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On a problem of S. Ulam concerning Cartesian squares of
2-dimensional polyhedra

by

Witold Rosicki (Gdarisk)

Abstract. This paper contains the proof of the following theorem: If K and L are compact
connected 2-polyhedra and their Cartesian squares Kx K and L x L are homeomorphic, then K and L.
are homeomorphic.

1. Introduction. In 1933 the following problem was posed by S. Ulam [17].

“Assume that 4 and B are topological spaces and 4% = Ax 4 and B> = Bx B
are homeomorphic. Is it true that 4 and B are homeomorphic?”

In general this problem has the negative answer. Let O denote the Hilbert:
cube, 4, the disjoint union of the set {1, 2, ..., k} x Q and the set of natural num-
bers N and A, the disjoint union of the szts Nx Q and N. The spaces 4;, 4; are
not homeomorphic for i#j, 1,/j=0,1,2,.., but 47 ~ 4, for i=0,1,2, ...
hence A? ~ Aff for 7i,j =0,1,2,... The problem does not have a trivial answer
when the spaces 4 and B are compact or connected. But in this case the answer is.
negative, 100. In 1947 R. H. Fox [7] gave an example of two nonhomeomorphic:
compact 4-manifolds the Cartesian squares of which are homeomorphic. In 1960
J. Glimm [9] gave an example with open 3-manifolds. Other examples can be.
found in: D. R. McMillan Jr. [14], K. W. Kwun [12], K. W. Kwun and F. Raymond
[13], A. J. Boals [i], Z. Cerin [5], H. Torudiczyk [16].

However, the problem considered has the positive answer for 2-manifolds.
This simple fact was proved in [7].

The more general problem of the uniqueness of the decomposition of finite-
dimensional compacta into Cartesian product was considered by several authors [2],.
[15], [8], [4]. It was proved that this problem has the positive answer if* the factors
are 1-dimensional locally connected continua. If the factors are 2-polyhedra or
bounded 2-manifolds, then the uniqueness of the decomposition does not hold.

‘We prove that the Ulam problem has the positive answer for compact connected
2-dimensional polyhedra, that is: - '

THeEOREM A. If K and L are compact connected 2-dimensional polyhedra such
that K* and L* are homeomorphic, then K and L are homeomorphic,
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A space 4 is said to be a Cartesian root of X if X and 4 x 4 are homeomorphic.
“Thus we can formulate a somewhat more general version of Theorem A:

THEOREM B. A compact connected 4-dimensional polyhedron X has at most one
Cartesian root.

This version is in fact equivalent to Theorem A.

Proof. We assume that X ~ K? ~ L2, Since either dimK? = 2dimK or
dimK? = 2dimK—1 (see [11], p. 18), and dimK? = 4, we have dimK = 2. A. Ko-
siaski proved that any 2-dimensional factor of a polyhedron is a polyhedron [10].
Thus the spaces K and L are 2-polyhedra and Theorem A implies Theorem B. The
fact that Theorem B implies Theorem A is obvious.

In the case dim X = 2n (n = 3) Theorem B is not true. Let 4 denote the Cartesian
product of 7 circles S (n > 3) and let J be the wild arc of Blankinship [3] in a cell
contained in 4. We denote the space 4/J by B. The spaces 4 and B are not homeo-
morphic, but the Cartesian squares 4> and B> are homeomorphic. The proof of
this fact is analogous to the proof of Kwun’s theorem [12].

An example of compact nonhomeomorphic 3-polyhedra 4 and B such that 42
and B are homeomorphic is not known. If there exists a 3-dimensional Poincaré
fake cell (a 3-dimensional compact contractible manifold not homeomorphic to I3

with the boundary equal to S2), then — since its Cartesian square is a 6-cell —
sach an example would exist.

2. Outline of proof of Theorem A. First, we define some subsets of non-Euclidean
points of a polyhedron P.

DermNITION 2.1. If P is a k-dimensicnal polyhedron, then we define inductively
the sets m;P for i=0,1,.... k.
@) ngP =P
(i) 12;P denotes the subset of n;_, P consisting of the points which have no
neighborhood homeomorphic to R¥™'*+* or. R in the set n,_, P.
We denote the set n, P by nP.

Remark. It is easy to see that every set n,P is a polyhedron and dimn,P < k—i.

Now we present

Outline of proof of Theorem A: The proof of Theorem A is divided into
three propositions. To prove these propositions we need some lemmas.. It is assumed
that X and L are compact connected 2-polyhedra such that K2 ~ L2,

In the first proposition (Prop. 3.1) we consider the case where certain isolated
points are distinguished in the polyhedron K. In Lemma 3.1 we study the structure
of the polyhedron K2 and we obtain the formulas:

n(k?) = {n,Kxn,K: p+q=1i,p,qe{0,1, 2}}.

In Lemma 3.3 we prove, using the technical Lemma 3.2, that if K has a local
<ut point then K ~ L. Next, using Lemmas 3.1-3.3 and Borsuk’s theorem [2] on
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the uniqueness of the decomposition into Cartesian product of 1-polyhedra we
prove that if the condition K ~ L does not hold then:
(x) each component X of the set nK is either an arc or a simple closed curve.

We also prove that if K # L then:

(xx) for every x e nK there are ne€ N and a neighborhood V of x in K such
that ¥ = [0, 1]xcone{l, 2, ..., n}.

Let F: K?>—I? be a fixed bomeomorphism. If K # L then we prove, using
Lemma 3.2, that there exists a one-to-one correspondence 4«4’ between the com-
ponents of K\x»K and L\nL such that F(KxnK) = LxnL and F(Kx4) = Lx4’,
or F(KxnK) =nLxL and F(KxA) = A'xL.

For every component A of the set K\nK we define some 2-manifold M(4).
This manifold is homeomorphic to the set 4 minus some open regular neighborhood
of nK. The polyhedron K is built up of the manifolds M(A).

In the next proposition (4.2) we prove that if conditions (+) and (x+) hold and
KxS! = LxS! then K ~ L. Hence if K> ~ L* and K # L then all components
of the set nK arc arcs. The polyhedron K is the union of the manifolds M(4) such
that their intersections are the arcs lying in the boundaries of M (4).

Let us notice that if J is an arc which is a component of the set 7K, then its end-
points are not distinguished by the stratification given in Definition 2.1. Let the end-
point x, have an open neighborhood homeomorphic to the set T,x [0, I) where
T,={(t,if): i=1,..,n, te[0,1)} and let xeJ have an open neighborhood
homeomorphic to 7T,x(0,1). It is obvious that T,x[0,1) x R?* ~ T,x[0, 1) x
xR2 ~ T, x(0,1)x R%. So if the end-point x, distinguished, the formula from
Lemma 3.1 would not hold.

Now, we cannot use the methods similar to those used in the proof of the Pro-
position 3.1. We prove in Section 5 that if 4«4’ is the one-to-one correspondence
between the components of K\nK and L\nL, then the manifolds M(4) and M(A4")
are homeomorphic. In the last section we prove that the manifolds M(4) are stuck
to the set nK in K on the same way as the manifolds M(A’) are stuck to the set nL
in L. So homeomorphisms between the manifolds M (4) and M (4") yield a homeo-
morphism f: K—L. This part of the proof is the most complicated one.

3. Investigation of the non-Euclidean part nK of K. This section contains the
proof of

PrOPOSITION 3.1. If K and L are compact, connected 2-polyhedra, F: K* —L*
is ¢ homeomorphism and K #% L, then

(%) each component X of nK is either an arc or a simple closed curve,

(#%) for each x e nK there are ne N and a neighborhood V of x in K such that
V= [0, 1]xcone{l,2,...,n},

(xx) FmKx K) = nLxL or F(nKxK) = LxnL,

(x+%x) either for each component A of the set K\nK there exists a component A
of the set INnL such that F(AxK) = A'xL or
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Jor each component A of the set K\nK there exists-a component A' of the set
L\nL such that F(AXxK) = Lx A4’

First, we prove some lemmas.

Lemma 3.1 If K is a 2-polyhedron, then
n(K* = | {n,Kxn,K: p+q =1, p,ge{0,1,2}}

Proof. We should consider the cases i = 1,2, 3, 4.

(a) The case i = 1.

We should show that xeK? has a Euclidean neighborhood iff
e KXN[(mK x K) u (KxnK)] = (K\nK) x (K\nK), i.e. x belongs to the product
of Euclidean parts of K. The proof is easy and the details are left to the reader.

(b) The case i = 2.

We have [(KxnK) u mKx K)IN(Kxn,K) U (nKxnk) U (n, Kx K)] =
= [(K\nK) x (nK\n, K)] U [(nK\ny K) x (K\nK)], so this set consists of Euclidean
points, and therefore 1,(K?) = (Kxn, K) U (nKxnK) U (1, K x K).

We will prove that if the point x belongs to the set (Kxn,K) u (nKxnkK) v
U (n; K% K), then xeny(K?). Let x = (x;,x,). If x; (i = 1 or = 2) is an isolated
point or dim,, X = 1 for both points x; and x,, then a sufficiently small neighborhood
of x in K? has dimension less than 3 and therefore x € n,(K?). Now we consider
the remaining cases.

Let (xi, x,) € Kxn, K. If x, is isolated in nK then it easy to see that X, is a local
cut point of K. Therefore a sufficiently small neighborhood of x = (xy, x,) in n(K?)
either has dimension less than 3 or there is an arc cutting this neighborhood into
disjoint components. Hence x € n,(K?). Let x; be not isolated in nK. If dim, K = 2
then each neighborhood of (x,, x,) in KxnK ccntains the set homeomorphic to
I? x T, where T'is a triod and 7 is an arc. If dim,, K == 1 then x, e nK and dim, X = 2.
Therefore, each neighborhood of (x,, x,) in nKx K contains a set homeomorphic
to Ix(TxI). Since I xT is not embeddable into R3, the point x does ot have
an Euclidean neighborhiood in 7(K?) and X X1, K < ny(K2,

Similarly n,Kx K < n,(K?).

Let (x;,x,)enKxnK and x;¢n,K for i =1,2. If dim,, K = 2 then each
neighborhood of (x,, x,) in KxnK contains a set homeomorphic to (T'x1)x 1.
This set is not embeddable in R*; hence (v, x,) & n,(K?). Hence, nK x nkK = ny(K?).

(c) The cases i = 3, 4 can be proved using similar elementary considerixtions.
These proofs are left to the reader.

DERINITION 3.1. The collection of components of a set X will be denoted by [].X.

LEmma 3.2, Suppose DK and DL are nowhere dense subpolyhedra of compact
.connected 2-polylzez{m K and L, respectively, and F: K*—L* is a homeomorphism
such that ' " )

() F((Kx DK) U (DKxK)).= (Lx DL) u (DLx L),

(i) F(DKx DK) = DL x DL.

Then F(DKx K) = DLxI, or F(DKx K) = Lx DL.
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Proof. By (i) and (i) we obtain F([(K\DK)x DK]u [DK x(K\DK)]) =
= [(L\DL)x DL] v [DLx(L\DL)]. Therefore, if A e [YK\DK) and Xe[1DK,
then F(Adx X) =A"x X" or F(Ax X) = X' x A, where 4’e J(L\DL) and X'e [JDL.
Assume F(AxX) = A'xX'. Let B be another component of K\DX such that
An B # @. Suppose F(BxX)= Y'xB', where Y e[]DL and B'e O(LN\DL).
Since A'x X' N ¥'xB' # @, therc exist points x' € B A X’ and Ye¥Y n4d.

If 5" e B’ and &' € A’ then there exist arcs x'b" and &'y’ such that their interiors are

contained in' B and 4, respectively, hence, there exists an arc (', x')(), b') such
that its interior lies in A4’ x B, i.e. this interior is disjoint with the set (Lx DL) U

N h N el e
U(DLxL). We consider the arc (a,x)(b,y) = F~Y((d, x')(»", b)). Then- a e 4,
beBand x,yeX. Butif ae 4, be B and x,; = X, then the interior of any arc

(a,x)(b,y) = K? and the set (KxDK) u (DKxK) are not disjoint. Hence,
F(BxX)=BxY' Since AXX ABXY # @, X', Y are dosed in L and
X', Y'e[ODL, we have X' = V", .

The polyhedron X is connected, the set DK is nowhere dense, thus for any com-
ponent B of the set K\DK there exists a sequence of components 4 = A4, 4,, ...,
A, = B of the set K\DK such that 4; n A;;, # @ fori= 1,2, ..., n—1. Therefore,
FBxX)=B'xX" for any Be[I(K\DK) and F(KxX)=LxX' Hence
F(Kx DK) = Lx DL. ) _

LemMa 3.3. Suppose K and L are compact comnected 2-polyvhedra, F: K*—L?
is a homeomorphism and K has local cut points. Then K and L ure-hqméomorphic.

Proof. First we consider the case where there exists a point x of K such that
dim,K = 1. We. denote P = {xeK: dim,K =2}, R={xek:dimK = 1_},
DK=PAR,P'={xeL: dim,L=2}, R ={xeL: dim,J=1}and DL =P’ A R'.
The sct§ ‘R and D'K’ are not empty. Observe that K> = (PxP)u (PxR)u
) (R xPYU (RxR), L*= (P'xP) U(P'XR) u (R XPYU(R'xR’) and F(PxP)=
= P'xP’, F((PxR) U (R xP)) = (P'xR) U (R xP) and F(RxR) = R'%x.R’, be-
cause homeomorphism preserves the local dimension. Hence F((P x DK) U (DK% P))
= F((PxP) n (PxR U RxP)) = (P'xP’) n (P'xR' U R'xP) = (P'x DLy U
U (DL x P") and*F{{R x DK) U (DK% R)) = F((RxR) n (P% R U RxP)) = (R'x
Also F(DKx DK) =t F(PXP)n RxR) = (P'XP) N R'XR = DLxDL.

‘“The sets DK and DL are finite, hz;n;ie F(Kx DK) = Lx DL or F(Kx DK)
= DLxL and K = L. ) . )

k Now, we consider the case dim K =2 for eévery x € K. Then the set. of local
cut points of K is finite. Let DK dénocte this set. It is easy to see that the set
(DK x K) U (K x DK) is the set of such points (x, ¥) € K* that there exists a neigh-
borhood U of (x, jf) such that for every connected neighborhood ¥ of (x, ) contained
in U there exists a 2-dimensional set séparating the set V. Therefore F| ((Kx DK) v
U (DK% K)) = (Lx DL) U (DL x L). The set DKx DK is the set.of local cut ‘points
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of the set (Kx DK) U (DK x K). Thus F(DKx DK) =
we obtain K =~ L.

DL x DL and by Lemma 3.2

Lemma 3.4. If K, L are compact connected 2-polyhedra, F: K*>—L%is a homeo-

morphism and n, K # @, then K ~ L.
Proof. Because F(n,K\nzK) = n,L\n;L we obtain

F([(R\1K) x 1, K] U [(nE\n, K) x (1K, K)] U [, K x (K\nK)])
= [(LanL) x L] U [(iENp L) x (i, D] U [, L (INaL)]

Therefore if Ae [O(K\nK) and xen, K, then F(dxx) = 4'xx', or F(dxx)
=x'xA4’, or F(Axx) = X'xY', where 4’'¢O(l\nL), x'en,L and X', Y'e
e (O(nL\n,L).

Suppose there exist such 4 e [J(K\nK) and x en, K that F(4 xx) =
We shall examine whether it is possible that F(Bxx) = U'x V' or F(BxXx)
= x'xB’ for another Be[1(K\nK), where U’,V'ed(nL\n,L), x'en,L,
B’ e [J(L\nL). By Lemma 3.3 we may assume that the polyhedron X has no local
cut point. Hence there exists a sequence of components 4 = 4, 4,, ..., 4, = B
of the set K\nK such that dimA; n 4;,, =1 for i = 1,2, ..., n—1. Therefore,
it is enough to consider the case when dim4 n B = 1.

Since the set A"xx’ N AP "x B' for any y’ e n,L, B’ e (J(L\nL) contains at most
one point and Axxn Bxx bas dimension 1, it is not true that F(Bx x) = y'x B'".
If F(Bxx) = U’'x V', where U’, V' € [I(nL\n,L), then ' A U’ % & and x' e V",
Let u' € A’ n U'. There exists a point @’ € A’ such that we can join o’ with v’ by
an arc whose interior lies in .A’. There exists a point v’ € ¥ such that we can join x'
with v" by an arc whose interior lies in some component C’ of L\nL. Hence, there

A xx.

. e .
exists an arc (&', x")}(«', v") whose interior lies in 4’ x C’, and so is disjoint with the
set n(L?). This is impossible because (a, x) = F™Y(a', x") e Ax x, (b, x) = F~ (W, v")

€ Bxx and the interior of every arc (m) lying in K* does not have empty
intersection with n(K?). Hence, F(Kxx)c=Lxx'. Similarly F™{(Lxx")yc Kxx;
hence F(Kxx) = Lxx'.

We consider the case F((Kxn,K)u (n,KxK))cnLxnL. Let F(4dxx)
= X'x Y where 4 € (J(K\nK), xen, Kand X', Y' € O(nL\n, L). If B e [J(K\nK),
then F(Bxx) = U'x V', where U’, V' e ((nL\n,L).

For the components of the set nL\n,L we define a relation: X’ ~ U’ iff there
is a sequence X' = Xg, X7, ..., X3 = U’ of the components of the set nL\n,L such
that for all i=0,1,...,k-1, X[ nX{,; # @ (may be X/ = X{,;) and if
X{ # X,y then no component C’ of the set L\nL satisfies X/ n C' # & and
Xy nC #0.

We will prove that there exists a component B e [1(K\nK) such that F(Bx x)
=U'xV’" if X'~U' and Y'~V'. We define P'= J{U: U'~X'} and R’
= U{V": ¥~ Y’} and note that F(Kxx) = P'xX R’
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Now we show that if F(Bxx) = U'x V' then U'~X and V'~ Y'. Since we
may assume that K does not have local cut points and the relation “~* is transitive,
we may assume that dim4 A B = 1. We note that F((4 n B)xx) = (X' nU")x
x(¥' NV, i.e. the set (X' nU")x (Y’ V') has dimension 1, hence either X' = U”
or Y’ = V'. Assume that X' = U’. It is obvious that Y n V' # @ and Y' # V'.
It is easy to see that the interior of every arc which lies in K* with end-points in 4 x x
and B x x has nonempty intersection with the set n(K?). If there is a component C”
of the set L\nL such that ¥ nC" # @ and V' n C’ # O, then there is an arc
having its interior in C' and its end-points in Y" and ¥, respectively. Hence, there
is an arc lying in L? with end-points in X"x ¥ and U’ x V’ X' x V' such that its
interior is disjoint with the set n(L?).

Let X' ~U’' and Y’ ~ V', It is enough to consider the case where X' = U"
and Y A 7' # @. We have assumed that F~}(X'x Y') = Axx and we know
that F~YU'x V') # bx B, because dimX'x Y’ nU'xV' =1. If F"{U'x V")
= UxV, where U, Ve[l(nK\n,K), then there exist points (z,x)e4d xx and

—
(u,v)e Ux ¥, and an arc(a, x)(u, v) © Kx K such that its interior is disjoint with
the set n(K?). Since F(a,x)e X’'x Y, F(u,v)e U'x V"’ and no component C’ of’
the set IauL satisfies Y' A C' # @ and V' N C’' # &, the interior of each arc
joining F(a, x) with F(u, v) in L* does not have an empty intersection with n(Z?).
Hence F~X(U'xV’) = Bxx.

Hence K~L or K~P' xR and L~PxR, where P, R, P’, R’ are graphs.
If K~P' xR, L~PxR and K*~L? then K~ L by Borsuk’s theorem [2] on the
uniqueness of the decomposition into Cartesian product of 1-polyhedra.

Proof of Proposition 3.1. By Lemma 3.4 the set n, K is empty, hence con-
dition (*) holds. By Lemma 3.1, n(K?) = (KxnK) U nKxK) and if n,K =&
then n,(K?) = nKxnK. Hence, F((Kx nk) v nKx K)) = (LxnL) U (nL xL) and
F(nKxnK) = nLxnL. By Lemma 3.3 the polyhedron K does not have local cut
points. Hence, the set nK is nowhere dense in K. Analogously nL is nowhere dense
in L. Lemma 3.2 implies (d**).

If FmKxK) = nLxL then F((K\nK)xK) = (L\nL)xL. Hence for each
component A of the set K\nK there exists a component A’ of the set L\nL such
that F(Ax K) = A’ x L. Hence condition (}¥) holds.

Let DK denote the set of points x & nK such that there do not exist ne N and
a neighborhood ¥ of x in K such that V'~ [0, 1]x cone{l, ..., n}. The corresponding
subset of nL is denoted by DL. Since K does not have local cut points, dim K = 2
for x € K and the sets DK and DL are finite. Since F(KxnK) = LxnL, we have
F((K\nK) xnK) = (I\nL)xnL. The point (x,¥) e (K\nK)xnK belongs to the
set (K\iK) x (nK\DK) iff (x,») has a neighborhood homeomorphic to the set
I* xcone{l, 2, ..., n} for some ne N. Therefore, F((K~\nK) x DK) = (L\nL)x DL.
The sets nK and nL are nowhere dense in X and L, hence F(Kx DK) = Lx DL.
If DK # & then K~ L. Hence condition (*) holds.

Remark. By (44) we have one-to-one correspondences A4 and 4 A"
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Jbetween components of K\nK and L\nL such that:

F(AxK)=A"}XL, F(KxA) = LxA" and F(AxB)=A"xB".

Remark. Condition (4¥) is true without the assumption K =L, but we shall
not use this and omit the proof.

4. Cancelling an S'-factor. In this section we will prove

PROPOSITION 4.1. If K is a compact connected 2-pelyhedron, K* ~L* wnd the
set nK contains a simple closed curve thein K=~ L.

If one of the conditions (*)-(3x) from Proposition 3.1 does not hold then K = L.
We can consider the case when (¥)-(x) hold. By (&), if F: K*~L? is a homeo-
morphism then F(KxnK) = LxnL (or F(K xnK) = nL xL). Hence, if S is a com-
ponent of #K homeomorphic to a simple closed curve then F(KxS) =L xS’
where S’ e [JaL.If S’ is anarc then K2« (S' xSy~ L2 x(Ix I) ~ K?. Hence S is

h.e.

also a simple closed curve. Therefore, it is enough to prove

PROPOSITION 4.2. If K is a compact connected 2-polyhedron which satisfies *
.and (%) of Prop. 3.1 and KxS'~LxS* then K~ L. ‘

Remark. Possibly, for every 2-polyhedron K, if KxS'~L xS then K~ L.
Nevertheless, we only consider the above-mentioned special case. '

Before we will prove Proposition 4.2 we give a definition of manifolds M (A)
and some properties of these manifolds. Let X be 2-polyhedron and U (nK) denote
the regular neighborhood of the polyhedron 5K in the polyhedron K. Then we can
define M(4) as the set ANU(nK). For technical reasons, in the sequel we shall use
another definition of M(A4). ’

DEFINITION 4.1. (1) We denote by N(4) the set of all sequences {x,} in 4 which
converge in K and are such that for every neighborhood U of the point limx, in K
there- exists U, € ((UNnK) and a natural number n, such that for every n>n,
we have x, € U,.

(2) In the set N(4) we defirs the equivalence relation “~”, We have {x,} ~ {1}

iff 3 '

() limx, = limy, = x; in K

(ii) for every neighborhood U of x, in K there exist Uy e O(UNnK) and a na-
tural number r, such that for every r > no we have x,e Uy and 3, € Uy~

(3) By M(A) we denote the set N(A)/~.

(4) We define a basis for the topology of M(A). Let [{x3}] e M(4) and
limx{ = x°. Let Ube a neighborhood of the point x° in K and let U, denote the
-component of the set U\nK such that for almost all n we have x2 e Uy. We denote’
by ¥(U, [{xs}]) the set of [{x,}]e M(4) such that limx,e U and for almost -all
1, Xy € Uy The collection of the sets V(U [{x21]) is a basis for the topology of M (A3.

The first definition is simpler then'the second; bat if we use the second. definiv
‘tion, then the following properties are very simple: - ERRET
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Property 4.1. If limx, = x in 4, then [{x,}] = [{x}] (where {x} is the con-
stant sequence).

Property 4.2. The function /i,: 4— M(A) given by h(x) = [{x}] is a topo-
logical embedding,

Property 4.3. If condition (+#) from Proposition 3.1 holds then the space M(A4)
is a compact 2-manifold and M(4A)\h,(4) < dM(4).

Property 4.4. If condition (+«) from Proposition 3.1 holds and gar M(4)—A
is given by the formula g,([{x,}}) = limx,, then g ] 23imrnd) 1S 2 covering.

Property 4.5. Let K and L be 2-polyhedra and let G: KxS*—LxS! be
a homeomorphism. There exists a-homeomorphism G,: M(4)x S'—M(4)x S?
such that (g4 % idg1) o G4 = Glzxs o (g4 x idg).

Remark. Denote by Py: A'xS'—4’ and P,: A'x S8 the projections
on the first and the second factor respectively. The homeomorphism G, is given by
the formula:

Gall{x}1, 1) = {[{P1 Gy 1)}, Po(im G (3, 1))

Property4.6. Let Kand L be 2-polyhedra and let F: K x K—L x L be a homeo-
morphism. Let F(4x B) = A'xB', where 4, Be [J(K\nK) and 4', B' € [1(I\nL).
There exists a homeomorphism Fy p: M(4)x M(B)—M(AYx M(B) such that
Gaxgp) e Fap=Flixso (gaxgs).

Remark. Denote by P;: 4'xB’—4' and P,: A'xB'— B’ the projections on
the first and the second factor respectively. The homeomorphism F, p is given by
the formula:

FA,B([{xn}]s [{yu}]) = ([{PIF(xm yn)}]a [{PZF(xn: yn)}]) .

The proofs of these properties are easy and:left to the reader.

Now we prove Proposition 4.2

Proof of Proposition 4.2. Since dim(XxS*) = dim(LxS!) = dimL+1,
we have dimL = 2 and by [10], the space L is a polyhedron.

Let the set nK consist of pairwise disjoint arcs I, = a, by, ..., I, = a;b, and
simple closed curves S, ..., S;. It is easy to see that n(Kx.S!) = nKx S*. Hence,
if G: KxS'—LxS* is a homeomorphism, then G(nK x S*) = nL x §*. Therefore,
the set nl consists of pairwise disjoint ares 7] = by, ..., Iy = apb;, and simple
closed curves Sy, ..., .S; such that

i) G x8Y = I/ xS, Gla;xSY) =ajxS* and G(b;xS*) = bjxS* for
P=1,2,..,k

(i) G(S;x 8" = §/xS* for i=1,2,..,1

Let /2 nK—nL be a homeomorphism such that

(i) Iy =1/, f(a) =a;, f(b) =1by for i=1,2,..,k and f(S;) = S; for
i=1,2,..,10

It sutfices to show that the homeomorphism f has an extension to a homeo-
morphism f: K—L.

3 — Fundamenta Mathematicae 127. 2
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For every 4 e [0(K\nK) and 4'e [J(Z\nL) such that G(4xS?) = A'x§!
we have constructed the homeomorphism G,: M(A)x S*'—M(4’)x S* (see Pro-

perty 4.5). Since M (4) and M(4') are 2-manifolds, it follows that M (4), M (4’) are
homeomorphic.

In case nK = @& we have M(4) = K and the conclusion of the theorem ]1old§.
So assume that nK is not empty.

Let g /A: M__,(A)——ni be given by g,4([{x,}]) = limx,, as in Property 4 and let
ga: M (A)—>A} be defined analogously. For every A e [J(K\nK) we shall find
a homeomorphism f,;: g1 (K n A)—g7 (L ~ A') such that

) Jog4x) = ga o fux) for xe gy *(nK n A4).

Then we shall extend it to a homeomorphism f,: M(4)— M(4’). Next, we
obtain a homeomorphism f: K—L given by the formula ’

) F) = guofilgi’(x)) for xed, where 4 e [I(KIK).
Since the diagram
Gy
M(4)x §* ——— M(4) x §*

gaxid Glivs: lg,,,xid
Ax 8§t s x5t

()

commutes

‘(see Property 4.5) it follows that for ever it p
y Te Og;"(S) and any T’ 1S,
such that G,(T'x S*) = T’xS' the diagram + O e Dea )

. Gylrxs
TxS T xSt
(4] :
galrxid g xid
" G!s.xsl } l
S x St ————— 5 x 5§t

commuites too.

. Since tII;e maps g AlT.xid and ¢ 4qr-xid are coverings and the maps Gwa St
|;‘x 51 are omfzomorphlsms, the degrees of the coverings are equal and there exists
a homeomorphism f: T—T" such that

i) foga(x) =gy ofp(x) for xeT.

. The set Dg;’(I,-z is a family of arcs. If J is one of them and J" is the correspond-
ing component of g.'(I;), we have a homeomorphism fy: J—J such that

(vif) Sogux) = guofs(x) for xelJ.

‘Let us define h i g7 ) - T
formula 2 homeomorphism fy: g (K ~ A)~gz*(nL 0 A) by the

Gii)  £,00 = {fT(x) for xe T, Te g (S, i=1,..,1,
f(x)  for xeJ, JeQOgiy, i=1,..,k.
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It is obvious that the homeomorphism f, satisfies condition (+}.

Let Je[lgi*(), J eClgaiU). By () and (i), GUixSY) = LxSt iff
F(I) = Il Hence by (vii) and (v) fu(J) = J' iff G4JxS?) =J'xS*. Moreover,
T = cdand J' = od then fu(e) = ¢’ iff GulexSY) = ¢'x S

This implies that the homeomorphism f, is extendable to a homeomorphism
fi: 8M(A4)—0M(4). If the manifold M(4) is not orientable, then there exists
an extension f,: M(A)— M (A") of the map f; such that f, is a homeomorphism.
If the manifold M(4) is orientable, it suffices to show that the homeomorphism f, 4
does not change the orientation.

We choose orientations of the curves S in any manner. Next, we choose orienta~
tions of the curves S; in such a manner that the maps Gjgxs:: S;x St— 8% S*
preserve orientation. We can additionally require that

() fis,: S;— S} preserves orientation foranyi = 1,2, ..., I. We choose orienta-
tions of the manifolds M(4) in any manner and we choose the orientations of the
manifolds M(4’) in such a manner that the maps G,: M (A)xSt—M(A)xS !
preserve orientation. The orientations of T'e C10M(A) and T'e [18M(A") we have
fixed by the orientations of M(4) and M(4"). ‘

Since (V) Gis,xs: © (gurxid) = (97 %1d) © Gjresns . it follows that
g.yr % id preserves orientation iff g 4,y xid preserves orientation. Hence, g7 pre-
serves orientation iff g 4 preserves orientation. This and (vi) imply that fr: T—T’
preserves orientation for T'e [lgy *(S))- —_

Let ToJe[Ogi*(J). Then, as we have mentioned above, if J=cd and
J'=c'd then f,(c) = ¢’ iff GyexS*) = xS’ Since G, preserves orientation
on TxS?', fi preserves orientation on T.

The lemma is thus proved.

In the next section we can consider polyhedra K such that nK does not contain
simply closed curves.

5. A one-to-ome correspondence betwcen the manifolds M(4) and M ). In
Section 4 for every component A € [J(K\nK) we have defined the compact 2-mani-
fold (with boundary) M (A4). Here, for every compact 2-manifold M with boundary
we will define a number o(M). In Lemma 5.1 we will prove that if Mx N~PxR
then ¢(M)o(N) = ¢(P)o(R). Next, in Lemma 5.2, we will prove that there exists
a one-to-ome correspondence between manifolds M(4) and M(A’) such that
M(A) = M (4. i

DEFINITION 5.1. Let M be a compact 2-manifold with boundary oM # &.
We define the number v ’

o (M) = rank Hy(M)—rank H,(6M)+¢

where

_ fo - for M nonorientable, -
8 1 for M orientable. )

3
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Remark. If the surfaces M and N are both orientable or both nonorientable,
o(M) = o(N) and rank H;(M) = rank H,(N), then M = N.

LeMMA 5.1. If M, N, P, R are compact 2-manifolds with boundary and the manifolds
MxN and Px R are homeomorphic, then o(M)o(N) = o(P)a(R).

Pioof. Let H,(M) = Z™, H(N) = Z", H\(P) = Z*, H|(R) = Z".

From Kiinneth’s formula we conclude that

Z" & Hy(Px Ry~ Hy(Mx N) ~ Z™
ZPT g Hi(Px R) = Hy(Mx N)=2Z™*™" .

Hence, p=mand r =n or p = n and r = m. We can assume that the first
case holds. :

Also, from Kiinneth’s formula it follows that H,(M, M)~ H,(P, 0P) and
H (N, 8N) = H,(R, 8R). Hence, both manifolds M and P are orientable or both are
nonorientable and the same holds for N and R.

It is easy to compute the group H,(6(M x N)), using Kiinneth’s formula and
the Mayer—Vietoris sequence or the methods from [7].

If M and N are orientable, then H,(0(M x N))mZ®*Dm+1=a0e®)-1
and H,(0(P x R)) m 20+ 1)m+D=o®) (=1 Therefore o(M)a(N) = a(P)o(R).

Similarly, if M is orientable and N is nonorientable, then

Hz(a (MX N)) ~ Z(m+l In—a(M)a(N)—1 @Zz
and
H(8(P % R)) m Zim+ ino@®e®-1gy 7

hence o(M)o{N) = o(P)a(R).

If M and N are nonorientable, then H,(0(Mx N))=Z™ *M* Mgz, and
H,(0(PxR))~Z™ "®*®pZ,, hence o(M)a(N) = oc(P)o(R).

Therefore the lemma is proved.

We recall that if F: Kx K—LxL is a homeomorphism and 4, B e [I(K\K)
then F(AxB) = A'xB’, where 4’, B’ e [J(L\nL). In the case considered, by
condition (###x) from Proposition 3.1, F(4xK) = A'xL and F(KxB) = LxB’
forevery 4, B e CI/K\nK). By Property 4.6 we have M (4) x M(B) ~ M(A"Yx M(B’).

LeMMA 5.2. Let K be a compact connected 2-polyhedron. Assume that all compo-
nents of the set nK are arcs and the regular neighborhood of any x € nkK is homeomaorphic
to the set cone{l, ..., n}x I

If F: K*—L? is a homeomorphism and F(A x A) = 4’ x A", where A & OE\nKX)
and &', A" & {IN\nL), then the manifolds M(4), M(A'), M(A") are homeomorphic.

Proof. It is sufficient to show that either the manifolds M(4), M A, M
arc all orientable or all nonorientable, rankH,(M(4)) = rank H,(M (4 )
= rank H,(M(4")), and o(M (4) = o(M(4") = o(M(A")). From the topological
equality M(4)* ~ M(A")x M(4") we easily conclude that the first and second
conditions hold.
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Let

m = max{oc(M(B)): Be (K\nK)}
and
m' = max{c(M(B"): B e O(L\nL)}.
We can assume that m>m'. (If m<m’, we use the inverse homeomorphism.) If
o(M(4)) = m, then from Lemma 5.1 we have m* = o(M(4'))o(M(4")). Since
a(M(A"), (M(4") are less than or equal to m, ¢(M(4")) = o(M(A")) = m = m'.
Hence M(A) ~ M(A") = M(4").

Now, let o(M(4)) =n<m and suppose the conclusion holds for all
B e C(K\nK) such that o(M(B)) > n. By induction, we need to show that it holds
for A.

If F(AxA) = A'x A", then F((KxA) v (AxK)) = (LxA4A") U (4'xL). This
fact follows from condition (##*+) from Proposition 3.1. Thus we have a one-to-one
correspondence between the components 4 of the set K\nK and the components 4’
of the set I\nL, and another one-to-ome correspondence between 4 and A4".

By the induction assumption, if o(M(B))>n, then o(M(B))>n and
o(M(B")) > n. If o(M(4")) > n or 6(M(A4'")) > n, then the number of B & (I(K\nK)
such that o(M(B))>n is less than the number of B’e[J(L\nL) such that
a(M(B") >n. We consider the inverse homeomorphism and observe that this is
impossible. In fact, if o(M(B")>n, a(M(B'")>n, F™*(B'xB") = B, x B, and
o(M(B))<n, o(M(B))y<n, then a(M(B"))o(M(B"))> o(M(B,))o(M(By)), but
M(B')x M(B") ~ M(B,) x M(B). Hence o(M(4"))<n and o(M(4"))<n. Since
7 = o(M(A"))s(M(4"), we have o(M(4) = o(M(A") = n and M(4) = M(4)
~ M(A").

6. The remaining case. We have a one-to-one correspondence between the ma-
nifolds M(A4) and M(A’) such that M(A)~ M(4"). We will establish a family of
homeomorphisms {f,: A—4'} and correct these homeomorphisms, so that they
will yield a homeomorphism f: K—L.

PROPOSITION 6.1. Let K be a compact connected 2-polyhedron such that all
components of nK are arcs and there exists a regular neighborhood of any x€nk
homeomorphic to cone{l, ..., n} x L. If K* is homeomorphic to L*, then K is homeo-
morphic to L.

Sketch of proof. If nK = &, then K is a manifold and by [7], K~ L. Thus
we assume that nK # @.

Let F: B?—L? be a homeomorphism. Then nK = nL and by Proposition 3 1(#++),
F(ExI) = LxI" or F(KxI)=I'xL, where e OnK and I', I e [InL. Let us
assume that
(@) F(KxI)=LxI" and F(IxK)=1IxL.

Let F(A?) = A’ x A", where 4 e[J(K\#nK) and A, A’ e O(I~\nL). By Pro-
perty 4.6 there exists a homeomorphism F,: M(4) x M{A)—M (A)x M(4") and
by Lemma 5.2 the manifolds M(4), M(A), M(A") are homeomorphic.
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If g4, g4 and g, are given as in Property 4.4, then the diagram
FAA. 1
M(4) x M(A) — M(4)x M(4")

gaxXgda
AxA

@ Foon GarXGar
Axa
-~ A'x A"

commutes.
Hence, if Je [g; (nK n A), then

Fu(M)xJ) = M(A)xJ" and  Fy(Jx M(A) = J x M(4"),
where J'e gz (il n &)  and  J"eOgii(nL n A7)
By Properties 4.3, 4.4, JcoM(d), J' <oM(4'), J'<dM(4") and gy
Gayrs Gag» are homeomorphisms.
‘We shall prove

LEMMA 6.1. If all the assumptions of Proposition 6.1 and (iii) hold, then there
exist homeomorphisms fy 42 M(A)—M(A") and fo 41 M(A)—M(A") such that
(+) Ji,a0) =T and  fo 4(0) = J".

Next we shall prove

LemMa 6.2. Let all the assumptions of Proposition 6.1 and (1)-(ili) hold. Let
Y=ghI'=0a'b,1" = a"Tl?, J=cdJ =cd,J" = ' d" be such that g4e) = as
gu(cy = & and g 4Ac’") =-a"’. The homeomorphism from Lemma 6.1 can be corrected
in such a way that additionally the following condition holds:

(++) either fy 4(¢) = ¢ forall Ae O(K\nK) and all J€ Clgz *(I) or fy A)=d'
Jor all 4 e O(B\nK) ‘and all J € [Ag7*(I), and analogously for fs 4.

Since two homeomorphisms of arcs keeping the end-points are isotopic and the
arcs J, J' have collars in M (4) and M (4"), we can correct the homeomorphisms f1, 4
so that additionally the following condition holds: :

G 9w °f1,4((94|11)‘1(x)) = gp °f1.5((gx]h)—1(x)) for x € 1, where Ie OnkK,
A,Be O(K\nK) (which may be equal), J,e[g; (D), J.egs*(I) and
A', B'e I(I\nL) are such that F(dxA4) = A4'xA4" and F(BxB)= B'xB".

Thus we obtain 2 homeomorphism f: K— L which can be defined by the formula

(D F) = garofialos'®) where xed, AeOEWK), A'eONL).

Condition (%) yields the correctness of (7).

Now, we need only prove Lemmas 6.1 and 6.2.

Proof of Lemmg 6.1. We will prove that there exist homeomorphisms
S48 M(A)—M(A') and f, 4 M(4)—M(4") such that (+) holds.

For I, € [JnK we defirie I}, Ij’, J;, J{ , Ji’ as above. By Lemma 5.2, the manifolds

M(4), M(A") and M (4") are homeomorphic. It is sufficient to show that the following
conditions hold:

(if)

'
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() IfJy, J, € Og 7' (nK  4) lie in one component § & 0M(4), then Jy, J; lie
in one component S’ € [10M(4"), and J. 17, J3' liein one component S € [JOM(4").
(2) If some Ji T2, Ja,Js€ 97 (K n A) lie in SeJ0M(4) and the set
J, U J; lies in one component of the set S\(Jy U J,), then the set J; U J; lies in one
component of the set S'\(J; W J3), and the set J;' L J3' lies in one component of
the set S"\(Jy V).

This means that the arcs J; on S, J; on S’ and J;" on " can be ordered in the
same way. Hence, there exist homeomorphisms fy,4: 0M(4)—3M(4) and
Fo,a OM(4)—0M(A"") such that fi,(/)=J" and Fo,dl) =J" for all
Je Dgal(K n 4). . .

The manifolds M(4), M(A"), M(A") are homeomorphic. Hence, if the manifold
M(4) is nonorientable, we can extend the homeomorphisms fy 4, f2,4 t9 .homeo—
morphisms fy, 41 M(4)— M(A") and fa.at M(A)—M(4") so that condition +)
h01d2'3) If the manifold M (4) is orientable, we need to show that we can c.onstr}mt
the homeomorphisms fy 4, f2,4 in such a manner that they preserve orientation
on all components of M (4), or change orientation on all components of dM(4).
Then we extend the homeomorphisms fi 4, f2,4 onto the whole manifold ]\{ (AI).

Let x;&(p), xie(D, xi' e(@, i=1,2,..,6 and FAA(a{i,xj) = (x}, X})
in the proofs of (1), (2), (3)- (/) denotes the interior of J.)

Proof of (1). First, we will prove that if J, and J; lie in two different’com;po-
nents S, and S, of dM(4) then Ji, 73 lie in two different components Sj, 3 of
aM((A").

Fig. 1

’ z r
Let us suppose J{, J;=S'€ D18M(A"). Let xjx; < M(4A), (xixh) = IntM (4"

and xyxh < 8, Xj x5 = x) x5 el {x}, x5} in M(4"). Let X x < M(4"") be such that

——
—

g
(¥ x) = Imt M(4").
’ VI o 7 ’ 1r V]
Let T; = 8(xix3% 3 xy) = (Fyxxxy) W (e x XY x3) U (21 %3 %%2)
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U (x3 xxY x3). The set Ty is a simple closed curve contained in 8(M(A’) x M 4").

—_—

z 2 4 J 0t
; .
If T = (xyxpx %) U (3 xx7x5) U (¥1x5 xx5) U (xg xxq'x5), then Ty ~ T, in
P, it

(M (A'Yx M(4"). Since T, = d(xxhx ,\T'l’-);’z') and x}x)x X} x4
xM(A™), we have Ty & T, = 0 in 9(M(A) x M(4").

Now, let us suppose that J; = .5,,J, =S,, where §; # S, and S;, S, € [10M (A4).
We consider the simple closed curve Fii(Ty)c (M) x M (D). By (iii),
Fii(Tyn (SpxS;) = (x,, %) for p, r = 1, 2 and we can assume that the manifolds
Fi{Ty) and SpxS, are transversal in 9(M(4)xM(A)). Since dimS, xS, = 2,
dimF (T = 1 and dimd(M(A) x M(4)) = 3, it follows that the embeddings
of the sets S, xS, and Fii(Ty) in 8(M(4)x M(4)) are homologically essential
over Z, (see [6], VIIL 13). Hence, the curve Fj, (7)) is not, contractible in
a(M () x M(4)).

Therefore, if J; = S, J, = 8, and §; # S, then J{ = Sy, J{ = S5 and Sy # S,
and analogously J;' = Sy, J3' = S and S{’ # S4.

I£.7;, o8 € CIOM(A), then J{, Jj=S" € OM(A’) or J{', J§ = §" € [IOM(A").
(In the opposite case we consider the homeomorphism Fa)™t: M(AYx M(A")—
—M(A)x M(4).) Let us suppose that J;, J, =8, J{, T, = S’ and Ji =8, J) <S8y,
where Si" # §7'. By Proposition 3.1 (1), F((Kx4)u (Ax K)) = (Lxd") v
U (4'xL). Hence F™'(4"xA") = A;xd or FYA"x A"y = Ax A, where
4, € DK\nK). Let F7*(4""'xA") = 4, x 4. We consider the homeomorphism
(F™Y g M(A"yx M(A")—M(4,) x M(4), so the arcs Ji, Jy lie in different
component of dM(4). This is impossible, whence Ji, ;' lie in one components
of 8M{(4"). Thus (1) is proved.

(M4 x

~

Fig. 2

Proof of (2). Let arcs J;, J,, J,, Jybeasin(2). Let x, e 3;1 X3 < S. We consider

: :

the square Dy = x;x;xx, %, c Sx S < 3(M(A4)x M(4)) and let Ty = 9D,. Let the
— —

—_— T —_—
o) ) " e "
Ares XaX4, X3Xa, X3Xy, X7 x4 be constructed as the arcs X1%3, X3 x5 in (1) (Fig. 2).
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! WA ! J I
We consider the simple closed curve T, = 8(x5x} X x5 xy) = (x5 x4 X x5) W
ey

1" )

— —— —_— ’ﬁ .
U (xy x x5 x4) U (xhxg x xy) U (xax x5 xy). Since xhxy U xyxy is the boundary
—

of disk € = M(A") and X x; U ¥; x4 is the boundary of a disk € = M(4"), T, is
— —_——

the boundary of the disk Dy = (xpx} x x5 x4) U (C'xx5) W (C'xxy) u(xhx C"y L
U (X C")y < d(M(AD)x M(4"). '

Let us denote Fyi(Ts) = T,. The simple closed curves T, and T, are linked
because T 0 Dy = {(x, x,)} and T, intersects the disk transversally D, (Fig. 3)-

AT SxM(A)
(X, %) A I Jyx MlA)
\ ' r i 1x;,%3)
JxM(A)
(3.%,) T Y x,.x,) 2%
o,
JxM(A]
(g%, )(xa'xa) :
p N J xMIA)
Ux, %) (%, 1%,)
SxS
M{A};?
MIA)xd,  M{A)xd, MIAlxdy  MIAJxJ,
Fig. 3

I Jy{, Jh, T4, Joc 8" € [10M(4’) and the set J4 U J§ does not lie in one compo-
/-_T 4 ! ! 0
nent of S'\(J; U JJ), then there exists an arc xpxy < S’ such that x7, x5 ¢ x3x3.

Let us observe that
—

Dy < (Thx M(A™M) v (Jix MAM) U (M(A)YxTF) v (MYxTY) L (xpxax Xy xy

—
1

and Tjc(fxMA") v (s xM(A") v (M) xJ]") v (M(4)%xJ3). Hence
T/~ D) = @ (Fig. 4).
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A
S'xM(A"
4;""7
1
(7 T{ |
p) LixMiA")
(,x,‘jx{‘) (!, %3 { 1
— JxM(A")
o (x3.') b (g% 3 ‘
7
! v
P (X x) T (o) { JixMIA")
D,
- Ly M(AY
L/(x; ) ,(xé,x"’) z
S'xs"

M(A)xS", —'7‘ —
MIATxJy MIAYxSy MIAYxJy  M{Ax !

Fig. 4

So Ty and T; are not linked. Therefore J; U Jj lies in one component of the
set S'N{J{ U JY).

The proof for arcs J{', J,’,J3',Ji is similar.

Therefore  there exist homeomorphisms ° Ji,4: OM(A)—0M(4") and
Fa,at OM(A)—8M(A") such that condition (+) holds.

Proof of (3). If the manifold M (4) is nonorientable, then the homeomorphisms
Ji,4> Jo,4 extend to homeomorphisms Ji,at M(A)—M(A') and f, 42 M(A)—
~M(4").

Now, suppose M(d4) is orientable. Let us choose the orientation of M (4) and
M(A"). Suppose, contrary to (3), that Fi,4 preserves the orientation on Sy and
changes the orientation on §,, where Sy, S, € [18M(4). If one of Sy or S, contains
less than three components of g;*(nK ~ 4), then they do not fix orientation and the
homeomorphism f, , can be corrected. Let Jis Jay Jy = Sy and Jy, Js, Js = S,

We proceed to show that our assumption contradicts (iii). We will prove that
the homeomorphism F,, maps the curve Sy x x; onto the set F,,(S; x x;) homologic
to S{ x x{' in M(4")xJ;' and it does not change the orientation, whereas F,,, maps
the curve S,xx; onto the set F,,(S,xx,) homologic to S;xxy in M(A)xJ7,
-and it changes the orientation. This is impossible because, by (iii), F, A(M(A) = Ty)
= M(4)xJ{' and the surfaces M(4)~ M(A’) are orientable.
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Fig. 5

We recall that Fy(xs,x) = (%1, X7) eJ;x{L for i,j=1,..,6. Let
< 8 \Jy, where i # J # k, i,j, kef{l,2,3} and x;x; = So\Jy, where i # j # k,

—

xixj .7
i,7,ke{4,5,6}. The analogous arcs in M(4") are denoted by xix;. It suffices to
show that all curves F, A(}?;jxxl) L xjxixxy are homologically trivial in
(MY xTY).

d type
P the second typ!

the first copy
of M(A)

the third type

- the first type
EMIA] —=r

the second copy
of MIAY)

af M{A) xJy)

Fig. 6
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Let us observe that 9(M(4)xJi’) is homeomorphic to the union of two copies
of M(A") with common boundary. From the Mayer-Vietoris exact sequence it
follows that H,(8(M(d4')xJ{)) has three types of generators. The first ones are given
by generators lying in the common boundary of both copies of M(4"), the second
are given by the other generators of two copies of M(4’), the third are taken from
imd, where 8: H,(0(M(4")xJ{"))— Hy(dM(4) is the homomorphism from the
Mayer-Vietoris exact sequence.

— —_——~
Let us suppose that the curve Xj = F,,(x, X, % %,) U % x} % x{ is not homo-
————
logically irivial in 0(M(47)xJy). Let us consider the curves Ty = 0(x; X5 XX(X,),
AN [
Ty = 0(xy %y XX323), Ty = 8(x;x;%xx3%), and their images Tj = Fu (T).
3
The curves Tj are conmtractible in N’ = 8(M(d")x M (AU Int(M (4 %},
=1

so they are also homologically trivial in N’. Let us denote X] = Fyu(xy,xx) U

Uxiap X3, 1=1,2,3, and P = Fay0n X %) Uxix ¥ 35, 0= Fyu(iX xpms) 0
U XpX x5 x5, Rp = Fyy(x;x%3x,) 0 Y xx¥xi’, i=1,2. Let us observe that

[7:] = [¥{]+[P3]- [ X3}~ [P{],

(72] = [X3]+[03]-[X3]-[Qi] ,

[73] = [X3]+ [Ry] - [X7]—[R}],

where [ ] denotes a homology class in N”.

SixMiay

MIA) xJ)

T

M{A) xJy

——

Fig, 7
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Since X = M(4')xJ;', P{, 0}, R SJTixM(A"), it is easy to see that if T} ~0
in N’ then Xj ~ X; ~ X} in N'. It is also easy to see that if there is a generator of
the third type in [X7], then X7 is not homologous to X3 and X7 in N* and if there is
a generator of the second type in [X}], then X 1 is not homologous to X3 or X3 in N.

Now, suppose that there is a generator of the first type in [X7]. If it is a generator
given by the curve S} x ;' then the curve T} is not contractible in N (St x M(4™).
So we can assume that there is an arc Z; joining the curves Fq4(x; X, % x,) and
F g%y %2 X %) and lying in F4(x; x; x %, 3,) (1 (S x M (A4")). The analogous arcs Z}
joining Fy(x, %, xx,) with Fpy(x1x,xx5) and Z% joining FAA(X,_‘EXX:;) with
Fug(x X2 x%0), He in Fyu(x, 2, x3,%5) 0 (S} XM(A")) and FM(;chz x;rxl) N
A (87X M(A"). The arc Z! divides the curve T} into two curves 77" and 77", It is
easy to see that at least two of the cycles given by the curves T}’ have a generator
being an image by inclusion of a generator of the third type. So it is not homolo-
gically trivial in N’. But 7}’ are contractible in N”.

The proof of (3) is completed.

Proof of Lemma 6.2. We will show that the homeomorphisms f1, 4, /5, 4
can be corrected in such a manner that condition (+ +) holds.

Let us choose orientations for all orientable manifolds M (4) and for com-
ponents S of M (4) for nonorientable manifolds M(4). Let us fix orientations of all
orientable manifolds 3 (4"), M(4") in such a manner that the homeomorphisms
J1,45 J2,4 Preserve orientation. Let us fix orientations of all components §’, S of
OM(A"), DM (A") for nonorientable M (A"), M (A4") in such a manner that the homeo-
morphisms f;, aiss Ja, 4js preserve orientations.

Condition (4 +) may be formulated as follows:

If Te Ok, Ji € Ogz*(), Jye Ogz |(I), where 4, Be [I(K\nK), then the
homeomorphism % = (g ) ) e (g 4j7y): J1—J, preserves orientation iff so do the
homeomorphisms

K= (&75'115)—1 ° (G492 Ji =T
and

B = (ggy) ™ o (g gt J1 T3

The proof will be divided into 3 cases:

() 4 =8

2 AnB # @.

(3) The general case.

Case 1. On the manifold M(4) we define a relation

h(x) =y, where xeJ;, yelJ, and J;,J,e gy (), TenkK

x~y¢>{ x=y
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Analogously, we define relations for the manifolds M(4") and M(4"):

H(x) =,
X~y @{ x=y

x~J)¢>{h @) =2

where x e J], yeJ; and J,J; € (g7 '("), I' e ClnL

where x e J{, yeJy and J{, J3 € Clg ("), I' € CuL
x=y

The spaces M(A)/., M(A)/., M(4")|. are manifolds, too.
Fiixzo(@ax94) = (garxgan) ° Fya , hence
(iv) M(A)] . x M(A)].. % M(A")] . x M(4")] .

If the manifold M (4) is orientable, then & preserves orientation iff so do A’
and 2", because M(A)] .. is orientable iff so are M (4")/.. and M (4"")/ ... If the manifold
_ M(4) is nonorientable, we only consider arcs Jy, J, lying in one component S of

0M(4) (Fig. ).

Fig. 8

By (i)

We observe that rank H;(M(4)/.) = rank H (M (A4))+1. If & changes orienta-
tion, the number of elements of [19(M (4)/..) is greater by one than the number of
elements of [10M(4). If / does not change orientation, they are the same. Hence,
if 1 changes orientation, o (M(4)/..) = (M (4)), and if & does not change orientation,
o(M(A)/) = o(M(4)+1 (see Def. 5.1). From (iv) and Lemma 5.1 it follows that
o(M(A)].)* = o(M (49/.)o(M(4")].). By Lemma 5.2 the manifolds M (A),
M(A"), M(A") are homeomorphic.

If o(M(d)/.) = n>0, then n? # (n+1)n (n+1)* and the conclusion in this
case holds. If o(M(d)/.) =0, then o(M(4)].) =0 or o(M(A")].) == 0. Let
o(M(4)/.) =0 and o(M(4")/.) = 1. By Proposition 3.1 (rwkn), FY(A" A"
= Ax 4y, where 4; € CJ(K\nK). By the formula M(A")] o x M(A")] . = M(A)] . x
xM(4;)/. and by Lemma 5.1, 1 = (M"Y = o(M(A) Yo (M(4y)].) = 0,
which is impossible. Hence o (M (A0].) = a(M(4")].) = 0.
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The proof of case 1 is complete.

Case 2. Let Ie OnkK, J, e Qg *(), Jo& Oyp '), 4 # B, 4, Be Q(K\nK)
and h: J;—J, be given as above. Let us denote M(4 U B) = M(4) Y M(B). In
the same way we define M(4' U B') = M(4) hL{ﬂ'f(B') and M(@4" vB")
= M(4") Y M(B"). Let us observe that they are manifolds.

We will consider the following cases:

(a) Assume that the manifold M(4) (or M(B)) is nonorientable, J; =S,
€ [10M (A) and at most two components of g;'(nK n 4) lie in S;. Then these com-
ponents do not fix an orientation of S;. Hence we can correct the homeomorphisms
fi,45 Fa, in such a manner that conditions (4) and (+ +) for J, J5 hold.

(b) M(4) is orientable and in no component S of dM(4) there are more
than two components of g7(nK n A). Then the homeomorphisms fi, 4, /2,4 may
be corrected.

©) Let Jy,J3, T, = 8; € OOM(A), J5,Js, Js = Sy € DM (B) (Fig. 9).

5
S
J,

Fig.

If the homeomorphism A: J;—J, does not change orientation and the homeo-
morphism /i’: J; —J3 changes orientation, then the ordering of th? arc,s Ji’ JasJs,Js
on a component of M (4 v B) and the ordering of the arcs J3, J4, J5, Js on a com-
ponent of aM(4' U B') are different. ‘

By (i) and (iii) therc exists a homeomorphism

Faonaon: M(A 0 B)xM(4 v B)—M(4' v B)xM(4" v B")
such that .
W) Faop aus(lix M4 v B)) =JixM("vB Y and Fyop, aus(M(4 U B)x
«J) = M(4' v B)xJ} for i=3,4,5,6. o ‘
!)Using (to the maniled M(A v B) a reasoning similar to that of (2) in the proof

of Lemma 6.1, we obtain a contradiction. . » ‘ ’
(d) Let the manifolds M(4) and M(B) be orientable, J; < S, € [10M(A),
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T, 8, e C10M(B), Js,J4,Ts = S;€10M(4) and Jg, 7, /s < S, e 00M(B). If
Sy =8, and S, = S,, the proof of (d) is the same as that of (¢).
We will consider the case when S; # Ss and S, # S, (Fig. 10).

Fig. 10

Let us observe that the manifolds M(4 U B), M(A' U B') and M (A" v B")
are orientable. If the homeomorphism %: J,—J, does not change orientation and
the homeomorphism k': J;—J5 changes orientation, then the ordering of the
arcs Js, Ju, Js = Sy and Jg, J4, Jg = S, agrees with the orientation, and the ordering
of the arcs J4,J4, J5 < 8% or Jg, J5,Jg < S, does not agree with the orientation.
Using to the manifold M (4 U B) a reasoning similar to that of (3) in the proof of
Lemma 6.1, we obtain a contradiction.

Similarly for the cases S; = S; and S, 5 Sy, or Sy # S; and S, = S,.

(e) If we match next arcs J, = 0M(4) and J, <= dM(B), we can reason as in
case 1 considering the manifold M(4 U B).

Case 3. For any 4, Be [J(K\uK), there exists a sequence of components
A=A, A5, ..., 4, =B of the st K\nK such that A, N4, # @ for
i=1,2,..,n—1. By (v) and induction it suffices to consider the case when
A n B # @, which is given in (2).

Therefore, the proof of Lemma 6.2 is complete.

Lemmas 6.1 and 6.2 complete the proof of Proposition 6.1.

Propositions 3.1, 4.1 and 6.1 imply Theorem A.
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