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Ryszard Frankiewicz (Warszawa) and Kenneth Kunen (Madison, Wis.)

Abstract. In this paper it is proved: ZFC + “there is measurable cardinal” is equiconsistent
with ZFC + “there is a Baire metric space X, a metric space Y, and a function f: X— ¥ having
the Baire property such that there is no meager set ¥< X for which f{ X\F is continuous”.

In 1935 K. Kuratowski [11] posed the following problem: whether a function
f: X — Y baving the Baire property, where X is completely metrizable and Y is
metrizable, is continuous apart from a meager sct (cf. P. 6 [12]).

In this paper it will be proved:

THEOREM. The following theories are equiconsistent:

(1) ZFC + 3 measurable cardinal;

(2) ZFC + there is a complete metric space X, a metric space Y, and a function
f: X = Y having the Baire property such that there is no meager set F< X for which
FIXNF is continuous;

(3) ZFC + there is a Baire metric space X, a metric space Y, and a function
f: X > Y having the Baire property such that there is no meager set F < X for which
FIXNF is continuous.

1. Definitions and the basic facts. Let X be a topological space, and 4 = X.
The set 4 is said to have the Baire property if

A= (G\P) U Py,

where G is open and Py, P, are meager sets (for basic facts see Kuratowski [10]).
A map f; X — Y has the Baire property iff for each open set V<Y, F(V) has
the Baire property.

1.1 In [4] the equivalence of the following statements has been proved: Let X, Y
be metric

(i) for each subspace X* = G\F of X, where G is a nonempty open set and Fis
ameager set and for each partition # of X’ * into meager sets, there is afamily #' € &
such that %' does not have the Baire property.
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172 R. Frankiewicz and K. Kunen
(i) for each map f: X — Y having the Baire property, there exists a meager
set F< X such that f| X\F is continuous.

1.2. In [3] the following has been proved: Let X be a complete metric space
with weight <2° and let & be a partition of X into meager sets. Then there exists
a family #' < & such that &' does not have the Baire property. As an immediate
corollary from 1.2 and 1.1 we obtain a positive answer to Kuratowski’s problem in
the case of a space X of weight <2°.

1.3. Let A be a regular cardinal, and assume that I is A-complete ideal over 4
containing all singletons. The ideal I is precipitous if whenever S is a set of positive
measure (S € Z(ONI = I") and {W,| n <} are maximal I-partitions (if a, be W,
anda#bthenanbelandifael* and as S thenFpep, (b nael™) of S such
that

Woz Wiz a2 W2 ...

(W, = W, denotes that W, is refinement of W,) then there exists a sequence
ofsets X, 2 X; 2 ... 2 X, 2 ... such that X, ¢ W, foreachn,and [} {X,| ne o} =
An ideal I over A is p-saturated iff P(A)/I has the u-c.c. property.

"14. If x is a regular uncountable cardinal that carries a precipitous ideal,
then % is measurable in some transitive model of ZFC.

1.5. Assume ¥V = L. Then there is no precipitcus ideal over any cardinal

1.6. Con(ZFC + thereis a precipitous ideal) iff Con(ZFC + there is a measur-
able cardinal).

1.7. If % is a cardinal then let B(x) denote a metric space (D (x))” where D(x) is
a discrete space of cardinality x. For each natural », and function x: n — % let
U(x) = {fe“x| fln = x} (we will identify U(x) with x). The set {U(x)| x is a func-
tion from the natural number into x} is a canonical base for B(x).

If X is a topological space in which the Baire theorem holds we call X a Batre
space.

1.8. [, is the following statement: there is a set Ecx
{Cy)A<x*,2 is limit), such that:

() E is stationary in x*,

(ii) C; is closed and unbounded in A,

(iif) if cfA < then |C,| <,

(@) if y is a limit point of C;, then y¢ E and N C; = C,.

If E is a stationary subset of ». Let <>,(E) is the following assertion. There is
a sequence {S,j« € E) such that S, S« and for every X < u, the set

and a sequence

{0¢eE| Xna=8,}

is stationary in x.

1.9. Let NS, denote the set of all nonstationary subsets of x,
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§ 2. The case of a complete metric space.

2.1. THEOREM. Assume that j is an w,-complete ultrafilter over the cardinal x.
Then B(2¥) can be split into » meager set {Flo<w} in such a way that for each 4 < x,
the set {F,lo € A} has the Baire property.

Proof. Let {P,] a<2*} =j.

Define F, = {xe B(2")| « = min {Pem) ne @}

It is easy to sec that each F, is a meager subset of B(2%).

Let 4 €j. Then there is a fe2%, such that Py= A

We claim that () {F,] a4} contains a set {x e B(2¥)] there is an ne w such
that x(n) = } = V. The set ¥ is open and dense.

Indeed, if x & V then N {Pyl new}SPy= 4 and min

It means that ) {F,] ¢ 4} has the Baire property.

2.2. Remark. It has been proved in [6] that if ZFC + there exists a measurable
cardinal is consistent then, ZFC + there is a partition & of B(c") into meager
sets such that for each #' < & the set | ] #' has the Baire property, is consistent, too.

2.3. The following theorem does not involve advanced model theory. This
is the reason we decided to present it here (other proofs involve the forcing method).

THEOREM. Assume V = L + “‘there are no weakly compact cardinals”. Then for
any partition F of a complete metric space X into meager sets there is F' < F such
that \) &' does not have the Buire property.

Proof. Assume not. Let x = |#|, and & = {F,| a <]}. It canbe assumed that
an ideal V= {4eP(x)| U {F,] e 4} is meager} is uniform and x-complete.

‘We now modify a standard construction of Suslin trees in L (for details see [2]).
There are two cases

Case 1. % = p* for some p. Let Ecp*, {C)| A< p* & Ais limit) be asin 1.8
and {S,| «<pu*) satisfy <,+(E). The tree will be constructed by induction on
levels. The elements of T will be members of x, and ¢ <z — a < f. Let T = {0}.
If T, is defined then T, , is obtained by adding two new ordinals as extensions of
each member of 7,. In the limit stage, associate with each point x e T|«, the o.-branch
b3 with x e bS.

Let {y,] v<41) be a monotone enumeration of C, and ¥(x) be the least v such
that x e T,,. Define a sequence {p;| #(x) <v<l) of elements of T, as follows:

{Pumy| nE®} € 4.

p‘,(x) — the least y e T\;,,, such that x<ry

v(x)

Dy — the least yeT,

was SUch that pj <7y
P} — the unique y e T, such that for all v<y
<y if it exists.
Let b2 = {yeTlo|@y<) (y <pp))}. T, is defined as follows: If a¢ E, T, consists
of the one point extensions of each b5, x € T|x: If « € E and S, is not a maximal
antichain, do likewise. ‘
3*
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If o e E and S, is a maximal antichain 7, consists of one-point extensions of
each b} for x lying above an element of S,.

Case 2. Because u is not weakly compact, by Theorem VIL. 1.3 from [2], there
is E < p such that for each o, E n « is not stationary in a. The construction in this
case is similar to those of case 1. Let T, = {0}, and if T, is defined, T, has defi-
nition the same as case 1. Assume that ¢ is the limit. Let {S,| o < u) satisfy $,(E).
If « ¢ E than T, consists of the one-point extension of each by for xe Tl,. If a e £
and S, is not a maximal antichain of T'|« then the definition of T'u is the same as
in case o ¢ E.

If x € E and S, is a maximal antichain of T« then for any x e T'|a it is possible
to pick an a-branch b, such that b, S, 5 @. Let by denote such an L-minimal
branch and let T, consist of a one-point extension of each 5.

Let T, denote a tree of height w+1 such that T,,|e is a Cantor tree and T, is
obtained by one-point extensions of each branch of T, |w.

Claim. There does exist an embedding @ of Ty, as a iree, into T, in such a way
that for each ¢ <w+1, there is a B, for which

o(T). €75, -

Assume that such an embedding exists. Then 7, can be embedded via ¢ into
Tlimpy+1- Let 6 =limp,. In the tree T|J, with any point @(x) is associated
n n

‘branch bf:,(x) which is extended in the §-step. The number of such branches is count-
able. So there is a branch b in T,|w such that ¢"(b) # bfa(x) for all xeT,|w.

By the constriiction of 7' there must exist a y € T such that bf, coincides with the
branch defined by ¢"(b). But by minimality of elements in the branch, (Case 1, and
part of Case 2), or L-minimality of the branch, there is an element x € T, | such that

bf' = bg»(x) g
a contradiction.
Now, for the proof of the theorem, it can be assumed that {F,| « e A} has
‘the Baire property. Also, it can be assumed that, each « <% is an element of T.
For xeT let :
Ve=1U {FﬂmT>‘x}‘

There are ag, xg, X; such that x,, x; & T, and V,, V., are nonmeager. Indecd,
because T is Suslin and by the assumption on F, in each level there is an x such
that V, is nonmeager, but since Vis »-complete and in T there are no »-branches
there must exists two noncompatible clements of 7, x, » such that ¥, and V,
are nonmeager.

Now, let G, and {Ej| new)} for i = 0,1 be as follows

(i) G; is an cpen nonvoid set;

(i) Ve, 2 G U (£ new);

(iii) E; is a closed meager sct;

(iv) diam@G, < 1/2.
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By induction on the length of s, where s is a function from the natural numbers
into 2, define oyengn s, X, Gs, {Ey| new} such that

(1) Cengins = o> 0, if m <lengths;

2) x,eT,, if 3,5(n) # s'(n) then x, is T-incomparable with x/, and if &' 25
then xgr> X1

(3) G, is an open set;

(4) diam G < = .

‘ Sfength 5>

(5) E, is a closed meager set;

(6) Vi, 2GNU{E) new);

(7 Gy < Gl {ES |lengths” <m and n<m)} for 5’ 2s.

Assume that for m <w, x5, Gys and {E;| ne o}’s are defined.

Using exactly the same argument as in step 0, it is possible to find «° > o, and
incomparable x%, x3% such that Vix, n G, is nonmeagér for i = 0, 1.

Let o = sup{e’| length s<m}.

Now let Xyl > %~ and x;~; € T,. The set G;and {Ej| n € w} can be easily found,
since V,; N G, has the Baire property and is nonmeager. Since X is a complete metric
space () {G,| s€“2} is a one-puint set {y;}. By the construction if s % s’ and
F, 3 ¥y, ), €F,, then og # og.

Since y,€ V,, for all n then o, > xy, holds. It is possible to find «f such
that a*,> x,|, for all s and », and such that o} € Toup js,mewy- This means that the
tree of type T,, can be embedded into T, a comtradiction.

2.4. Remark. It can be observed that this argument works only under the
assumption that the space is complete.

2.5. Remark. Assume ¥ = L. Let % be a regular cardinal and J a x-complete
uniform idcal (i.e. [#]“* = 1I) over x.

Then a completion of the algebra P(x)/I is isomorphic to the algebra of regular
open subscts of B(x*). This means that two arbitrary x-complete uniform ideals
over » are similar. Indeed, since ¥ = L is assumed, then 7 is not precipitous. Let
W,= W, > ... be a sequence which contradict to the precipitous.

Let x e /™. We claim that there is an ne o such that

Hylrexel*&ye W} =x".
If it is not the case, then we can find a disjoint family
Wy = {ylynxel*&yute W, for some tel}

such that U #, e Tand if n>mthen y2y, or yny = @forye #,,v1€ -

Of course x () {J #,| new} # &. Hence, there is a sequence w, & W, such
that () {w,| ne w} # &, a contrediction with the assumption on I

Because 2% = x*, then by induction using the fact pointed out above we can
construct a dense subset of size x* in P () which looks like a canonical base for
B(x™).
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§ 3. The case of incomplete metric spaces. Let 7 be an ideal over cardinal .
Consider the set X(I) = {xe°I")| N {x(0)} new} # @ and

vnsw N {x(m)l m< I’L} € I+} .

The set X(I) is considered as a subset of a complete metric space (1 *)®, where the
set 1* is equipped with the discrete topology.

3.1. ProrosiTioN. X(I) is a Baire space iff I is a precipitous ideal.

Proof. Assume that Jis not precipitous. Then by 1.3 there are families (maximal
I-partitions) W, for ne w, such that W,z W, for any sequence X, 2 X, 2
and such that X, e W, for any ne w, then N {X,| ne o} = @.

Let U, = {x|x is a function, domx=n3>1 and Vi, x(k)el' and
N {x&)k<n}el* and x(n—1) e W,,}. Smce W,,, is a maximal /- partluon uu,
is dense and open and () {U U,| new} =

Let us assume that X (/) is not the Baire qp’lce; that is, there are open dense U,’s
such that () {U,| ne o} = @. Let

I, Vie,x(k) el and
N{x®)| k<nlel*, x=U,}.

%, = {x|x is function domx = n>

U %, is dense and open and () %, < U,. The sequence W, = W,
of » can be defined by induction in such way that

> ... of I-partitions

iff ye W, then there is xe%,,,
y< N {x(k)| k edomx).
Of course for any sequence
Yo2y =2
such that y, e W, the set () {y,| new} is empty.

Remark. R. Pol observed that Proposition 3.1 can be proved using the game
theoretic characterization of precipitous ideals.

3.2. THEOREM. Let I be a precipitous ideal over some regular cardinal. Then there
is decomposition F of the space X(I) into meager sets such that if F'<F then ) F'
has the Baire property. In this case X(I) is a Baire space.

Proof. X(I) is a Baire space by Proposition 3.2,

Now, for each aex let

F, = {xe X(I)] min ~ {x(n)| new} = a}.

It is not difficult to verify that F, is a meager set in X (/) dnd {F| a <o} form
a partition of X(7).
let Ael™ then

U{Fl ved}2{xe X()| 3,.,3pcsBel* N(x() = B))} =
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The set K is open. It is sufficient to have that P = (J {F,| «e 4}, K is: meager in
X(I). Assume, a contrario, that P is not meager. Then there is an # € » and a function
s:n—I* such that C = () {s(m)| m<n}el™ and P is nonmeager in s. But
C n A el This means that P is not nonmeager in s. Hence P is meager and {F,| « € 4}
has the Baire property.

THEOREM 3.3. If ZFC + there is a Baire space X, and a decomposition & of X
into meager sets such that for any F' < F , the set ) &' has the Baire property, is
consistent, then ZFC + there is a measurable cardinal is consistent as well.

Proof. Let & = {F,| a<x} be a decomposition of x such that

Vacx U {F] xeAd} has the Baire property

and such that an ideal y = {A| ) {F,| « € 4} is meager} is %-complete and uniform.
Then » is regular cardinal.
Now let FN(V) denote the class of all functions FN(¥) = { fe *¥| 3y, family
of open disjoint sets, J Uy is dense in X, and Ve, Yyep, f is constant on Un F}
where V denotes the universe. It is very easy to check that if f, g € FN(¥), the sets

{xlf(x) =g} and xlf()eg)}

have the Baire property. To see that, define U, A U, = {Un V|[Ue U, Ve U,
If WeU; AU, then {xe W|f(x) = g(x)} = U {F,n W| xe 4} for some 4,
hence {xe W|f(x) = g} has the Baire property. By the Banach localization
theorem [2], the set {x|f(x) = g(x)} has the Baire property.

Let B denote the Boolean algebra of regular open subsets of X and G-generic
ultrafilter over B. Let us consider the “generic ultrapower” FN(V)/G (this is actually
a limit ultrapower in Keisler sense (cf. sec. 6.4 in [1])).

The generic ultrapower is a model of ZFC. (We have a fundamental theorem
in this form

FN(VYGEo(Lfi] - 1D i {xeX|Fo(fi(0)..£i(x)}eC

where f..f,e FN(¥)). We have a natural embedding js: ¥V — FN(V)/G
Jo(x) = [cy] where ¢,: X — ¥ such that Vi xe(t) = x FN(V)/G is well founded:
if SIFfy2fy2..2f8... then {x|f,(x)3f,+(x)} is comeager in § and by Baire
category theorem J,yes Jfo(%o) 2 - 2/,(x0) 2 ...

Of course jg() > .

LEMMA. % is a measurable cardinal in some transitive model of ZFC.

From this lemma the theorem follows immediately. '

The proof of it is almost the same as the proof of Theorem 86 2 in [8] so we give
only a sketch of it (this technique is due to Solovay).

Proof of the lemma. Let K be a class of strong limit cardinals v > 2* such that
cfyrs> o let pp <9< ... < P< ... nE® be elements of K such that |y, n K| =y,

for all new. Let 4= {y,| new} and 1 = sup4.
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Sublemma (compare with Lemma 35.12 in [8]). There exists an L[4]-ultra-
filter W over » such that W is nonprincipial L[4]-normal and L [A]-%-complete,
iterable and every iterated ultrapower EN@(L [4])/W is well founded.

Proof. There is a y and S e G such that
Skd =179 in FN(V)/G
where d: X — Ordinals, such that d(x) = « iff xe F,. Let
U= {YeP@m nL[4llSn | {F,] e Y} is nonmeager} .

Of course U is L[A]-ultrafilter. Kunen’s argument shows that for any
YeL[A] o P(x) there is a finite set E<x U K and a formula ¢ such that

Y={lexL[4]F ¢, E, 4)} .
By the definition of y we have | {F,| ae ¥} n S is nonmeager set then
U{Fl ¢e Y} nSkyejsT)
and by the fact that js(4) = 4 and jg(E) = E there is
UiFRl e Y} n SIFLIA]E ¢(y, E, 4)

where the forced formula is about ¥, and thus true, hence

Skyeje(Y)

which means that SI{J {F,| ae Y}e G Let £ u— % which represents » (f is
constant on F,’s) in fact we can assume that f is defined on ». Let W = S«(P).
(V denotes the dual filter to 4.) Since p is %-complete W is L, [A]-%-complete. From
this point the proof is exactly the same as the proof of Lemma 35.11 and Theorem 86
in [8]. Now similar techniques we will prove:

THEOREM 3.4. If ZFC + 3 -measurable cardinal is consistent then the Sfollowing is
consistent with ZFC: There is a metric Baire noncomplete space X and a partition
of X into meager sets such that for any F' = & » the set ) &' has the Baire property.
But there does not exist a complete metric space with the same decomposition property.

Proof. Let us work in L[D] = ¥ where D is a normal x~-complete ultrafilter
over %. By Kunen’s theorem x is the only measure cardinal in V' (see [6]). Now
let N = V[G,]1[G,] where N is obtained by Levy collapsing forcing which collapses %
to w; and later adding w, Cohen reals. By [8] and [9] w, carries the precipitous
ideal I over w;.

Of course by Theorem 3.2 the space X () has the required decomposition. Let
us assume that in N there is a complete metric space X with similar decomposition #.
Then by Theorem 1.2, % = | & | > o, (we assume that x is the smallest cardinality
of family with this property) we can repeat twice the arguments of Theorem 3.3.
In fact we can get a transitive model such that s is a measurable cardinal and later
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extend it to M such that x and o} are measurable, of course x> o} and such that
there is an elementary embedding it M ~ L[D}, a contradiction, because L[D]
has only one measurable cardinal.

§ 4. Final conclusions and remarks.

4.1. Proof of the theorem. Theorem is an immediately consequence of
Theorems 1.1, 2.1, 3.2 and 3.3.

4.2. Let A =%, where » is a regular cardinal and let
A* = {x e B(x)| sup{x(m)] new}ed}.

Tt is known [5] that if A is a stationary subset of C,(x) = {x€ #| cf. o = @}, then A*
is Baire. R. Pol has strengthened this result in the following way: If B < B(x) and
if A is stationary such that for each ¢ € 4 the set {«}* n B is nonmeager in {a}*
then B is a Baire space. He proved also the similar theorem for Baire metric spaces
(not necessary complete). Now we are ready to prove the Proposition 4.3.

4.3. PrROPOSITION. If the density of X is inaccessible and X is a Baire metric
space then for cach decomposition F of X into meager sets there is &' < F such
that &' docs not have the Buire property.

It is sufficient to consider a decomposition of B(x) into » meager sets.

In this case let

it Cy(®) — 2 be a function defined as follows
i(fy = min{a|(Fzcp Vres (Fno* # @) and J F' is nonmeager in {f}*}.

If i is regressive on some stationary set 4 = C,(x) then there is y € x and station-
ary BSA such that i(B) = {n}. Because |y|<#x, there is %' cF such that
|F'| <x and |J &' is a nonmeager subset of B(x).

There is &F'' < ' such that |} F" does not have the Baire property.

Assume, that 7 is NS,-almost (nonstationary) identity on C,(%).

Let Ay, A,  C,(x) be the disjoint stationary subsets such that 7|, = id,, for
i=0,1and Ay U A4 = 4.

If w e A there is F, < F such that |J &, is nonmeager in {«}*. By assumption
oni(and on A) the set F% = F U {F}] B < «} covers a nonmeager subset of {a}*.

Let

FOw= ) (F ued) and F =U{F}| fedy}
then F° and ' are cvery where nonmeager subsets of B(x) (be R. Pol theorem).
This means that | &' fails to have the Baire property.

4.4, COROLLARY. Assume V = L.

Let F: X — K*(Y) be a lower Baire-measurable function, where X, Y are z7zetr1:c
space, X a complete space and K *(Y) a compact nonvoid subset of Y. Then there is
a Baire-measurable selector of F.

Proof. By [7] and the theorem.
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P2 Partition relations
by

Donna M. Carr* (East Lansing, Mich.)

Abstract. We study the partition relations X — (I+)", X — (uhf)", and X — (uhf, I+)" where
X CPyA, nz1, I is a proper, nonprincipal »-complete ideal on P4, and a uhf is an unbounded
homogeneous function (see 1.3, 2.1 below).

THEOREM. Jf 2<% = A, then x is A-ineffable iff X — (NS;) holds Jor some X C P,L. (4.2, 4.3).

THEOREM. If X — (SNS:Z)* holds for some X C P2, then x is almost A-ineffable. (1.7).

THEOREM. If A<* = 2 and x is almost A-ineffable, then X — (L)? holds for every X € NAIn;.
4.2).

THEOREM. If A% = A, then » is mildly J-ineffuble iff X — (uhf)* holds for every X e I} and
#3224 ‘ ‘

THEOREM. [f A<* = A and x has the A-Shelah property, then X — (uhf, NShH)® holds for every
XeNShifi. (5.4).

All of the ideal-theoretic notation is explained in 0.0 and 0.4.

0. Introduction

0.0. Notation and basic facts. Unless we specify otherwise, » denotes an uncount-
able regular cardinal and A a cardinal > %. For any such pair, P,/ denotes the set
{xgsad |x| <}

The basic combinatorial notions are defined here for P,/ as in Jech [12]. For
any x e P, A, & denotes the set {yeP,A: xSy} XS P,Ais said to be unbounded
T (Yx e P, A X n & # 0), and I, denotes the ideal of not unbounded subsets of P, A.
In the sequel, an “ideal on P, A” is always a “proper, nonprincipal, %-complete ideal
on P, A extending /,," unless we specify otherwise. Further, for any ideal I on P,4,
I* denotes the set {X < P, At X ¢ I}, and I* the filter dual to I; FSF,, denotes I;*
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