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THEOREM. If A™* = 1 and % has the A-Shelah property, then for any stationary
subset S of P, {xeP,A: S P, xeNSy,}eNSK,.
Proof. Suppose not; let Se NSy, be such that

X ={xeP,: SNnP, xeNS,,} e NSh}.

In view of 3.4(2) in [2] we may assume w.l.o.g. that (Vxe X)(|[x]*| = |x|).
For each x e X, let ¢,: x* —» P, x be such that

C. = {zeP, x: (Yo, fe2)(clo, Pz} P,
Now let ¢: A% — P, be such that

x-=S.

X

(VxeP)(H, = {yeXn%: ¢} x* = ¢} x*} e NS,

and set C = {xeP,A: (Yo, Bex)(c(x, p) = x)}.
Pick xe C S and then pick ye H, such that xe P, ,¥- Then

Vo, Bex)(c, (@, B) = ¢, =),

thus x € S n C,. This is the required contradiction. B
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A general theory of superinfinitesimals
by

Benjamin Benninghofen (lowa) and Michael M. Richter (Kaiserlautern)

Abstract, Tn this paper the concept of a “superinfinitesimal number” is defined in terms of
a generalized notion of monads. This allows to extend the concept to very general situations. A trans-
fer theorem relates properties of generalized monads with those of ordinary monads. Some appli-
cations are given, mostly to the theory of monads.

Introduction. The idea of infinitesimals and monads in nonstandard analysis
has been applied successfully to general topology and functional analysis (cf. [Lu]
and. [Str-Lu] Ch. 8-10). We extend this theory in a new way.

The main result of this article is a transfer theorem that allows us to compare
“orders of infinity” by extending certain formal properties of monads indexed by
standard points to “m-monads” indexed at nonstandard points. For example,
L’Hospital’s rule from calculus involves a limit of derivatives. If £ (x) tends to infinity
as x tends to zero, ¢ is a small positive standard number, and & is a positive infini-
tesimal, then £ (£)// (&) is infinitesimal. In the proof of L’Hospital’s rule (Proposi-
tion 4.1) given below, we choose { infinitesimal and ¢ superinfinitesimal so that we
may transfer the statement, “£(()/f(€) is infinitesimal” to the infinitesimal index £.
The notion of “superinfinitesimal™ is relative.

We will use the framework of Internal Set Theory (IST) (see [Ne] or [Ri]).
The full strength of internal set theory (namely that it axiomatizes the whole universe
of sets) is not used, however. We work with bounded formulas and these can be
interpreted in a suitable universe. Refering to internal set theory means for those
readers who prefer to think in terms of superstructures that all one has to know
about the superstructure is that the axioms of IST are valid.

The identification of the particular class of properties subject to the transfer
is the main content of the transfer theorem. This relies on a extension of Nelson’s
reduction algorithm applied to a class of formulas very much like these encountered
in the topological languages of [FI-Zi].

Unfortunately, the class of formulas which we can transfer is not a simple one.
However, it is a useful one.
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We give a number of new applications to the theory of monads in scction 4.
Further applications to topology are in [Ben-Ri-Str]; Benninghofen and Stroyan
[Ben-Str] give applications to a kind of “bounded inductive limits” of locally convex
spaces and Benninghofen [Ben 3] applies the theory to the generalized Riemann (or
“Kurzweil”) integral. :

Acknowledgment. The authors are very grateful to Keith Stroyan for his help
in preparing this manuscript. Numerous discussions with him and many suggestions
he made have led to a clarification of the content as well as to an improvement
in the presentation.

§ 1. Preliminaries. Let x be the set superstructure based on a set of individuals
Xo = R as in [Str-Lu, (3.2)]. With x we associate the first order language L(x, €, =)
which contains besides the basic predicates “e” (for membership) and “=" (for
equality) a constant for each individual and entity of x. L(x, €, =) is interpreted
In x in the usual way. The interpretation of L(x, &, =) in any nonstandard super-
structure model *x of x assigns to each constant the nonstandard extension of the
corresponding interpretation in x.

Nelson proposed Internal Set Theory (IST) as an axiomatic theory of all of set
theory. This theory has an addition to the axioms of ZFC, three new axioms 0, (S)
and (T) (see below). The predicate language in which the axioms are formulated
contains besides “e” and “=" a new predicate “standard (x)”. If the standard pre-
dicate is interpreted in *x by the domain of standard individuals and entities of *x
the axioms (I), (S) and (T) have a meaning in *x but are not necessarily true there.
It should be remarked that *x is not uniquely determined by the validity of IST.
Working in IST in this way simply means that we are only interested in consequences
of these axioms and do not need other specific properties of the model.

Of course, not all axioms from ZFC remain true when interpreted in a super-
structure. But the only property one really loses is the full strength of the axioms of
replacement which we do not need in the intended applications. On the other hand,
it provides no difficulty to have the constants from x (with their usual interpretation
In *x) in the language.

In order to remind the reader that we are working in internal set theory we some-
times attach a “*” to classical concepts (which still have their usual definitions),
e.g. *N or *R.

In [Ne] bounded formulae play an important role. In a bounded formula the
quantifiers appear only in the form

(Y)lred=.] or @)yeBa ...

We sometimes abbreviate these as (Yxe 4) or Ay € B) in semi-formal shorthand.
Here 4 and B are constants in the language. When we restrict ourselves to the fixed
superstructure each formula is of course equivalent to a bounded formula. This

means that only results in [Ne] depending on the use of bounded formulae remain
valid in our context.
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We will now precisely formulate those parts of Internal Set Theory on which the
paper relies.
Qur predicate language will be

L = L(x,e, =, standard)

where standard is new unary predicate symbol.
We need some notation:

@(¥y, s y,) means that all free variables of ¢ are among the y,, ..., J,.

Vxp means Yx (standard (x) = ¢).
T*xe means Jx (standard (x) A ¢).
A means V¥ (x finite = ¢).
U x means 3*x (x finite A ¢).

Formulae containing the standard predicate are called external; internal for-
mulae are those from L(x, e, =).

The three axioms of Internal Set Theory are:

Transferaxiom (T).

Yo%y sty [V¥X0 <> Vxo].

for each internal ¢ with the only free variables ¢4, ..., f,, x.
Axiom (1) for the ideal point.

(V" Z) @t) (VxeZ) @)« [t Vx o]

for each internal ¢.
Axiom (S) for standard set formation.

VZ A"Y V% (xe Y xeZA ).
for each (external or internal) ¢. . .
In addition we assume all formulae from L(x, €, =) true in x as axioms. This

does not allow the formation of subset using external formulae. So, if 4 is an internal
set and ¢ an external formula then there is in general no internal set B such that

veBwaednpa).
This set B exists of course as an external sct and we denote it by
B =" {xeAlp}
In the special case where ¢ is the standard predicate we also write
B = {x e B|standard (x)} .

A kind of internal substitute for B is provided by axiom (S). The (standard) set ¥
in (S) is denoted by
Y =5{xeZlo}.
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1.1. DeFINITION. A subformula §y of a formula ¢ in L occurs positively (resp.
negatively) in ¢ if \ is inside the scope of an even (resp. odd) number of negation
symbols when “—” and “e” are replaced by equivalent statements using 1,
A and V.

1.2. DEFINITION. A formula @ in L is in reduced form (RF) if it is of the form
(Q%x, e Uy) ... (OF x, € U,)Y where Q;e{V,3} and y is internal. If m = 1 then
such a formula is called a QY -formula.

1.3. DERINITION. A formula ¢ in L in which the standard predicate occurs at
most negatively is called a monadic fornmla. If in addition, all the bounds on the
external quantifiers, Uy, ..., U, satisfy card(U)) <«, then we say @ is a-monadic.

Nelson refers to monadic formulae as “universal semi-internal formulae”.

In [Ne] the following theorems are proved: Extended axiom of choice:

(SF) If ¢(u,v) is any formula and U, V are standard:

[(Viue U) @ve V)o@, vl [@5e V)V ue U)oy, 5w)].

Extended transfer principles:

(TV) If @ = ¢(x,1ty, ..., 1,) is an V*-formula, then also (T) holds.

(TA) If ¢ = @(x, 11, -y ty) is an F*-formula, then

Vo415 ees 1,[ 35 %0 < Ax] .

The proof of the following two theorems is similar to the proof of (TV), (T3).
Extended principles of the ideal point:

V) If ¢ is an Y*-formula, then (I) also holds.
I3) If ¢ is an 3*-formula, then

(@ XY (¥ Ex e X)) <> (V1 E X 9) .

In [Ne] it is shown that each formula can be transformed into an equivalent
formula in reduced form using (I), (SF) and some conventional rules. The transfor-
mation into a reduced form can actually be given by an algorithm which is called the
reduction algorithm (RA for short). Monadic formulae can be transformed by the
(RA) without using (SF) into the form

(Vxy e Uy) oo (V%€ U
with ¢ internal. In other words, monadic formulae are cquivalent to reduced for-
mulae with only v* as external quantifier and, moreover, the reduction {o this form

does not need (SF). Furthermore, if the initial formula is «-monadic, then
card(U)ea for 1<igm.

§ 2. Monads, o-monads and monadic formuta. If 4 is standard and /& is a stan-
dard filter on A then the external set M := u(&F) := *{x e A|(V"Fe #) (xe F)}
is called a4 monad on 4 (namely the monad of %).

If # has a basis # with card #<«, o a cardinal munber, then M is called
an o-monad.
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For the properties of monads we refer to [Lu] or [Str—Lu] where they are dis-
cussed in detail. To some extent this paper can be regarded as an extension of
Luxemburg's article.

Next we will describe the structure of those sets which are monads of some
filter. The theorem is the converse of the observation that u(#) is defined by a mo-
nadic formula. The proof can be found in [Ben 1] or [Ri]; for completeness we
include it, using some simplifications which are due to K. Potthoff,

2.1. THE SYNTACTICAL THBOREM ON MONADS., Let A be a standard set, and
let ¢ = p(x) be @ monadic formula with only x free. Then:

() M= "{xedlp()} is @ monad.

(b) If ¢ is an a-monadic formula, then M is an o-monad.

Proof. We may assume that @(x) is of the form

(V*yeE) ¥(x,»)

where W is an internal formula. The obvious candidate for the filter whose monad
should be M is
F = {Fs AIM<F}.

Clearly M < (&) holds. We obtain a base for & by taking for finite U< E the
sets

By:={xed| (Yyel) y(x,»}.
Now we have:
xeM e (VUSE) (VyeU) y(x,p) < (V" USE) (xeBp) e xeu#),

which shows (a).

Now # = {F< 4| @"UcE) ({xedl (VyeU) ¥ (x, »)})} holds and there-
fore u(#) is a card(E)-monad. Then (b) follows from the fact that card(E)<«
if ¢ is an a-monad.

The theorem shows that filter monads correspond to monadic formulae. It is
well known that monads are either standard or external (cf. [Lu]). In particular
«-monads for finite « are standard and proper «-monads for infinite o are external.

§ 3. Families of monads. In applications onc is often interested in infinitesimal
or infinite numbers of different size. This is related to the question of what a “non-
standard monad” or a “monad of nonstandard filter” might be. One expects such
nonstandard monads, e.g. when one takes the union of infinitely many monads
(. §4).

We will define “superinfinitesimals” in such a way that they form the “monad
of some nonstandard filter”. To carry out this approach systematically we need not
only to generalize the concept of a monad but to do it in such a way that we obtain
a transfer thoorem in order to prove properties about these new monads. Transfer
amounts to interchange of quantifiers. To make it possible we need to impose some

B — Fundamenta Mathematicae CXXVIIL 3
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syntactical restrictions in the defining formulae of the generalized monads. We statt,
however, with the set-theoretical definition.

Suppose & = (#,liel) is a standard family of filters &, on sets X,. This
implies that (X;liel) is again a standard family and the product filter
F =[[(FilieD)is a standard filter on the standard set X = [T(xili e I). Therefore
the monad p(#) on X is well defined. The central concept now is:

3.1. DEFINITION. The m-monads of the family & are

w(F): = Hxe X (Y'Fe[[(#lieD)(xe F())} for jel.

Hence the 7-monads are the projections of the ordinary monad of the product
filter on the coordinate sets which may be standard or nonstandard.
As expected for standard jeJ we get nothing new:

WE) = 1) = (] (V'Fe ) (xe FG))} .

ExaMpLE. Put I = *N and consider the constant family (&#,[ne *N) where
each &, = 9U,(0), the neighborhood filter of 0 in the *reals.
Taking the standard function

F(m) = {x] x| <1/n}

we observe that 1/m ¢ " 11,,(F) and therefore ", ( F) # u for nonstandard m where
is the usual monad of 0. More precisely, for x = 0 we have

1
xe”y,,,(f)@ ]_
X

> f(m) for all standard f.

This example also shows that z-monads do not only depend on a special internal
filter but on the whole family of filters.

Because we are more interested in monads rather than filters we replace a stan-

dard family {# i € I} equivalently by the external family (M));c 1o of monads which
determines the family of filters by axiom ().
If no confusion arises we write

"M; for "u(F)

or "M[j1if M, = M = (%) for all standard ieJ,
For standard jeI we then have

"My = M;.

Next we extend the syntactical description of monads by formulae to the case
of m-monads.

If M= {xe x| ©4x)} we want to construct a formula "o (i, x), such that

VieD ("M; = *{xe X} "o(j, x)}).
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The construction of "¢ (i, x) from the ¢,(x) is quite natural: i € I is (with some pro-
visions) considered as an argument and then allowed to be nonstandard. The next
definition will make this precise.

3.2. DermNiTIoN. (2) A formula ¢ (xg, ... X1—1, Fo, o
with free variables xg, ..., X;1 is called admissible if

(i) the ¥, occur only as ((V*ue ¥;) W) or (3" ue V) ¥) and all external
quantifications arc of this form;

(i) bounded variables are different from free variables and different quantifiers
bind different variables.

(b) If ¢ is admissible, 7 is standard, Uy and 4; are constants denoting standard
functions with domain 7, then the family

(Puxo, s gl EET),
L] (]n—-lci)a AO(i), L
is called an admissible family with base formula ¢.

(©) I (@/(xy. rr Xp-1)] i€ ) is an admissible family with base formula ¢ then
we perform the following syntactic transformations:

Y1(Xo s vver Xpeq) = (X5 oons Xio s i]'II Uy, ooes iIEIIU,,_l(i),AO, ey A1)
e

H Vn—la XO: e Xm—l)

2 Am— 1(1)) ’

@05 wves Xim1) = P(Xgs woes Xim 1> VoD

¥, in general will not be a very meaningful formula.

l//2(-7‘77 Xgy veen A’;_]) = (P(x(h vy Xpmts q Uo(l)a ] ils_l Un—l(i)a on: v Am—l(x)) -

Note that the A; are constants denoting functions. ¥s(x, Xo, .-, X;-1) is obtained
from W, by replacing each subformula of the form

(C*ur e xl;l Ui (-ees s )

by
(Q"u e iHI U (oves ), -o0) -

Tf the family (¢,|i € I) has contained meaningful formulae then Y, also will make

sense. .
T (3, Xy s eon s Xpmq) = WalXy Xy ores X o) is called product form of the admissible

family (¢/)ieI) or the m-transform of ¢ with respect to
(U, 4D, iel,0<k<n, 0<l<m).
It is clear that " is of the form .
Y (%, Xy ovs X115 ieﬂl Up(@)s woes mnr U,-1()5 Aos s Au—1)
for some admissible

lll(x’ Xo» vees Xp— 1 WO: seey Wn—-la YO: s Ym-‘l) .

G
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In the intended applications the variable x will range over . Thercfore we will in
.,e . - > 2 2 - e o o, 3

‘nf,ne‘lal use the variable / instead of x, i.e., our m-transforms are of the form
O, Xg, ey X ).

‘ As a first example we consider a family of monads (M)ie s With the correspond-

ing standard family of filters {% ] e/}, for standard ie we have

xeM; e (V'ue F)xecu).

The forn;ulae on the right hand side form an admissible family with
;p(x., Vy= (V"'z.ze V) (xeu) as a base formula. We sec that the n-transform
-q,(]l, x) of ¢ with respect to this family of filters defines the w-monads "M, for all
16 1. »

‘ The idea now is that the formula "o, xy, .., X;-1) might allow matatheorems
which are not available for the corresponding filters (or galaxies, skics cte.) T[{
formula “p extends the logical description of the usuél monads to lhenrr-n.lc;md:
:and can .be regarded as a transfer. Because of the additional parameter i the sit'u'lt;o
1s more involved than in the theorem of monads. There the reduction algorithn; Rzz
was used; here we have to define a more refined reduction procedure

3.3. DeFNITION. Let Qe({V,3}, V=3, § = ‘
free variables of ¢.

The rules of t inisti ical i i

isteooty ;1?] glgatlldfﬂa(ré‘::zlzurcj)) :z?loglcal reduction algorithm (TRA) are:

(V) If u ¢ fr @), v fr(p):

(QMue)p) vy |~> (Q®ue D)evy),;
ev({(@tve M) -> (@M eP)ovi.
(A) analogous to (v)
(=) if ug fr@y), véfr(p):
(QueU)p) > y | => (@ 'ue U)o~ ) ;
¢ = (0" e MY) |-> (0% e P)p =) .
M Y (Vuetp| - (V'ue UV
@ @)@E*ueUyp|-> @ue U))élx);/)).).
(YA)if @ AV is not internal: )
Yx)(p AY) |- Vo) A (V)
@Av)if ¢ v is not internal:
@) (e v ) |-> @xe) v Fxp).
(TIV) (3x) gVS:u eU)g |-~ (V{'u € U)Axp)
| if ¢ is an V*-formula .
- (T3 V0@ ue U)g | ~> Fue U) (Vxp)

V; fr(p). denotes the set of

if @ is an 3*-formula .
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The (TRA) does not reduce all formulae to a reduced form. The rules (TIV), (TI3)
do not lead in general to equivalent formulae; TI3 is not even correct in the sense
that it always leads from valid formulae to valid formulae.

We will therefore define a special class of formulae for which the (TRA) is
correct. This will also determine the class of properties for which we can show a trans-
fer theorem. To make it as big as possible we must concede a somewhat lengthy
definition. .

First we have to single out a class of formulae which behave nicely with respect
to positive and negative occurrences of certain subformulae.

Let ¢ = @(xXg, .y Xj=13 Ups ooy Upey3 Ay oy Apyq). If @ is a subformula
of ¢ we write & = @ (@, 7),if 5 = (g, ..., v,-1) contains the free variables of ¢ which
are cxternally quantified in ¢ and J = (y;, ..., y,—) contains the remaining free
variables of .

From now on we assume that each U, is nonempty and equipped with a partial
order [, such that (U, [) and (U, ]i) are directed. In our examples it is either an
obvious existing natural order or set inclusion.

3.4, DEFINITION. (1) An internal subformula @ = &(7, 7) of ¢ occurs mono-
tonically in ¢ (relative to “[”) if we have

(W27 w'yp_l)(\/u(,, cees Upm ) (VUG wevs 07— g)
(2@, 7 Ao<) = (2@, 7)]
where < is defined as follows:

o )’ua[n; for all eer, if & occurs positively in ¢ ;
R [vn jv; for all eer, if & occurs negatively in ¢ .

(2) ¢ is called completely monotonic if it is admissible and if every maximal
internal formula ¢ of ¢ occurs monotonically (relative to “[”).

(This is the case i the maximal internal subformulae ¢ are “built up by mono-
tonic subformulae™ of ¢).

For the notion of “monotonic” one should compare the language L; to topo-
logical model theory [FI-Zi].

3.5. DEFINITION, ¢ is simply reducible (s. 1.) if ¢ is completely monotonic and if
it can be transformed by the rules of the (TRA) into a formula in RF.

We remark that any admissible ¢ can be turned into an equivalent completely
monotonic formula. After such a transformation the TRA might no longer be
applicable even if it was in the first place. Later on an example shed more light on
these conditions. It should also be emphasized that the concept of a simply reducible
formula is — despite its very technical character — easily handled in application
(see § 4).

3.6. LEMMA. If ¢ is completely monotonic and is transformed into by the (TRA)
then 3 is also completely monotonic and ¢ <> holds.
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"Proof. We have to show that the application of each TRA rule to a completely
monotonic formula ¢ produces an equivalent completely monotonic . This will
be carried out only for the rule (TId) and the case where ¢ is of the form
(VX)@%ue U)®(x, U),  being the maximal internal subformula of ¢. We need
to prove '

(V)@ e U) @(x,u) = @ue U)(YX) O(x,u).

“<=" is trivial.

“=s: By (I3) we have

@iing o UY(Vx)Jue U@ (x, u)) .

Now choose a uy € U such that u [ 4, holds for all we U’; then & (x, u,) follows for
all x because ¢ occurs monotonically. In the next lemma ¢ is the product form of
some set of admissible ¢;’s but not necessarily monotonic.

. 3.7. LemMA. If ") = "p(i, Uy, s Uy 15 Ao(D)s oors Ay y(D)) has no free
variables and is in RF, then ‘
(Viel) "oy« ((Yiel) "p()) .

Proof. Using (SF) from (RA) we can transform the formula (V*% e I) "o (i
into the form . e W el
(Q%lﬁo‘E Up) - (@il -y € U,-)(Viel)
Q(ﬁo(i)y nery ﬁn—](i)» -AO(i)* ey Am-'l(.i)) ’
Then we apPly (T) gnfi bring the quantifier Vie 7 to the left. This proves “="; the
other direction is trivial. Next we come to the main result of this section.

o 3% ;II‘RANSFER THEOR.EM. Suppose @y = @(Uy(D), v.vr Upe1(i); Ao(i), -or» 44(0))
is s.r. and has no free variables for standard ie I; assume furthermore that "o (i) is
the product form of the ¢;s.

Then we have

(Ve Do« (Viel) "p(i) « (Yie D" o).
Proof. We have:
st» E3 - . .
() (¥¥ie (o, < "p(i), which gives the first equivalence. By assumption,

RA) t ;1 i
SI_‘ )t ransfom:s Oea.ch‘ ¢; into some ¢f in reduced form; the same rules reduce
¢ () to some ("p)°() in RF and we get

2 (@G = (p)°() for all iel.
Furthermore we have by the correctness of the (TRA) for s.1. formulae
() (V'ieD)(p;= ¢f) and
@ (Vie D("e) < (p)°w).
The previous lemma yields

) (Ve D((p) @) = (VieD)(()().

icm
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The rest follows from applying (1). (4), (2), (5), (2) and

(4) in this order to (V*ie Do .
V' Fe F)((t, - t)EF )is a subformula of a completely monotonic Formula ¢;
we use for this subformula the abbreviation (14, ..., t,) € M;, where M; = u(F ).
The corresponding subformula of "¢ is denoted by (ty, ., t) €™M, v

3.9, COROLLARY. If the monad family (M )i« is defined by M; = Elx e Xilo(x)},

where @ is « completely monotonic monadic formula for standard i €1, then:.
"M, = "(xe X"o(, x)} for all jeI.
Prool. We first write ¢,(x) as " (i, x) for standard ie 1. We have:
CYel)(Vxe X)[xe M, < ol 0.
Obviously a completely monotonic monadic formula is s.r. which ipdplies that:
“vHiel)(Vxe X)(x e M, <= "o(, X)) is s.r. too. Now the transfer theorem
implies the desired result:
(Vie)(Yxe X)xe"™M; < "o, x)] -

In the noxt example we discuss the necessity of the assumptions in the transfer
theorem; we see in particular that “s.r.” cannot be replaced by “completely mono-
tonic”. ‘

ExampLE. If (X, d) is a metric space, we define for A< X, aeX, ref0, o[

d(a, 4):= ilexid(a, %3

Ka,r):={xeX| dx,d<r};
1:=*N;
Y= (Vxe X)@'a e X)(v*e €10, o) (d(x, @) <2).
“X is compact” is not completely monotonic. If we

This formuia which says that ‘ nof ‘
convert it to a completely monotonic one we obtain another description of com-

pactness: .
0= (Yxe X)(F'ue 2 (X) (Ve €10, o[)(d(x, 1) < g).
Now we specialize X to be the compact unit interval [0, 1] = *R and we get

(vie*No: . o
Now assume (Vi e *NY(i). This is equivalent to

(Vie*N)(Vxe [0, 1)@ e 2,00, 1™ (¥ €10, o™ (d(x, (D) < E()) -
Using (SF), (1) and (T) this is transformed further into
(v*%: 2.0, 1 - 10, o[ ™) @M = 2,10, 1D
(Vie*N)(¥xe[0,1)@de a)(d(x, 7)) < E@D)
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and finally into
(VE: 2,(00, 1IN = (10, 0 [)™) (V"2 = 2,(00, 1T™)
Vie*m(0, 11 U U K(y:E@).
uen yeu(i)

We will show that this last formula is false.

We put
e put E@) : ~ 2nd-card (ii(n)) "
Let A be the *Lebesgue—measule on *R.
We take a *finite 4’ < (2,[0, ID*Y  such that

[0,1] U U K(y; B@ @) for all ie*N.

e yeu(l)
Then:
1= A([0,1]) < Y (& E@)
neu’ yeud)
1 1 c‘udu
=2 L2i@0=3% ¥ —- - =
wew yEu(l) ucn’yeu(i) lC'lI'dLl(l) wen i 7
Hence carddi'> i for all i€ *N, a contradiction to the *finiteness of @#'; therefore

1" () holds for some i.
In the final section we will give some applications of the theory obtained so far.

§ 4. Some applications. First we consider the nontrivial part of de I’'Hospital’s
rule mentioned in the introduction. For standard a e *R we have the monads
pela) = E{xe*R| x2a,x ~ah,p(a) ="{xe*R| x<a,x ~ a) ;
furthermore let ug(co) resp. g~ w0) denote the monads of the positive resp. negative

infinite real numbers.

4.1. PROPOSITION (de I'Hospital). Suppose M is one of the monads 1_(a),
14(a), pr(e0), Up(—0), g and f are standard real-valued differentiable functions with
domain D, M < D < *R.

Assume for all x e M: f(x), g(x) € pg(+ 00), g'(x) # 0 and f/((x))
g'(x

= d, d standard.

Then (Vxe M) (f(x; ~ cl) holds.

Proof. We fix some arbitrary ze M. If x & "M [z] (say x

z), then by the mean
value theorem for some 7, x< 75 <z,

1@
ST _fO-f@) _f@ S
Tem 9@-a) (x) 9(2)

. e
1s true.

icm

A general theory of superinfinitesimals 211
The relation x € "M [z] implies furthermore (by 3.8)

1@ o~ 90
J(x) 900"
7 (x)

- for all xe™™
g(x)

prove below) at this place we obtain our conclusion
(Vxe M)(f—(-—) ~ d)
(x)

Now we turn to applications in the general theory of monads.
For a standard set X the set

Hence we get d =° [z]. Using Proposition 4.4 (which we will

F := F(X)
of all filters on X (this time including the improper filter of all subsets of X): the
ordering
F< G iff u(F)< u(G), F, G standard
makes F a complete standard lattice. This lattice is studied in [Lu], II, 3. Tt has
simple arbitrary infima but the infinite suprema provide some difficulties for which
the families of monads are useful.
First we observe that for a family of monads on X
T Ml iely:= N (M| iel) = xe X| (Viel)(Vxe M)}
(in short: (} M)

iel

is again a monad by the theorem of monads. In fact, it is the greatest monad N s.t.

VieN(NeM).
From this follows that

M(HF)—ﬂu(F)

iel

where ITis the lattice operation.
The corresponding method to describe the lattice supremum II fails, however,

because
Erxe X| @el(xe M)}

needs not be a monad if 1 is infinite. Therefore we define the sup as:
M| ier:= U (M| iel) =" {xeX| @iexe M)},
which in short will be denoted by U M.
il
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This is, again by the theorem on monads, a monad too. Of course, for each
standard i€ J we have

M= M;.
ter

Now suppose that for some monad N
- (Ve (M, = N)
is true. By the transfer Theorem 3.8 of §3 we get

(Vie )("M, ="N[i] = N)
and
UM, eN.
iel
This means that (J M, is the smallest monad containing all M, ie sfandard and
shows tel

#(I1F) = U u(F)
iel iel

is in fact true. Therefore we now have a description of the complete lattice (F, [) in
terms of monads. This allows us also to describe the S-topology (cf., e.g., [Ro]).
For an external set 4 < X the hull in the S-topology is the filter monad
A=ul{Yesxjacsy).’
Observe that the S-topology is an external topology on external sets.
From above, we now obtain:
4.2. PROPOSITION. Suppose that ¢,(x) are completely monotonic monadic for-
mulae for standard ie I and
A="xeX| @ieDol)}.
Then
A="xeX| @iel) o, x)},
where "¢ is the product form of the ;8.

The next lemma says that the elements in the monads of an ultrafilter are in
some sense indistinguishable.

4.3. LeMMA. Let N be an ultramonad (i.e., the monad of an ultrafilter) and ¢(x)
an- external formula with no other free variables besides. x.

Then (i) and (ii) are equivalent:

() Axe N)o(x)

(i) (VxeN)o()

Proof. We may assume that ¢(x) is of the form

@'we W)(¥ve V)®(x, w,v) where &(x, w, v) is internal .

The implication (ii) = (i) is trivial.
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For (i) = (ii): First choose some a € N; then we can find a standard w e W s.t.
(Vv e V)P (a, w, v) holds.
We put
M:={xeN|V¥" veVd(x.w,0)};
by the thcorem on monads M is a monad; we also have ae M= N. Thus N = M
because N is a ultramonad;
= (Vxe N)(V'oe V)d(x, w,v)
= (Yxe NY@*we W)(V*ve VO (x, w, )
= (VxeN)p(x).
Next we will see how far a m-monad determines the monad itself.

4.4. PROPOSITION, Let M < X be a monad of some filter F and ¢(x) be .an
external formula with no other free variables besides x. Let I be standard and i€ L.

Then ‘

[(Vx e "M[De )] = [(Vx € M) (x)]

holds. .
Proof. N: = p(*{¥<I| ie Y}) is an ultramonad s.t. 7€ N holds; this N is

called the ultramonad of I .
We may assume that ¢(x) is completely monotonic and of the form

(V'ue U)(@*v e V)d(x, u, v) where (x, u, v) is internal. Then we have by the
previous lemma and the axioms (I) and (T) the implications:
(Vie N)(Vxe M) (Y'ue U)@'ve V)@ (x, u,0)
= (Vue U)(Vie N)(Vxe"M[DNEve V)O(x,u, 1)
= (Vue U)Fie)(Vxe N[V FeF)(xe F)) = @veVo(x,u, )]
= (Ve )@ve V)@ FeFH@e)(Vxe FOO(x, u, )
= (Vue U)[(Vxe X)(Vie (V' FeF)(xe F@) = (@ ve ) e(x,u,v)]
= (Vue U)(Vxe M)Fve V)B(x,u, v)
= (Vxe M)(Yue U)Fve V)P (x,u, 1)
= (VYxeM)p(x).
Returning to the S-topology we observe that standard functions are continuous in

the S-topology.
4.5. PROPOSITION, Let f: A — B be a standard function. Then for any external

E < A which is defined by an external formula
FE)=f(E).
Proof. We may assume E = {xed| o} ¢) = @i ey (@, x) where
Y (i, x) is a completely monotonic monadic formula.
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Then we obtain
E="xedl @ieDy(,x};
F®) = {ye Bl @xe A7) = ») A(@e DV D)]}:

f(E) ="{yeB| Axe DI(fE) =»)A @ienp(i, x))]}
= yeBl @ ieN@xe HLSG) =y A, D]}
f(B) =" {yeB| @ieN@xe ALf(x) =y Ay, D]}

HyeB|l AQxe ALf(x) =y adie (i, x)]} .

This shows that f(E) = f(E).

Robinson’s lemma for real sequences says that a sequence (,) which is infinite-
simal for all standard » is infinitesimal up to some nonstandard w e *N.

If we express this in terms of monads we are led to the following slightly more
general observation.

4.6. PROPOSITION. Suppose 1 is standard and M; = M is a monad for all standard
iel If N=1is also a monad then for all x € M there is some i€ N s.t. x € "M i].

Proof. Assume M = u(F), N = u(%). We have to show:
(Vxe M) ie N)(x e "M[i])
By RA we see that this is equivalent to
(VGe®)(VFe #')@Fe #)(Vxe F)@ic G)(x e F(i)
which follows from
(VGe9)@ie G)(VFe #)AFe #)(F< F(i)).

To show the last statement we take for Ge & any ie G and put F := F(i).
Finally we obtain a characterization of uncountable sets in terms of %-monads.
For a standard set X the external set X\X™ is a monad; the corresponding
filter contains the cofinite subsets of X. We define a family of monads indexed
by *N:
M = Tst(X) = XNX", M, = M for ne*N*,
finally we put
Wi="{xeX| (¥ne*N)(xe M)} .
4.7. PROPOSITION. card(X) >, iff W # @,
Proof. We have
"Min] = Fixe X| (v 1 5N - 2,00)(x ¢ 1 ()}
and

W= {xe x| (V" f: *N = 2,00)(x ¢ im(/))}
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Therefore W = @ for countable X. If X is uncountable then we have some x ¢ im(f)
for finitely many standard f and use the axiom (I) of the ideal point.

W is again a monad and it is easy to see that "W [n] = W holds for all n & *N
from which follows that the filter belonging to W is &-complete.
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