FUNDAMENTA MATHEMATICAE 127 (1987)

## On the product of a perfect paracompact space and a countable product of scattered paracompact spaces

by

## K. Alster (Warszawa)

Abstract. In this note we prove that the product of a perfect paracompact space and a product of countably many scattered paracompact spaces is paracompact.

Our result improves, in a sense, the theorem of M. E. Rudin and S. Watson from [RW]. The proof of our theorem, in contrast with the proof of the theorem of Rudin and Watson is effective.

We adopt the topological terminology from [E]. A scattered space X is a space whose every subspace contains isolated points. Put  $X^{(0)} = X$ ,  $X^{(\alpha)} = \bigcap \{X^{(\beta)} : \beta < \alpha\}$  if  $\alpha$  is a limit ordinal number and define  $X^{(\alpha)}$  to be the set of all accumulation points of  $X^{(\beta)}$  if  $\alpha = \beta + 1$ . By  $\omega$  we denote the first infinite ordinal number and by N the set of natural numbers. For  $x \in X$  denote by  $\alpha(x)$  the ordinal number for which  $x \in X^{(\alpha(x))} \setminus X^{(\alpha(x)+1)}$ .

The aim of this note is to prove (see [A<sub>2</sub>], Problem 3)

THEOREM. If Z is a perfect paracompact space and  $X_m$  is a scattered paracompact space, for  $n \in \omega$ , then the product  $Z \times \overset{\circ}{\mathbf{P}} X_n$  is paracompact.

Proof. Without loss of generality we may assume that  $X_n = X$  for  $n \in \omega$  and that there is an ordinal number  $\lambda$  such that  $X^{(\lambda)}$  consists of a single point. Indeed, put  $X = \bigoplus_{n=0}^{\infty} Y_n \cup \{a\}$ , where  $Y_n = \bigoplus_{i=0}^{\infty} X_i$ ,  $a \notin Y_n$ , for  $n \in \omega$ ,  $X_i$  is a clopen subset of X, for  $i \in \omega$ , and the base at a is induced by the sets of the form  $U(n) = \bigoplus_{j \geqslant n} Y_j \cup \{a\}$ . Notice that X is a scattered paracompact space,  $X_n$  is a closed subset of X, for  $n \in \omega$ ; hence, if  $Z \times X^{\omega}$  is a paracompact space then also  $Z \times \mathbf{P} X_n$  is paracompact.

Let us denote by  $\mathscr{B}'$  the base of X consisting of all clopen subsets B of X for which there is an  $\alpha$ , denoted by  $\alpha(B)$ , such that the cardinality of  $B^{(\alpha(B))}$ , abbreviated  $|B^{(\alpha(B))}|$ , is equal to one. The symbol  $p_1$  stands for the projection of  $Z \times X^{\omega}$  onto Z and  $p_2$  for the projection of  $Z \times X^{\omega}$  onto  $X^{\omega}$ . Let us denote by  $\mathscr{B}$  the base of  $Z \times X^{\omega}$ 

242 K. Alster

consisting of all sets of the form  $V \times \bigcap_{n=0}^{\infty} B_n$ , where V is an open subset of Z,  $\{n \in \omega : B_n \neq X\}$  is finite and  $B_n \in \mathcal{B}'$ , for  $n \in \omega$ .

Let  $\mathscr U$  be an open cover of  $Z \times X^{\omega}$  such that  $\mathscr U \subset \mathscr B$  and if  $B \in \mathscr B$  and  $B \subset U \in \mathscr U$  for some  $U \in \mathscr U$  then  $B \in \mathscr U$ . In order to prove that  $Z \times X^{\omega}$  is paracompact it is enough to define a  $\sigma$ -discrete open cover  $G^* = \bigcup \{G_n^* : 1 < n < \omega\}$  which refines  $\mathscr U$ .

For  $B = V \times \prod_{n=0}^{\infty} B_n$  and  $(z, v) \in Z \times X^{\omega}$  let us put

$$n(B) = \inf\{j \in \omega : B_i = X \text{ for } i \ge j\}$$

and

$$n((z, v)) = \inf\{n(U): U \in \mathcal{U} \text{ and } (z, v) \in U\}.$$

For every ordered pair  $(H_1, H_2)$ , where  $H_1 \leq H_2$  and  $H_1$  and  $H_2$  are clopen subsets of X, denote by  $V(H_1, H_2) \subset \mathcal{B}'$  a pairwise disjoint cover of  $H_2 \setminus H_1$  (such a cover exists because X is paracompact) and write

$$D(V(H_1, H_2)) = \{d \in X: \text{ there is } H \in V(H_1, H_2) \text{ and } H^{(\alpha(H))} = \{d\}\}.$$

If 
$$H_1 = H_2$$
 then  $V(H_1, H_2) = D(V(H_1, H_2)) = \emptyset$ .

in the case of  $G_2^*$ . Now put

We first outline the idea of the construction of a  $\sigma$ -discrete open refinement  $G^* = \bigcup \{G_n^*: 1 < n < \omega \}$  of  $\mathscr U$  before presenting a formal proof. Put  $p = (a, \dots, a, \dots)$ , where  $\{a\} = X^{(\alpha(X))}$ . Let  $G_2^* \subset \mathscr B$  be a  $\sigma$ -discrete, open in  $Z \times X^\omega$ , cover of  $Z \times \{p\}$ , which refines  $\mathscr U$  and is such that for every  $(z,p) \in Z \times \{p\}$  there exists  $G = G_z \times \mathbb P$  and is such that for every  $(z,p) \in G$ , n(z,p) = n(G) and  $G_i^{(\alpha(G_i))} = \{a\}$  for  $i \in \omega$ . Now let us fix  $G = G_z \times \mathbb P$  of  $G_i \in G_2^*$  for a moment. Consider sets  $V(G_i, X)$  and  $Z(G) = \mathbb P$   $Z(G)_i \subset X^\omega$  such that  $Z(G)_i = D(V(G_i, X)) \cup \{a\}$ . Notice that  $V(G_i, X) = \varnothing$  if  $i \ge n(G)$  and consequently Z(G) is discrete in  $X^\omega$ . Let  $v = (v_0, \dots, v_i, \dots)$  be a point of Z(G). For every  $i \in \omega$  there is  $R_i \in V(G_i, X) \cup \{X\}$  such that  $R_i^{(\alpha(R_i))} = \{v_i\}$ . Let  $U(v, G) \subset \mathscr B$  be a  $\sigma$ -discrete, open in  $Z \times X^\omega$ , cover of  $Z \times \{v\}$ , which refines  $\mathscr U$  and is such that for every  $(z, v) \in Z \times \{v\}$  there exists  $G' = G'_z \times \mathbb P$  of  $G_i' \in U(v, G)$  satisfying the following conditions:  $G' \subseteq G_z \times \mathbb P$  and  $G'_j^{(\alpha(G'_i))} = \{v_j\}$ . Notice that  $G_z \times \mathbb P$  and  $G_z$  if  $G_z$  is plays the same role in the construction of  $G_z$  and  $G'_z^{(\alpha(G'_i))} = \{v_j\}$ . Notice

$$G_3^* = \bigcup \bigcup \{U(v, G): v \in Z(G) \text{ and } G \in G_2^*\}.$$

In a similar way we construct  $G_n^*$ , for 3 < n. Before we give more details and a formal proof we shall need some more notation.



Put  $\mathcal{U}_1 = \{Z \times X^{\omega}\}, \ R(Z \times X^{\omega}) = X^{\omega}, \ Z(W) = \{p\}, \text{ where } p = (a, ..., a, ...)$  and  $V_i(W) = X$ , for  $W \in \mathcal{W}_1$  and  $i \in \omega$ .

Let us assume that  $\mathcal{W}_j \subset \mathcal{B}^j$ ,  $Z(W) \subset X^\omega$ ,  $V_i(W) \subset \mathcal{B}'$  and  $R(W) \in p_2(\mathcal{B})$ , for  $W \in \mathcal{W}_j$ ,  $i \in \omega$ ,  $1 \leq j < n$ , where  $p_2(\mathcal{B}) = \{p_2(B) \colon B \in \mathcal{B}\}$ , are defined in such a way that

- (1) if 1 < j < n,  $W = (W_0, ..., W_{j-1}) \in \mathcal{W}_j$  then  $\{W_1, ..., W_{j-1}\} \subset \mathcal{U}$ ,
- (2) if 1 < j < n then  $\mathcal{W}_{j-1} = \mathcal{W}_j | j-1$ , where  $\mathcal{W}_j | j-1 = \{W | j-1 \colon W = (W_0, ..., W_{j-1}) \in \mathcal{W}_j \text{ and } W | j-1 = (W_0, ..., W_{j-2}),$
- (3) for  $1 \le j < n$ ,  $0 \le k < j$ ,  $i \in \omega$ ,  $W = (W_0, ..., W_{j-1}) \in \mathcal{W}_j$ ,  $p_2(W_k) \subset R(W|k+1)$ ,  $p_1(W_0) \supset ... \supset p_1(W_{j-1})$  and  $R(W|1) \supset R(W|2) \supset ... \supset R(W)$ ,
  - (4) for 1 < j < n,  $i \in \omega$  and

$$W = (W_0, ..., W_{j-1}) \in \mathcal{W}_j, \ V_i(W) = V(W_{j-1,i}, \ R_i(W)) \cup \{R_i(W)\},\$$

where  $R(W) = \underset{i=0}{\overset{\infty}{\mathbf{P}}} R_i(W)$ ,  $p_2(W_{j-1}) = \underset{i=0}{\overset{\infty}{\mathbf{P}}} W_{j-1,i}$  and  $R_i(W) \in V_i(W|j-1)$  for  $i \in \omega$ , and  $Z(W) = \underset{i=0}{\overset{\infty}{\mathbf{P}}} Z(W)_i$ , where  $Z(W_i) = D(V_i(W))$ .

For  $W = (W_0, ..., W_{n-2}) \in \mathcal{W}_{n-1}$  and  $(z, y) \in p_1(W_{n-2}) \times Z(W)$ , where  $y = (x_0, ..., x_n, ...)$ , let  $H_{(z, y)} = H_z \times \Pr_{i=0}^{\mathbf{p}} H_{(z, y), i} \in \mathcal{B}$  be such that

- (5)  $H_z \times \underset{i=0}{\overset{n(z,y)-1}{\mathbf{P}}} H_{(z,y),i} \times X \times X \times \dots \in \mathcal{U}$  and  $z \in H_z \subset p_1(W_{n-2})$ ,
- (6)  $n(H_{z,y}) = r(z, y) = \max(n(z, y), n(W_{n-2}))$  and  $H_{(z,y),j}^{(\alpha(H_{(z,y)},j))} = \{x_j\}$  and
- (7)  $H_{(z,y),j} = \begin{cases} R \in V_j(W) \text{ such that } \{x_j\} = R^{(a(R))} \text{ if } n(z,y) \leq j < r(z,y), \\ \text{a subset of } R \in V_j(W) \text{ such that } \{x_j\} = R^{(a(R))} \text{ if } j < n(z,y). \end{cases}$

Observe that R depends only on y.

For  $W=(W_0,\ldots,W_{n-2})\in \mathcal{W}_{n-1},\ y\in Z(W)$  put  $O_i(y,W)=\{z\in p_1(W_{n-2}):\ n(z,y)\leqslant i\},\ \text{for }i\in\omega.$  Notice that  $O_i(y,W)=\bigcup\{p_1(H_{(z,y)}):\ n(z,y)\leqslant i\},\ \text{cf.}$  (5), and Z is a perfect paracompact space; thus there is a  $\sigma$ -discrete and open in Z cover  $\mathscr{V}_i(y)$  of  $O_i(y,W)$ , which refines  $\{p_1(H_{(z,y)}):\ n(z,y)\leqslant i\}$ . For every  $V\in \mathscr{V}_i(y)$  there is  $z(V)\in O_i(y,W)$  such that  $V\subset p_1(H_{(z(V),y)})$ . Put

- (8)  $G_{n,i}^*(y, W) = \{V \times p_2(H_{(z(V),y)}): \text{ where } V \in \mathscr{V}_i(y)\}, G_n^*(y, W) = \bigcup \{G_{n,i}^*(y, W): i \in \omega\} \text{ and }$
- (9)  $G_n^*(W) = \bigcup \{G_n^*(y, W): y \in Z(W)\}.$

Put

- (10)  $\mathcal{W}_n = \{ W \in B^n \colon W | n-1 \in \mathcal{W}_{n-1} \text{ and } W_{n-1} \in G_n^*(W | n-1) \}.$
- If  $W \in \mathcal{W}_n$  then there are unique  $y = (x_0, ..., x_n, ...) \in Z(W|n-1)$ , namely  $y = (W_{n-1,i}^{(\alpha(W_{n-1},i))})_{i=0}^{\infty}$ , where  $p_2(W_{n-1}) = \Pr_{i=0}^{\infty} W_{n-1,i}$ , and unique  $R_i \in V_r(W|n-1)$ , for  $i \in \omega$ , such that  $W_{n-1} \in G_n^*(y, W|n-1)$ ,  $W_{n-1,i} \subset R_i$  and  $W_{n-1,i}^{(\alpha(W_{n-1},i))} = R_i^{(\alpha(R_i))}$

icm

=  $\{x_i\}$ , for  $i \in \omega$ ; cf. (7), (8), (9) and (10). Put  $R = \prod_{i=0}^{\infty} R_i = R(W)$ . The sets  $V_i(W)$ , for  $i \in \omega$ , and Z(W) are defined according to (4) and this concludes the induction. Put

(11)  $G_n^* = \{B \in \mathcal{B}: \text{ there is } W = (W_0, ..., W_{n-1}) \in \mathcal{W}_n \text{ such that } W_{n-1} = B\},$  for  $n \in \omega$  and 1 < n. By (1)  $G^* = \bigcup \{G_n^*: 1 < n < \omega\}$  is an open family, which refines  $\mathcal{U}$ .

In order to finish the proof of the theorem, it is enough to show that  $G^*$  is a  $\sigma$ -discrete cover of  $Z \times X^{\omega}$ .

Let  $(z, y) \in Z \times X^{\omega}$ , where  $y = (y_n)_{n=0}^{\infty}$ ,  $x_0 = p = (a, ..., a, ...,)$ , for  $\{a\} = X^{(\alpha(X))}$ ,  $i_0 = n(z, x_0)$  and  $G_0$  such that  $(z, x_0) \in G_0 \in G_{2,i_0}^*(x_0, Z \times X^{\omega})$ . Note that  $K_0 = (Z \times X^{\omega}, G_0) \in \mathcal{W}_2$ . Then there are  $x_1 = (x_{1,0}, ..., x_{1,i}, ...) \in Z((Z \times X^{\omega}, G_0))$  such that

$$x_{1,j} = \begin{cases} a, & \text{if } n(G_0) \leq j, \\ R^{(\alpha(R))}, & \text{where } R \in V_j(K_0) \text{ is the smallest set, in the sense of inclusion, such that } y_j \in R \text{ if } j < n(G_0), \end{cases}$$

$$i_1 = n(z, x_1), (z, x_1) \in G_1 \in G_{3, i_1}^*(x_1, K_0)$$
 and  $K_1 = (Z \times X, G_0, G_1) \in \mathcal{W}_3$ .

Let us assume that  $x_1, ..., x_n, K_n = (Z \times X^o, G_0, ..., G_n) \in \mathcal{W}_{n+2}$  and  $i_1, ..., i_n$  are defined. Then there exist  $x_{n+1} \in Z(K_n)$ ,  $G_{n+1}$  and  $i_{n+1}$  such that

$$x_{n+1,j} = \begin{cases} a, & \text{if } n(G_n) \leq j, \\ R^{(\alpha(R))}, & \text{where } R \in V_j(K_n) \text{ is the smallest set such that } y_j \in R \text{ if } j < n(G_n), \end{cases}$$

$$i_{n+1} = n(z, x_{n+1}), (z, x_{n+1}) \in G_{n+1} \in G_{n+3, i_{n+1}}^*(x_{n+1}, K_n)$$
 and 
$$K_{n+1} = (Z \times X^{\omega}, G_0, \dots, G_{n+1}) \in \mathcal{W}_{n+3}.$$

Observe that

(12) if  $j, n \in \omega$  and  $x_{n+1,j} \neq x_{n,j}$  then  $\alpha(x_{n+1,j}) < \alpha(x_n,j)$ .

From (12) it follows that  $D_j = \{x_{n,j} : n \in \omega\}$  is finite, for  $j \in \omega$ , so the sequence  $(x_n)_{n=0}^{\infty}$  converges to some  $l = (l_0, \ldots, l_n, \ldots) \in X^{\omega}$ . There is  $(z, l) \in B \in \mathcal{U}$ . Let j be such that

(13)  $x_{j,i} = l_i$  for every  $i \le n(B)$ .

From (13) it follows that  $(z, x_j) \in B$  and so  $n(z, x_j) \leqslant n(B)$ . We shall show that  $(z, l) \in G_j$ . If not then there is a k with  $n(z, x_j) < k < r(z, x_j) = n(G_j)$  such that  $l_k \notin G_{j,k}$ , where  $p_2(G_j) = \Pr_{i=0}^{\infty} G_{j,i}$ , and consequently  $G_{j,k} = R_k(K_j)$ . Hence by the definition of  $(x_n)_{n=0}^{\infty}$ , it is easy to see that for every  $j \leqslant j'$ ,  $x_{j',k} \in R_k(K_j)$  and  $R_k(K_j)$  is a clopen subset of X which does not contain  $l_k$ , contradicting the fact that  $(x_n)_{n=0}^{\infty}$  converges to l. We conclude that  $(z, l) \in G_j$ .

We now show that  $(z, y) \in G_j$ . If not then there is  $k < n(G_j)$  such that  $y_k \notin G_{j,k}$ . Hence  $y_k \in R \setminus G_{j,k}$ , where R, which is equal to  $R_k(K_j)$ , was defined in connection



with  $x_{j,k}$ . It is easy to see that  $x_{t,k} \in \bigcup V(G_{j,k}, R) = R \setminus G_{j,k}$ , for j < t, so  $l_k \in R \setminus G_{j,k}$ , contradicting  $(z, l) \in G_j$ .

In order to show that  $G_n^*$ , for  $2 \le n$ , is  $\sigma$ -discrete in  $Z \times X^{\omega}$  it is enough to prove that, for  $2 \le n$ , there is a splitting

(14)  $\mathcal{W}_n = \bigcup \{A_{n,m} : m \in \omega\}$  such that, for every  $n \leq k, L_{k,m} = \{C(W) : W \in A_{n,m}\}$  is discrete, where  $C(W) = \bigcup \{B \in \mathcal{B} : \text{ there is } W' = (W_0, ..., W'_{k-1}) \in \mathcal{W}_k \text{ such that } W' | n = W \text{ and } B = W'_{k-1}\}.$ 

Indeed, observe that  $\bigcup \{L_{n,m}: m \in \omega\} = G_n^*$ .

If n=2 then (14) holds by  $p_1(W_0)\supset\ldots\supset p_1(W_{j-1})$  for  $W=(W_0,\ldots,W_{j-1})\in \mathcal{W}_j$  and  $j\in N$ , and by the definition of  $\mathcal{W}_2$ . Let us assume that (14) holds for  $i\leqslant n$ . In order to prove (14) for i=n+1 it is enough to show that the desired splitting exists for  $\mathcal{W}_{n+1}(W)=\{W'\in \mathcal{W}_{n+1}\colon W'|n=W\}$ , where  $W\in \mathcal{W}_n$ . Let A be a subset of  $\{0,1,\ldots(n(W_{n-1})-1)\}$ ; notice that  $Z(W)_i=X^{(\alpha(X))}=\{a\}$ , for  $n(W_{n-1})\leqslant i$ , and put

(15)  $Z(W)(A) = \{ y \in Z(W) : A = \{ j < n(W_{n-1}) : \{ y_i \} = W_{n-1,j}^{(\alpha(W_{n-1},j))} \}, \text{ where } p_2(W_{n-1}) = \underset{i=0}{\overset{\infty}{\mathbf{P}}} W_{n-1,i}.$ 

Note that

(16) if y and  $y' \in Z(W)(A)$  and  $y \neq y'$  then there is  $k < n(W_n)$  such that  $y_k \neq y_k'$  and if  $H \in G_{n+1}^*(y, W)$ ,  $H' \in G_{n+1}^*(y', W)$ ,  $K = (W_0, ..., W_{n-1}, H)$ ,  $K' = (W_0, ..., W_{n-1}H')$ , then  $R_k(K)$  and  $R_k(K')$  are different elements of  $V(W_{n-1,k}, R_k(W))$ .

The family  $V(W_{n-1,k}, R_k(W))$  is discrete and so, by (16), the fact that for  $\{W' \in \mathcal{W}_{n+1}: W' | n = W \text{ and } W'_n \in G^*_{n+1}(y, W)\}$ , for  $y \in Z(W)$  (A), the desired splitting exists, we can use the same argument as in the case of  $\mathcal{W}_2$ , and by (3) we infer that

$$\mathcal{W}_{n+1}(W)(A) = \{ W' \in \mathcal{W}_{n+1} : W' | n = W, W'_n \in G^*_{n+1}(y, W) \text{ and } y \in Z(W)(A) \}$$

has the splitting. From  $\mathcal{W}_{n+1} = \bigcup \bigcup \{\mathcal{W}_{n+1}(W)(A) \colon W \in \mathcal{W}_n \text{ and }$ 

$$A \subset \{0, 1, ..., (n(W_{n-1})-1)\}\}$$

it follows that (14) holds for i = n+1.

Remark. One can prove Theorem for a little more general case; namely, it is enough to assume that X is a Lindelöf space such that each closed subset F of X contains a compact set with nonempty interior, with respect to F (cf. Theorem 2 from  $[A_1]$ ).

From Theorem we derive

COROLLARY. If Z is a hereditarily Lindelöf space and  $X_n$ , for  $n \in \omega$ , is a Lindelöf scattered space then  $Z \times \Pr_{n=0}^{\infty} X_n$  is Lindelöf (see  $[A_1]$ ).

icm

Proof. Without loss of generality one can assume that  $X = X_n$ , for  $n \in \omega$ . If not, put  $X = \bigoplus_{n=0}^{\infty} X_n$ . Let  $\mathscr{U}$  be an open cover of  $Z \times X^{\omega}$ . Then, by Theorem, there is an open refinement  $\mathscr{H} = \bigcup \{\mathscr{H}_n \colon n \in \omega\}$  of  $\mathscr{U}$ , which covers  $Z \times X^{\omega}$ , where  $\mathscr{H}_n$ , for  $n \in \omega$ , is a discrete family. For  $H \in \mathscr{H}$  and  $k \in N$  let  $H(k) = \bigcup \{U \in \mathscr{H} \colon n(U) \leq k\}$  and  $\mathscr{H}_n(k) = \{H(k) \colon H \in \mathscr{H}_n\}$ , where  $\mathscr{B}$  is the base defined in the proof of Theorem. Notice that  $\bigcup \mathscr{H}_n = \bigcup \bigcup \{\mathscr{H}_n(k) \colon k \in N\}$  and if  $p_k$  is the projection from  $Z \times X^{\omega}$  onto  $Z \times X^k$ , for  $k \in N$ , then  $p_k(\mathscr{H}_n(k)) = \{p_k(H) \colon H \in \mathscr{H}_n(k)\}$  is discrete in  $Z \times X^k$ . In order to finish the proof, it is enough to show that  $Z \times X^k$  is a Lindelöf space, for  $k \in N$ . To this purpose let us observe that if X is a Lindelöf scattered space then we may assume, without loss of generality, that X is a P-space, i.e. every  $G_{\delta}$ -subset of X is open, because  $G_{\delta}$ -subsets of X induce a Lindelöf topology. Now observe that if X is a P-space then  $X^k$  is a P-space, for  $k \in N$ , and the product of an arbitrary Lindelöf space and a Lindelöf P-space is Lindelöf.

## References

- [A<sub>1</sub>] K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), 173-181.
- [A<sub>2</sub>] On Michael's problem concerning the Lindelöf property in the Cartesian products, Fund. Math. 121 (1984), 149-167.
- [E] R. Engelking, General topology, Warszawa 1977.
- [RW] M. E. Rudin and S. Watson, Countable products of scattered paracompact spaces, Proc. Amer. Math. Soc. 89 (1984), 551-552.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Śniadeckich 8, 00-950 Warszawa. Poland

Received 24 June 1985