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The multiple intersection property
for path derivatives

by

Richard J. O’Malley (Milwaukee, Wis.)

Abstract. A collection, E= {Ex: x€ R}, is a system of paths, if each set £ has x as a point
of accumulation. For such a system E the derivative, F£(¥), of a function Fat a point x is just the
usual derivative at x relative to the set Ey. The goal of this paper is the investigation of properties
that F and its derivative Fg must have under certain natural assumptions about the collection FE.
In particular, it is shown that most of the familiar properties of approximate derivatives and approxi-
mately differentiable functions follow in this setting from three conditions on the collection £ re-
lating to the “thickness” of the sets Ex and the way in which the sets intersect.

The purpose of this paper is to extend to path derivatives a result previously
established for approximate derivatives [2]. That result is the decomposition pro-
perty of approximate derivatives. More precisely, we deal with two ideas (see [1], [21,
and [3]):

(1) A function f: R — R is said to be compositely differentiable to another func-
tion g: R — R if there is a sequence of closed sets X,, such that |J X, = R and for

each n, the restriction of f to X, differentiates to the restriction of g to X,. (The
function g|X, are called a decomposition of g.)

(2) A collection of sets E = {E,: xe R} is called a path system if, for each x,
E, contains x and has x as a limit point. Then, relative to this system, f: R— R
is said to have g: R — R as path derivative, if, for each x, the restriction of /' to E.
differentiates, at x, to g(x).

In general, (1) is a more restrictive property than (2). For each x, merely pick
a X, containing and let E, = X,. Yet such a technique may fail to satisfy (2). This
is because (1) does not require that x is a limit point of X,. However, the minimal
way to avoid this difficulty is to demand that, for each x, g(x) is a derived number
of f at x. Then (1) implies (2). This will be shown later.

Alternately, (2) will not imply (1) unless some additional condition is placed
on the paths in the system. Similar situations were encountered in [1] and solved
by demanding that E, and E,, intersect each other in some prescribed fashion when x
1 — Fundamenta Mathematicae 128, 1
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and y are in a sense close. Further, it is known from [2] that each approximately
differentiable function is compositely differentiable to its approximate derivative.
Moreover, clearly each such pair satisfies (1) via a path system E when for each x
E, has density 1 at x. A study of the proof used in [2] with the viewpoint of finding
a suitable intersection condition leads to the following definition.

A system of paths, E = {E,: xe R}, has the multiple intersection property
if there is a positive function &, defined on R, such that for each triple of numbers,
Xx; <X, < X3, not all equal, if

3
b1, 5] < ) (=85, xi+6(x)

then

IS

Ex‘ﬂ[xj,xj.,.l]’-;-éﬁ fOI'j=l,2.
In the case where x; = x;.,, j = 1 or 2, this represents the basic intersection
property of [1]
THEOREM 1. If f: R— R has g: R — R as a path derivative relative to a system
E = {E.: x € R} where E has the multiple intersection property, then f is compositely
differentiable to g.
4 |FO-re®
y—x

Proof. Let 4, = {x: 6(x)>n""! an <n when yeE, and

|x—y| <n~1}, Then U, A, = R; and using the basic intersection property as in
Theorem 4.5 of [1] it can be shown that if x;, x, € 4, and |x; —X,| <n~!, then
| f(x)—f (x3)] < m|x; —x,|. Further, the function f is continuous on the closure
of 4,, which will be denoted 4, . Again, if x,,x, € A} and |x, —x,| <n~?, then
[f () —f (x)l < mfxy —x;,].

Remark 1. Up to here the proof parallels that of [2]. If the parallel was to
continue, we would next show that f restricted to A, differentiates to the restriction
of g to 4. However, the difficulty lies in the fact that 4} can have isolated points.
It will be indicated later why isolated points pose a problem.

Let H, = {x: x is an isolated point of A3} = {x: x is an isolated point of 4,,}.
For each n, 4;\H, is a closed set and H,, is countable. Let C = | H,. Then C is

n=1
countable. If C is nonempty, we arrange its terms in to a sequence, possibly finite,
which we denote by g,,.

Let X, = (4;\H,) U {g,}. We claim f will satisfy (1) with these X,. Let n be
fixed. We note that differentiability relative to X, need only be proved at points
of A¥\H,. This is because if g, does not belong to Ap\H,, it will be an isolated
point of X, and differentiability is taken to hold vacuously. Let x,e AX\H,,
k=0,1,2,.., converge to x,. We may assume without loss of generality that
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() xo = 0=7(0),

(i) x> 2,4, >0,

(iii) 0<x, <min(6(0),n™%), k =1,2,3, ...
Let k be fixed. Since x; € A} but not H,, we can select two points y, < z, such that

(@) O<y<z<nl, ' ;

(b) xi & [Vi» i,

(C) Yis 2 € Ans

(@ max((x,—wil, =z, [ m—zl) < min(ﬁ (x), 6(0), (k+ 1)_1 'xk)-
With these conditions the multiple intersection property can be applied to the
triple 0, y, z,. Therefore

EsnE, NnE, nly,z] #9.

Let wy belong to this intersection. We will assume x, < 3, < w; < z,.; alternate cases
are handled similarly. Then it follows that

1) %ty Ban, wen, T2 0,

X X, Wy
and
) ‘f(xk) —f () . S w)—1 (7 & i

X — Yk i W=k
hold.
Then by (b) and (2) [x;—yl+|y,—wi| = |xy—w|, and hence
(3) f(xk)_f(wk) é =
xk—wk

Now, (1) and (3) together yield
f(x _ [f(xk)_f(wk) ) [I _ ﬂ] " Wi f(Wk):| -

X5 Xp— Wy X Xy Wi

which is the desired result.

Remark 2. For points in H, it would have been impossible to guarantee the
existence of points y, and z, satisfying (a) through (d). This is the difficulty mentioned
in Remark 1. To complete the circle between the multiple intersection property and
composite differentiability we will need the following proposition. (In the course
of the proof we will need to introduce a lemma.)

ProPOSITION 1. If f: R — R is compositely differentiable to g: R - R and,
Jor each x, g(x) is a derived number of f at x, then there is a sequence of perfect sets P,

o
such that \J P, = R and f'is compositely differentiable to g relative to the sequence P,,..
n=1

That is, then (1) implies (2).
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Proof. Let X, be the original sequence of closed sets such that |J X, = R

n=1
and for which the restriction of f to X, differentiates to the restriction of g to X,.
As in Theorem 1, it is the isolated points of X, which cause difficulty, and they are
handled one at a time. Express each X, as 0, u C, where Q, is perfect and C, is
o0

countable. Then let C = |J C,. Let the elements of C be arranged in to a se-

n=1
quence X,, possibly finite, listing each element only once. Let n be fixed and consider
S, = 0,u {x,}. If x, belongs to Q,, we have that S, < X, is a perfect set and f
differentiates relative to S, to g. Then we take P, = S,. If x, does not belong to Q,,
we must find a path E, which is a perfect set containing x, and such that the restric-
tion of f to E, is differentiable to g on E, , not only at x,. Then we will take
P, = 0,uUE, . We formalize this as a lemma.

LeMMA. If f: R—+ R and g: R — R satisfy the hypotheses of the proposition
then for each x there is a perfect path E, such that f is differentiable relative to E,
to g, not only at x.

Proof. Let ¥ be the union of open intervals I such that each point x in 7 satisfies
the conclusion of the lemma. Any interval which is in the interior of one of the ori-
ginal X, would be in V. Therefore by the Baire category theorem we are assured
that ¥ is a dense open subset of R. If we show ¥ = R we are finished. Assume
W = R\V # @. We first show that W is a perfect set. Assume instead that W has
an isolated point y.

Since g () is a derived number of f at y, we can find a monotone sequence of

FACAENAC))

points y, converging to y such that ———

Vi
generality that y, is a decreasing sequence, and that y, belong to V for all k. For
each k, choose d; > 0 such that the sequence of intervals [y, —d;, y,+ 0] are pairwise
disjoint and contained in V. Since y, belongs to ¥, we can find a perfect set E, such
that

— g()). Assume without loss of

(i) yx e B,
(i) f restricted to E, differentiates to g in E,,
(iii) Ey, = [yx—dk, y3+0,],
i [f@=10)_ 100-10)
=) Y=y

< |-yl

Then take E, = {y} u kyl E,. This Ej is perfect and f restricted to E, differentiates

to g on E,. That is, y belongs to V. Therefore W is a nonempty nowhere perfect set.
However, this also is a contradiction. Another application of the Baire category
theorem with the sequence W n X, assures there is an open interval (a, b) and an
integer N such that (a, b) n W is nonempty and contained in Xy. Since W is nowhere

icm
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dense, we may assume that (a, b) n W is perfect. Further, since this set is contained
in Xy, each point in (a, b) n ¥ satisfies the conclusion of the lemma. But this implies
that (a, b) = V, which is a contradiction. Thus ¥V = R, which finishes the proof of
the lemma. It also ends the proof of the proposition.
'~ Now we can establish a converse to Theorem 1.

THEOREM 2. If f: R — R is compositely differentiable to g: R — R and, for
each x, g(x) is a derived number of f at x, then there is a path system E = {E,: x € R}
having the multiple intersection property such that g is the path derivative of f relative
to E.

Proof. We may assume the existence of perfect sets P,, n = 1,2, ..., such that
@ B=P,#PychPhc..
(v) U PH = RS

n=1

(w) f restricted to P, differentiates to g on P, for all n.

Let d(x, Y) denote the distance between the point x and the set Y and
define d(x, @) = 1 for all x. For xe R, let n(x) = inf {n: xeP,}. Note n(x) > 1.
Let E, = P,,. It is clear that all that remains is to show that the system
E = {E.: x e R} has the multiple intersection property by defining an appropriate
function d. If x is a two-sided limit point of E,,, let d (x) = 3d(x, Pyeyy—4). If x is
a one-sided limit point of E,,, let 7 be the interval contiguous to 2, having x as
endpoint. Let 6(x) = min(é,(x),% length of I) where &;(x)= $d(x, Pyx)—1)-
We claim that if n(a) # n(b) then |b—a| > min(5(a), 5(b)). For this, assume
without loss of generality that a<b and n(a) <n(b). This means that a € P,y)—4
but b ¢ P,y Hence |a—b| >d(b, Pypy-1) > 6,(B) =6 (b) = min(d(a), 5(b)). From
the definition of d,(x) and J(x), the only time we would apply the condition of the
multiple intersection property to a triple x<y<z is when n(x) = n(y) = n(z).
Then E, = E, = E. = P,. Further, we must have (x,)) 0 Pyy # G # (y,2) N
N Py, SO the system E has the multiple intersection property relative to & (x).
We now finish with an obvious result about the thickness of such path systems.
PROPOSITION 2. If E = {E,: x€ R} is a path system having the multiple inter-
section property relative to a function : R — R, then there is a dense open set U such
that for each x in U there is a neighborhood of x in which E, is dense.

P ey

Proof. Let 4, = {x: §(x)>n""}. Then |J 4, = R. Letnbe fixed and suppose
n=1

(a,b) is an interval in which A, is dense. Let x, belong to (a, b). Let d,(xp)
= min(|xo—al, [Xo—5|, (xo), n!) and consider (xo—0,(X,), Xo+;(x;)). We
claim E,, is dense in this neighborhood of x,. Let y and z be any two points of 4, in
this neighborhood. The multiple intersection property can be applied to the triple
X0, ¥, Z, S0 that E,, has points in [y, z]; so E,, is dense in (xo—8;(xo), Xo +8;(%o))-
Now. the union of intervals (a, b) such that there is an n with 4, dense in (a, b)
forms the desired dense open set U.
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Fix-finite and fixed point free approximations
of symmetric product maps

by

Helga Schirmer (Ottawa)

Abstract. Let X be a locally finite simplicial complex with the weak topology. It is shown that
every symmetric product map f: X —+ X"/G is homotopic to a symmetric product map
f': X— X"|G so that all fixed points of f” are isolated and so that the fixed point set of f” is finite
(countable) if X is a finite (countable) complex. In the former case f/ can be chosen so that, for every
mz 1, its set of periodic points of period m<1 is finite as well. If X is a noncompact manifold,
then f can be homotoped to a fixed point free symmetric product map.

1. Introduction. Let X be a topological space and X" be the n-fold Cartesian
product of X with the product topology. Any (proper or improper) subgroup G of
the symmetric group S, of all permutations of {1, 2, ..., n} acts on X" as a group
of homeomorphisms by permuting its factors. Let X"/G be the orbit space with the
quotient topology induced by the quotient map ¢: X" — X”/G. Then a map
(i.e. a single-valued continuous function) f: X — X*/G is called a symmetric product
map, and a point x e X is called a fixed point of the symmetric product map £ if
f(x) = q(z), where z e X", implies that x is a coordinate of z. Fixed points of sym-
metric product maps have been studied e. g. by S. Kwasik [5], C. N. Maxwell [8], [9],
S. Masih [6], [7], Nancy Rallis [11] and C. Vora [17], [18]. Periodic points of sym-
metric product maps (see the definition in §3) have been considered by Nancy
Rallis [12].

In this paper we extend to symmetric product maps the Hopf approximation
theorem which states that every selfmap of a compact polyhedron is homotopic to
a fix-finite one (see e.g. [2], Ch. VIII A, Theorem 2, p. 118), and also prove related
results for nmoncompact polyhedra. In Theorem 1 we show that every symmetric
product map /: X — X"/G is homotopic to a symmetric product map f’: X — X"/G,
which has a finite (countable) fixed point set, if X is a finite (countable) polyhedron.
Theorem 2 states that if X is finite, then ' can be chosen so that it has, for every
m 1, at most finitely many points of period <m. Finally, Theorem 1 is used to
show, in Theorem 3, that if X is a noncompact manifold, then f is homotopic to
a fixed point free symmetric product map.

As X"|G = Xif n = 1, these theorems extend the Hopf approximation theorem,
an approximation theorem for periodic points by Boju Jiang [4], p. 62, and, for
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