered by Nancy
Rallis [12].

In this paper we extend to symmetric product maps the Hopf approximation
theorem which states that every selfmap of a compact polyhedron is homotopic to
a fix-finite one (see e.g. [2], Ch. VIII A, Theorem 2, p. 118), and also prove related
results for nmoncompact polyhedra. In Theorem 1 we show that every symmetric
product map /: X — X"/G is homotopic to a symmetric product map f’: X — X"/G,
which has a finite (countable) fixed point set, if X is a finite (countable) polyhedron.
Theorem 2 states that if X is finite, then ' can be chosen so that it has, for every
m 1, at most finitely many points of period <m. Finally, Theorem 1 is used to
show, in Theorem 3, that if X is a noncompact manifold, then f is homotopic to
a fixed point free symmetric product map.

As X"|G = Xif n = 1, these theorems extend the Hopf approximation theorem,
an approximation theorem for periodic points by Boju Jiang [4], p. 62, and, for
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noncompact manifolds, aresult by G.-H. Shi [15], Theorem 1. A standard technique
for the proof of the Hopf approximation theorem is the so-called “Hopf con-
struction™ [2], pp. 117-118, which yields a stronger result, as it leads to a fix-finite
map which has all fixed points situated in maximal simplexes. But the Hopf con-
struction is lengthy, and we replace it here by an idea from [15] in order to obtain
a fairly simple proof of Theorem 1, ) _

We also use the fact that a symmetric product map can be interpreted as a multi-
function. For if n: X" — X is the multifunction given by =(x,, x,, T
= {X;, %3, .., X,}, then a symmetric product map f: X — X"/G defines a multi-
function ¢: X > X by ¢ = mog™' of. We say that ¢ is induced by f. Clearly ¢ is
finite-valued, as each point image consists of at most »n points, and continuous
(i.e. both upper and lower semi-continuous, see e.g. [1], p. 109, for definitions).
If the fixed point set Fixe of ¢ is defined, as usual, by Fixe = {xe X|xe ()},
then Fix¢ = Fixf. For n = 2 each ¢(x) consists of one or two points, so in this
case ¢ belongs to the class of continuous multifunctions which have the property
that each point image consists of either one or n points. A Lefschetz number for such
multifunctions has been defined by B. O’Neill [10]. Our results are also related to
those in [13] concerning fix-finite approximations of multifunctions whose point
images consist of exactly » points.

This research was conducted while 1 was a visiting faculty member at the Uni-

versity of California, Los Angeles. I wish to thank Robert F. Brown for many sti-
mulating and helpful discussions.

2. Simplicial multifunctions. In order to prove Lemma 1, which is the main tool
for all our results, we need two definitions concerning finite-valued multifunctions
from [13]. We say that a multifunction ¢: X — ¥ from a topological space X to
a topological space Y splits into maps if there exist finitely many maps f;: X = ¥,
where i =1,2,...,n, so that p(x) = {f;(x),/>(x), v [i(x)} for all xe X. Now
let |K| denote a polyhedron, i.e. a simplicial complex K with the weak topology.
Then we say that a multifunction ¢: |K| — |L| from a polyhedron | K| into a poly-
hedron |L| is a simplicial multifunction from |K| to |L| if, for every closed simplex

G €|K], the restriction ¢|é splits into maps f; so that each Jf: maps & affinely onto
a simplex 7;e|L|.

LEmMMA 1. Let X = |K| be a polyhedron and f: X — X"|G a symmetric product
map. Then there exist a subdivision |K'| of |K | and a symmetric product map
St X = X"|G homotopic to f so that the induced multifunction of f' is a simplicial
multifunction ¢': |K'| - |K].

Proof. Let K" denote the usual product triangulation of X", let Sd(K") be
the first barycentric subdivision of X", and let X (x, G) be the triangulation of X"/G
constructed from the set of equivalence classes of vertices of Sd (X" under the
action of G by C. N. Maxwell [8], p. 809. (See also [7], p. 144.) Choose a sub-
division |K'| of |K| so that f: X — X'[G has a simplicial approximation f*: | K|
= |K(n, G)|. As =: [Sd(K")| — |K]| is not simplicial, the induced multifunction
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of f" need not be simplicial either. We remedy this situation by using the simplicial
map s: [Sd(K")] - |K"| which associates with each vertex of Sd(K”), obtained as
the barycenter of a simplex t of |K"|, the last vertex of 7. (This map is denoted
by @ in [8], p. 809, and called a standard map in [3], p. 35.) We now define a multi-
function ¢': |K'|—|K]| by

@' =Tosoq tof"
(see Diagram 1).

1K (0, )} X"/
P b
Il ISd(K™)| ——= o |K7]
T
?f
Ikl
Diagram 1

As the map s is equivariant, it induces a map 5: |[K(n, G)| — X"/G so that
geos = §eogq (see Diagram 1), and we can define a map f': |K’| - X"/G by

f'! — 5 offf B
Then
fcoth af' _ ncq_l o§af” = ﬂ_’osog_'l of” =(p"

so @' is the multifunction induced by f*. We will show that f* and ¢" satisfy Lemma 1.

To see that ¢’ is a simplicial multifunction, let 7 be :.-L_closed simplex of |K'|
and g be a closed simplex of [Sd(K™)| with g(é) = f"(5). If g, is any other simplex
of |Sd(K™)| with g(g,) = f"(5), then ¢, = gp for some g € G. Now we have for any
point z; € g,

Tos(z) = s; mi08(21)

where 7;: |K"| — |K]| is the projection onto the ith factor. Hence, if z; = gz for
z € g,, then

n n
mos(zy) = fzx mM,080gz = E_ZI m09s(2) = :‘Z:i oy 2 8(z) = mos(z) .

Thus, if : f"(5) — o is the affine map obtained from the multifunction ¢~*: f”'(5)
—|Sd(K™)| by restriction of the range to g, then

n
¢'le= 3 mosorof’|s

i=1
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splits into the n maps h; = m;050rof"|G, where i= 1,2,..,n. As the
it |K"| — |K| are simplicial, the /; are affine maps onto simplexes of |K]. So @' is
a simplicial multifunction.

It remains to show that f” is homotopic to f. As z and s(z) lie in the same closed
simplex of |K”|, we can define a homotopy H: X"x I — X" from the identity map
on X" to s by the condition that H(z, #) is the point on the line segment from z to
5(z) for which

d(z, H(z, 1)) = t-d(z, 5(2)),

where d is the barycentric metric of |K"|. It follows from the facts that s is equi-
variant and 4 is invariant under the action of ¢ that

H(gz,t) = gH(z,1)

Thus H induces a homotopy H: (X"/G) x I - X"/G from the identity on X' "IG to §,
and Diagram 2, in which 1 denotes the identity on I, is commutative.

for all ze X", teland geG.

H
X'"xI ——X"

f.r.rxl qul H lq
X I— (X"|G)x I — X"|G

Diagram 2

If we define the homotopy F: Xx 7 — X"/G by F = H o (f" x 1), then F is a homo-
topy from f* to f'. As "' is a simplicial approximation of J/, we see that f” is homo-
topic to f.

6. Symmetric product maps with isolated fixed points and periodic points. The
proof of the next lemma uses an idea from the proof of Lemma 3 in [15].

LemMMA 2. Let X = |K| be a polyhedron, |K'| a subdivision of |K| and
J: X > X"|G a symmetric product map which induces a simplicial multifunction
@: |K'| = |K|. Then each open simplex of |K’| contains at most n fixed points of f.

Proof. Let ¢ be an open simplex of |K'[, let & be the corresponding closed
simplex and let ¢|& split into affine maps bz G — 7; from & onto closed simplexes 7,
of |K|. We assume by way of contradiction that o contains >n+1 points of
Fix f = Fix ¢, which implies that there exists an index J so that /i;: & — 7; has at
least two fixed points on &. Let x, be one of them. Then it follows from Ry(xy) = x4
that ; is the carrier of x, in |K][, and as |K’| subdivides |K| and as ¢ is the carrier
of x; in |K’|, the dimension dimo < dimz;. But 4 is affine, so dimo > dimt;, and
we see that in fact dime = dimr;.

h; ]?as at least one other fixed point x, on ¢, so the line segment in & through x,
and x, is pointwise fixed under the affine map h;. Let this line segment intersect the
boundary of ¢ in y, and y2. Repeating the above argument for ¥; and y, instead
of x,, we see that the carriers of ¥y and y, in [K'| and |K| must have the same di-

icm
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mension. But this implies that y, and y, lie on the same face of ¢, which is impossible.
Hence o can contain at most one fixed point of /;, and therefore at most n fixed
points of .

Recall that a fixed point x of fis isolated if there exists a neighbourhood U of x
so that f has no other fixed point on U. We now obtain Theorem 1 immediately from
Lemmas 1 and 2.

THEOREM 1. Let X = |K| be a polyhedron andf: X — X"|G a symmetric product
map. Then f is homotopic to a symmetric product map f': X - X"/G so that

() all fixed points of f' are isolated if K is locally finite,

(ii) the fixed point set of f' is countable if K is countable,

(iii) the fixed point set of f' is finite if K is finite.

Remark. A simplicial complex with the weak topology is metrizable if and only
if it is locally finite [16], p. 119. An inspection of the proofs of Lemmas 1 and 2 shows
that in this case the symmetric product map f* of Theorem 1 can be chosen, as in
the Hopf approximation theorem for maps (see e.g. [2], Ch. VIII A, Theorem 2,
p. 118), so that the distance between f and f” in the sup metric is arbitrarily small.

Nancy Rallis [12], Definition 2.1, defined that a point x, € X is a periodic point
of the symmetric product map f: X — X"|G with period <m if there exist points
X35 X35 00y Xy Xyy = X; such that, for 2<j<m+1, f(x;-;) = q(z;) implies
that x; is a coordinate of z;. Hence x, is a periodic point of period < if and only
if x; is a fixed point of the multifunction ¢™ = o @o...cp: X = X. If X = | K|
is a compact polyhedron, then it is possible to approximate f: X — X”/G by a sym-
metric product map f': X — X"/G which has finitely many periodic points of period
< m for all periods m = 1. To do so, take for each simplex of | K| of positive dimen-
sion the distance between its barycenter and its boundary, and let & be the shortest
of these distances. If |K| is compact, then £¢> 0, and the subdivision X' of K in
Lemma 1 can be chosen so that its mesh p(X’) <e. It is straightforward to check,
along the lines of the proof of the Approximation Theorem in [4], pp. 62-63, that
then the simplicial multifunction ¢’ induced by f has the property that Fixo™ is
finite for all m> 1. We leave this task to the reader, but state the result.

THEOREM 2. Let X = |K| be a compact polyhedron and f: X — X"|G a symmetric
product map. Then [ is homotopic to a symmetric product map f': X - X"|G so
that f' has, for every m=1, at most finitely many points of period < m.

4. Fixed point free symmetric product maps on noncompact manifolds. We will
now show, again using ideas from [15], that if X = |K] is a noncompact manifold,
then f: X = X"/G can be homotoped to a fixed point free map. Lemma 3 will
replace [15]), Lemma 1 in the final argument.

Lemma 3. (Moving of fixed points). Let M be a topological manifold, let
Joi M = M'|G be a symmetric product map and A an arc in M from a to b with
Fixf,n 4 = {a}. Then f, is homotopic to f,: M — M"|G so that Fixf;
= (Fix/,—{a}) v {8}.
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Proof. As Fix f, is closed, there exists a tubular neighbourhood N of 4 in M
such that Fix f, intersects the closure of N in {a} only. Let si: M, {a} - M, {b} be
a homeomorphism which is homotopic to the identity and is equal to the identity
on M—N, and let A": M" - M" be given by

By 5 Xa5 0oy %) = (B(x), h(X3),s ooy B (X)) -

Then gh" = h"g for all g € G, and so A" induces 2 homeomorphism i: M"/G— M"/G.
We define f,: M - M"/G by

fo=TRofyoh™

(see Diagram 3).

h Lo i
M M - M"G -+ M"G
4 T
| q h}l : q
Jwﬂ —— ey M"
Diagram 3 -

It is straightforward to check that f, has the properties of Lemma 3.

THEOREM 3. Let M be a countable locally finite simplicial complex with the wealk
topology, which is a connected noncompact manifold. Then every symmetric product
map f: M — M"|G is homotopic to a symmetric product map g: M"|G—M"|G,
which is fixed point free.

Proof. Using Theorem 1 and Lemma 3 we can homotope f'to f': M — M"|G
so that Fix f* is countable and all fixed points of f* are isolated and lie in maximal
simplexes. If dimM > 2, then M is 2-dimensionally connected (see [15] for the
definition), and the proof of Theorem 2 can be completed by a construction of g
from f* which is quite analogous to the construction of F and f, case |K| = |L],
in the proof of Theorem 1 in [15], if we use our Lemma 3 instead of [15], Lemma 1.
If dimM = 1, then M is the real line, and the proof of Theorem 1 in [15] still works.

Remark. The hypothesis in Theorem 3 that M is a manifold can almost cer-
tainly be changed to include all 2-dimensionally connected polyhedra. But the proof
of such a result would be considerably longer. Theorem 1 would have to be strength-
ened to yield a symmetric product map f* which has all fixed points contained in
maximal simplexes, and the proof of Lemma 3 would change from a very simple
to a very lengthy one. (Compare the proof of [15], Lemma 1 in [14] or in [2],
Ch. VIII C, proof of Lemma 6, p. 135ff.)

References

[11 C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh and London, 1963.
[2]1 R.F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview,
IIl., 1971.

[3]
[4]

[51
(6]
(71
[8]
91
[10]
(1]

[12]
[13]

[14]
[15]

[16]
n7

[18]

Fix-finite point approximations 13

P.J. Hilton and S. Wylie, Homology Theory, Cambridge University Press, 1960.
BojuJiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics v. 14, Amer.
Math. Society, Providence, R. 1., 1983.

S. Kwasik, Fixed points of symmetric product mappings of some nonmetrizable spaces, Bull.
Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 1271-1277.

S. Masih, Fixed points of symmetric product mappings of polyhedra and metric absolute neigh-
borhood retracts, Fund. Math 80 (1973), 149-156.

—, On the fixed point index and Nielsen fixed point theorem for symmetric product mappings,
Fund. Math. 102 (1979), 143-158.

C. N. Maxwell, Fixed points of symmetric product mappings, Proc. Amer. Math. Soc. 8 (1957),
808-815.

—, The Degree of Multiple-Valued Maps of Spheres, Springer Lecture Notes 666 (1977),
123-141.

B. O'Neill, Induced homology homomorphism for set-valued multifunctions, Pacific J. Math. 7
(1957), 1179-1184.

N. Rallis, A4 fixed point index theory for symmetric product maps, Manuscripta Math. 44
(1983), 279-308.

—, Periodic points of symmeftric product mappings, Fund. Math. 117 (1983), 61-66.

H. Schirmer, Fix-finite approximation of n-valued multifunctions, Fund. Math. 121 (1983),
83-91.

G.-H. Shi, On the fewest numbers of fixed points and Nielsen numbers, Acta Math. Sinica 16
(1966), 223-232.

—, On the fewest number of fixed points for infinite complexes, Pacific J. Math. 103 (1932),
377-387.

E. H. Spanier, Algebraic Topology, McGraw Hill, New York 1966.

C. Vora, Fixed points of certain symmetric product mappings of metric manifolds, Fund.
Math. 85 (1974), 19-24.

—, Fixed points of certain symmetric product mappings of a compact A-ANR, Math. Student 42
(1974), 379-396.

DEPARTMENT OF MATHEMATICS
CARLETON UNIVERSITY
Ottawa, Canada KI1S 5B6

Received 19 February 1985,
in revised form 7 November 1985




	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif

