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On the product of a perfect paracompact
space and a countable product of
scattered paracompact spaces

by

K. Alster (Warszawa)

Abstract. In this note we prove that the product of a perfect paracompact space and
a product of countably many scattered paracompact spaces is paracompact.

Our result improves, in a sense, the theorem of M. E. Rudin and S. Watson from [RW].
The proof of our theorem, in contrast with the proof of the theorem of Rudin and Watson is effective.

We adopt the topological terminology from [E]. A scattered space X is a space
whose every subspace contains isolated points. Put X = X, X® = N{X¥?: p<a}
if o is a limit ordinal number and define X to be the set of all accumulation points
of X® if ¢ = B-+1. By @ we denote the first infinite ordinal number and by N the
set of natural numbers. For xe X denote by a(x) the ordinal number for which
xe X(“(x))\X(ﬂ(x)”‘l)_ ‘

The aim of this note is to prove (see [A,], Problem 3)

THEOREM. If Z is a perfect paracompact space and X, is a scattered paracompact

space, for ne w, then the product Zx P X, is paracompact.

n=0
Proof. Without loss of generality we may assume that X, = X for new
and that there is an ordinal number A such that X® consists of a single point.

-] -]
Indeed, put X = @ Y, U {a}, where ¥, = @ X;, a¢ ¥, fornew, X; is a clopen
n=0 i=0

subset of X, for i€ w, and the base at a is induced by the sets of the form U(n)

= @ Y; u {a}. Notice that X is a scattered paracompact space, X, is a closed
JZn -
subset of X, for ne w; hence, if Zx X® is a paracompact space then also ZxP X,

is paracompact. n=0
Let us denote by #' the base of X consisting of all clopen subsets B of X for
which there is an o, denoted by a(B), such that the cardinality of B@®)_ abbreviated
|BE®)|, is equal to one. The symbol p; stands for the projection of Zx X onto Z
and p, for the projection of Zx X onto X. Let us denote by & the base of Z x X
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o0
consisting of all sets of the form ¥'x P B,, where ¥ is an open subset of Z, {ine w:
n=0

B, # X} is finite and B,e &', for ne w.

Let % be an open cover of Z x X® such that Z =« #and if Be #and Bc Ue %
for some Ue % then Be . In order to prove that Zx X is paracompact it is
enough to define a ¢-discrete open cover G* = U{Gy: 1 <n < w} which refines %.

For B= Vx P B, and (z,v)e Zx X let us put
n=0

n(B) = inf{je w: B; = X for 1>/}

and
n((z, v)) = inf{n(U): Ue % and (z,v) e U}.

For every ordered pair (H,, H,), where H, < H, and H, and H, are clopen
subsets of X, denote by V(H,, H,) = #' a pairwise disjoint cover of H,\H, (such
a cover exists because X is paracompact) and write

D(V(H,, Hy) = {de X: there is He V(H,, H;) and H*™ = {d}}.

If H = H, then V(H,, H)) = D(V(H;, H))) =@

We first outline the idea of the construction of a ¢-discrete open refinement
G* = J{G}: 1 <n<w} of % before presenting a formal proof. Put p = (a,...,a,...),
where {a} = X®®. Let G5 c 4 be a o-discrete, open in Zx X°, covet of Zx {p},
whlch refines % and is such that for every (z,p)e Zx {p} there exists G = G, %

>< PG ;€ G5 satisfying the following conditions: (z, p)eG n(z, p) = n(G) .md
G‘“‘G") {a} for iew. Now let us fix G=G,x PG er for a moment.

i=0

Consider sets V(G;, X) and Z(G) = P Z(G); = X° such that Z(G’)l = D(V(G;, X))

i=0
v {a}. Notice that V(G;, X) = @ if i>n(G) and consequently Z(G) is discrete
in X° Let v= (vy,...,;,...,) be a point of Z(G). For every iew there is R,
e V(G;, X) U {X} such that R™®P = {pl. Let U(v,G)c @ be a o-discrete,
open in Zx X, cover of Z x {v}, which refines % and is such that for every (z, v)
, - .

€ Z x{v} there exists G' = GLx P G{ e U(v, G) satisfying the following conditions:
G =G, x P R, (z,v) e G, 1fJ>n(z v) then G = R; and G/ = {v}. Notncc

that G, x P R; plays the same role in the construction of U(v, G) as Z x X does
i=0

in the case of G%. Now piut
= U U{U(@, G): veZ(G) and Ge G}}.

In a similar way we construct G¥, for 3 < n. Before we oive more details and a formal

proof we shall need some more notation. im



icm

On the product 243

.- Put Uy =AZx X"}, R(ZxX®)= X", Z(W) = {p}, where p = (a, ..., a, ..)
and V(W) = X, for We W' and ie w.

Let us assume that ‘%//'jc:.%{ ZW)y = X°, V(W) %' and R(W) e p,(%),
for We W, iew, 1<j<n, where p,(#8) = {p,(B): Be %}, are defined in such
a way that S ‘

Wifl<j<n, W= Wy, Wie)eW; then (W, .., W;_} c,
@ if I<j<n then W'y =#;|j—1, where Wj-1= wij—-1: w
= (Wos woos Wi) €Wy and W]j—1 = (Wy, .., Wi_a}, '

(3) for I<j<n 0<k<j, iew, W= Wy, .., Wi_)eW; p (W)
< R(Wk+1), p(Wo) = . 2 p(Wj-y) and R(IW[D) D R(W|2) = ... 2 R(W),

@) for 1< j<n, iew and :

W s (W oos Wim D EW3, VW) = V(W)oy,i, ROW) U (RGP},

o [24]

where R(W) = iP R(W), ps(W;_1)=P W;_, ;and R(W)e V(W|j—1) for i€ o,
=0 i=0

and Z(W) = foZ(W)“ where Z(W)) = D(V{(W)).

For W == (Wy, .o, W,_)eW,_, and (z,y)ep(W,_5)xZ(W), where y
= (Xgy eeen Xypy o)y let Hig yy = H,xigo H 1€ % be such that

5) H, x'l(z,;’)—lﬂ(z,y),i X X% X% ..e U and ze H.cp,(W,-,),

(6) n(H,, ),)m—: r(z,y) = max(n(z, y), n(W,,)) and . D = (5} and

7 Ho s = Re V(W) such that {x;} = RO®Y if n(z,y)<j<r(z, ),
=77 \a subset of Re V(W) such that {x;} = RO®) if j<n(z, ).

Observe that R depends only on y.

For W= (W, e Wyo2) €Wneys y€Z(W) put Oy, W) = {z epi(W,-»):
n(z,y) < i}, for ie w. Notice that 0,(y, W) = U{p.(He,»): n(z, ) <i}, of. (5),
and Z is a perfect paracompact space; thus there is a o-discrete and open in Z
cover ¥ () of Oy, W), which refines {p,(He,y): n(z y) < i}. For every Ve ¥",(y)
there is z(¥) e Oy, W) such that V< p(Hew),y)- Put

®) Gy, W) = {Vxpa(Hiqp,»): Where VeV ()},

Gy, W) = U{GY, (3, W): iew} and

) GXw) = U{Gr(y, W): ye Z(W)}.

Put

(10) W, = {WeB" Wn-1leW,-yand W, € G’,",‘(Wln—l)}.

If We, then there are unique » = (Xo, -5 X;» .)€ Z(W|n—1), namely

00 . 3
y = (W=t where py(W,-)= P W,_1,;, and unique R;e V(Win—1),
’ i=0

1,0
‘n=-1, R))
for i € w, such that W,_; € GX(y, Win—1), W,_1,; = R; and Wm0 = REED
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= {x]}, for i e w; cf. (7), (8), (9) and (10). Put R = P0 R; = R(W). The sets V(W),
i=

for i e w, and Z(W) are defined according to (4) and this concludes the induction.
Put
(11) G* = {Be ®: there is W = (Wo, ..., W,_,) € #, such that W,_, = B},
for new and 1<n By (1) G* = U{G¥: 1<n<w} is an open family, which

refines %.
In order to finish the proof of the theorem, it is enough to show that G* is
a o-discrete cover of Zx X°. ‘
Let (z,y)eZxX® where y = (J)ios %o =p = @, s a,..,), for {a}
= XX 1 = n(z,x,) and G, such that (z,x,)eGy€ G5 io(%0, Zx X*). Note
that K, = (Zx X®, Gy) € W,. Then there are x, = (x;,0s -, X1,i5 ---) € Z((Z X X,
G,)) such that

/(a, if n(Go)</J,

x;,; = A RE®), where Re V(Ky) is the smallest set, in the sense of
inclusion, such that y;e R if j<n(Go),

i, = n(z,x), (z,x)eCG eCGh;(x,K) and K, =(ZxX, Gy, G)eW;.

Let us assume that Xy, ..., X,, K, = (ZX X®, Go, ..., G) €W yip and iy, .., 1,
are defined. Then there exist x,,; € Z(K,), G,+1 and i,., such that

a, if n(G,)<J,
Xpr1,; = {R“®),  where Re Vj(K,) is the smallest set such that y; & R if
j<n(G),

b1 = N2, Xyg1)s (2, %1 1) €Gryr € G:+3,in+1(xn+1s K,) and
K, i =@ZxX°GCGqyue,Go)EWis.
Observe that
(12) if j,ne w and X,,4,; # X,,; then a(x,.; ;) <a(x,, /).
From (12) it follows that D; = {x,, ;: n € w} is finite, for je w, so the sequence

(x,)p=0 converges to some I = (ly, ..., I,, ...) € X®. There is (z,/)e Be %. Let j be
such that

(13) x;,; = [; for every i< n(B).
From (13) it follows that (z,x;)€ B and so n(z, x;) < n(B). We shall show that
(z,1) e G;. If not then there is a k with n(z, x)) <k <r(z, x;) = n(G)) such that

=<
¢ Gy, where p,(G) = P G, ;, and consequently G, = Ry(K)). Hence by the
i=0

definition of (x,);Z, it is easy to see that for every j <j', x;,; € Ry(K)) and Ry(K})
is a clopen subset of X which does not contain /,, contradicting the fact that (x,);=o
converges to I. We conclude that (z, ]) € G;.

We now show that (z, y) € G;. If not then there is k£ < n(G,) such that y; ¢ G; ;.
Hence y, & R\G;,;, where R, which is equal to R,(K}), was defined in connection
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withx;, .. It i§ easy to see that x,, € U V(Gj,x, R) = R\Gj,, for j<t,s0] € R\G;,,
contradactlng (z,D)eG;. '

In order to show that G}, for 2<n, is o-discrete in Zx X it is enough to
prove that, for 2<n, there is a splitting

14 ¥, = U{4,, n: me o} such that, foreveryn < k, L, = {C(W): We 4,,,}
is " discrete, where C(W) = U{Be &: there is W' = (W,, ..., Wy—1)€ # such
that W'ln = W and B = W1} : ‘ ‘

Indéed, observe that J{L,,: me o} = Gj.

If n = 2 then (14) holds by p,(Wo) = ... 2 py(W;_y) for W= (W, ...,W;_1)
e #; and je N, and by the definition of #",. Let us assume that (14) holds for
i<n In order to prove (14) for i = n+1 it is enough to show that the desired
splitting exists for W,y (W) = {W' € Wpr1: Win= W}, where WeW,. Let
A be a subset of {0, 1, ... (n(W,_;)—1)}; notice that Z(W), = X = (g}, for
n(W,-,) <i, and put

15) Z(Ii’)(A) ={yeZW): A= {j<n(W,_)): {y} =W ;*"}, where
p2(Wy-1) =i POWn-l.i'

- Note that
- (16) if y and y' e Z(W)(4) and y # y' then there is k <n(W,) such that
Vo # v and if He Gpy(y, W), H' € Gyys (v, W), K= Wy, ..., W,g, H), X'
= (Wy, w.., W,-1H"), then Ry(K) and Ry(K') are different elements of V(W,_y4,
Ry(W)).

The family V(W,_y.., R(W)) is discrete and so, by (16), the fact that for
{WeWHyp: Win=W and W, € Gyrri(y, W)}, for ye Z(W) (4), the desired
splitting exists, we can use the same argument as in the case of #",, and by (3) we
infer that

Wi WYA) = {W' € Wysr: W'n= W, Wye Gyea(y, W) and y € Z(W)(4)}
has the splitting. From # ., = U U{#ws1(W)(4): We #’, and
A C{O: Ly, 0(Wyp)— 1)}}

it follows that (14) holds for i = n+1.

Remark. One can prove Theorem for a little more general case; namely, it is
enough to assume that X is a Lindeldf space such that each closed subset F of X
contains a compact set with nonempty interior, with respect to F (cf. Theorem 2
from [A,]).

From Theorem we derive

COROLLARY. If Z is a hereditarily Lindeldf space and X,, for ne w, is a Lindeléf

2]
scattered space then Zx P X, is Lindeldf (see [A4]).

n=0
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- Proof. Without loss of generality one ‘can assume that X = X, for ne.qo.
If not, put X = @ X,. Let % be an open cover of Zx X”. Then, ‘by Theorem,
- n=0 " . . X .

there is an open refinement # = {J {#,: ne w} of %, which covers Z x X, where
Hys for new, is a discrete family. For He # and ke N let H(k) = U{Ue®:
n(U) <k} and =;%’f,,(k)“= {H(k): He o#,}, where & is the base defined in the proof
of Theorem. Notice that #, = U U {#,(k): ke N} and if p, is the projection
from Zx X onto Zx X*, for ke N, then P (k) = {p(H): He H,k)} s
discrete in Zx X In order to finish the proof, it is enough to show that Zx X* is
a Lindel6f space, for k e N. To this purpose let us observe that if X is a Lindelsf
scattered space then we may assume, without loss of generality, that X is a P-space,
i.e. every Gs-subset of X'is open, because G;-subsets of X induce a Lindeldf topology,
Now observe that if X is a P-space then X* is a P-space, for k € N, and the product
of an arbitrary Lindel5f space and a Lindelsf P-space is Lindelof. Sy
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