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Combinatorial aspects of measure and category .
by

Tomek Bartoszyhski (Warszawa)

Abstract. Tn this paper we study set-theoretical properties of the ideal of meager sets. We
prove that the real line is not the union of less than 2° meager sets iff for every family of reals of
cardinality less than 29 there exists an “infinitely equal” real. Wealso find a characterization of
uniformity of the ideal of meager sets.

0. Preface. The purpose of this paper is to give combinatorial description of
some elementary properties of the ideal of meager sets and the ideal of null sets.
In fact, we deal only with the ideal of meager sets. We find a characterization of
basic set-theoretical properties of this ideal. For a more complete picture we also
formulate, in the same language, the already known characterization of the
analoguous properties of the ideal of null sets.

Let us start with the following definition.

DEFINITION. For any ideal J< P(R) let c(I) denote the smallest 2¢-complete
ideal containing I. :

We define the following sentences.

A =cDel,
B() = Réc(),

U=YXSR Xel,
jxj< 20

¢ =VFclAHe VFeF H-F# a.

127 <2

Let I, and I, denote the ideal of meager subsets of R and the ideal of Lebesgue
measure zero sets, respectively. Let I, denote the o-ideal generated by compact
subsets of w®. We are interested in properties 4, 8, U and C for those ideals. For
simplicity let 4 (c) abbreviate 4(L), B(k) stand for B(J,) and so on. It is well known
that the properties 4, B, U and C are equivalent when stated for the real line R,
the Baire space w® or the Cantor set 2¢.

Throughout the paper we use the standard terminology. For any set X' we
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. < .
write [X]°° ={Zc X: |Z|<o}. [X]°={ZcX: |Z| =w} and X*° = ) X", For any function g € o® let
~ n

For a<ny s,1€ X <“ we denote by 5 ¢ the concatenation of sequences s and #. For STy = [[1H]*®

1 ‘ .
sew™” we denote [s] = {xc w®: s=x}. The family {[s]: se w”} is a standard Co

b‘ase of w®. Forn,m<wlet [n,m) = {i<w: n<i<m. Denote by 1 the function
given by 1(n) = 1 for n< w.

Symbols “¥*” and “3*” abbreviate “for all except finitely many™ and “there

The set H will be irrelevant for our purposes, only its power will be of importance.
Therefore we define

exist infinitely many”, respectively. ST =ST" and ST, = §T;.
We now define some combinatorial properties. Lot
DEFINITION. Let H be any countable set. Every clement Qo = L()-{0} = (X< v: 3n ne X} ’
¢EH[H]<w u - Q= {Xcw: |X|=0w}={Xcw: A1 ne X}.
; 0, ={Xsw: lo—X|<w}={¥sw: V1 neX}.
is called a slalom. Q3 = {w} ={Xco: Ynne X},

For any family Few® and any function ke w” we define
InF, h) = A9 e ST, Vfe F {n: fneom}e @, fori=0,1,2,3;
and for any family ® = ST and any function fe ©” let
Out,(®,f) = Yoe @ {n: féom}eQ; fori=0,1,2,3.

In this paper we study the following combinatorial principles.
DERNITION. For = 0,1,2,3 let

In; = VFs o® 3he w® In(F, k),

F<20
Inf =3hew® VFEo® IndF, h),
|Fl<2e
Out’ = Vo = ST dge w® Out(®,q),
@) <2
Out, = Yhew® VP S8T, dg € 0® Out(®,9)-
|0|<2"’

The leminas below state the basic properties of the sentences defined above.

Levma 0.1, (1) In® = Int,

(2) Ing = Ing,

(3) Out, = Outy,

(4) Out® = Out'. M

An easy proof is left to the reader.

The lemma shows that the case i =0 can be climinated. The next lemma
eliminates the case of == 3.

Limua 0.2. The sentences Tng, In?, Outs, out® are folse. W

Easy computation shows that

Lumma 0.3. (1) Iny = Out?,

(2) Tny = Out’. ®
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For i = 1,2 and for a function he w® we can define

In, = YFS 0 In(F, ).

[Fj<2w
Then )
In' = Jhew” In]

and we have another easy lemma:
Lemma 0.4. Inp — lim A(n) = co. B

n-+ o
The next lemma shows that if we restrict ourselves to functions /i converging
to infinity then the sentences In? are equivalent.

Lemma 0.5. If limg(n) = co then In} — InZ. B

o0
An analoguous lemma for the case i = | will be proved in the next section.
We have six different sentences of type In and Out for i = I, 2. The relations
between them are described in the following obvious theorem.

THEOREM 0.6.

In?

N, & ' — o 0t

|

Out? =In, ~—— Out'= In,

l |

Out, —————— Out,v out'

Outy w

It turns out that each sentence from this diagram is equivalent to one of the
properties A, B, U and C for the ideals I, I, or 1. Let us now recall some known
facts.

TreoreM 0.7. (1) Owt? = In, = A(k) = U(k),

(2) Out' =1In, = B(k) = C(k). ®

THEOREM 0.8 (Miller, Truss). 4(c) = In, & In'.

(For the proof see [Mil].) @

THEOREM 0.9. A(m) = In2,
(For the proof see [Ba2].) B

Tueorem 0.10. C(m) = Out,. W

This theorem was independently proved by A. Miller, J. Cichon, J. Raisonnier
and J. Stern. (For the proof see [R~S] or [Fr]). The rest of this paper is devoted
to the remaining sentences In?, Out, and Out, v Out!. We will prove that they
are equivalent to B(c), U(c) and C(o), respectively.

icm
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1. Baire category theorem. In this section we show that B(c) = In'. In his
paper [Mi 1] A. Miller showed that

TuroreM 1.1 (Miller).

B(o) = VFsw® Agew” Ve FIA"n(fin)= g &Yi<n gl <n). B

| < 200

and in the paper [Mi2] he proved

TugoreM 1.2 (Miller).
Blo)= VFsw® Yaa[w]” 3gew” VfeF VXeG A°n(f(n)=gn) &neX). X

|} 20 |G| <2 -

In these paper he asked whether the conditions Vi<n g(i)<n in 'Theorem 1.1
and the quantifier VG & [w]” in Theorem 1.2 are necessary. We will s¥1ow that
indeed, these conditions can be dropped out. We start with some definitions."

DEFINITION, o

0™ = {o*: Xelo]};

the elements of the space ™" will be called partial functions. For any functions

f.gew™ and n<w the sentence f(n) = g(r) means that the values of f(n) and
¢ _ "

g(n) do exist and are cqual. Now we define, for any function k€ w®,

m = VFco™ JpeST, VfeF A%n fin)e o)

. |F|<2@

and

— "_—‘1
In! = dhew® In, .

The only difference between the sentences In' and In' lies in the fact that the.space
w® is replaced by w™“. It is not very hard to see that the right hand side of

- . . =y
Theorem 1.2 i$ in our terminology equivalent to Inj. So we have

. _ 1l

Turorem 1.3 (Miller). B(¢) = Iny. ] .

Now we state a combinatorial lemma which will be used later.

LomMa 1.4, For any natural numbers p,m_,k < there. exists a numb'er
b(p,m, k)yew such that for any mxn-mafrix {a;, Yi<m j<n With the properties

L o - o

(1) nzb(p,m, k),

(2) a ew  for i<m,j<n o

(3) for every i<m  dyy # g if j #Jas Jnja<n . 5
and for every set A< w of power less than p there exist distinct numbe.rs Juo s n

o = {ay g0 i<m} o By={ay; i<m} and A are pairwise disjoint.

such the sets By = {ay,j," “ X

Proof. The lemma is obvious. B

DEFINITION. A matrix {d;, jhi<m, j<n
are satisfied.

is (p, m, k)-long if the conditions H-3)
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LemmMA 1.4 says that if 4 = w has power less than p then every (p, m, k)-long
matrix has k columns pairwise disjoint and disjoint with 4.

Now we prove the main theorem of this section.

THEOREM 1.5. The following conditions are equivalent:

(1) Tnj,

(2) Int,

(3) Inj,

4) Yhew® In},

(5) Yhew® In},

(6) In*.

Proof. (1) - (2). Let F= »™ be any family of power < 2°. For any function
7

fe o™ take an increasing enumeration {x7: # < w} of the domain of f and define
a function f’ e w® by

Fm)=fx) forn<w.
Let F' = {f': feF}.

By our assumption there exists a function g € »® such that

Vfe F 3% f'(n) = g(n).

We define a slalom ¢ e ST, where h(n) = n+1 for n< o, by
o) ={g@: i<n} forn<ow.

Take any function fe F and a positive integer n < w such that S'(m) = g(n). By
our definition

FeD = =gme{g®: i<x} = p(xf):
thus

VfeF3%n finye o).

(2) = (3). By our assumption In; holds for some function / & w®. Let F' =2
be any family of power < 2°. We will show that there exists a function g e w®
such that

VieF3% fin)=g@).
In order to comstruct such a function we will use the following

CLAM 1.6. There exists a family {J, ,: n< w .,k < h(m)} of finite, pairwise disjoint
subsets of w such that

VfeF 3% Yk<h(n) J,, A dom(f)  @.
Before proving this claim we will use it to get the desired function g, Let
o n<w, k< h()

be a family of sets from Claim 1.6.

icm°®
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We put

J, = Jo forn<o.
k<h(n)

For any function fe F let

vy _ SN Ve<h(m) T, oo dom() # B,
[ = undefined otherwise .

It is casy to see that for any function fe F we have f' e H™® where H is the set
of partial mappings from J,’s into w. -
Let F' = {f':fe F}. By the assumption Inj we have a slalom & ST, such that

Vfe F3%n f'(n)ey(n).
Without loss of generality we can assume that for every n<o
Yn) = (Wi, ., Wign}

where w! is a partial function from J, into @ for i< h(n).

Define
gn= U WM, forn<o
k<h(n)
and
g= U G-
n<w

Take any function fe F. For any n < such that f'(n) ey (n), we have
ST, =wp, for some ko <h(n).
Thus by the definition of f”
Vi< h(n) J, 0 dom(f) # 9.
Let x&J, ;, n dom(f). In this case

S = wio(x) = g(x) -

Therefore

VfeF 3%n f(n) = g().
Thus in order to finish the proof we have to prove Claim 1.6. ' i

Proof of the claim. For every fe F we choose an enumeration rp & @

of the domain of f*

dom(f) = {rm: n<o}.
Let {m,: n<w}, {k,: n<w} and {ps: n<w} be sequences defined by

m, =k, = h(n)

b= Lh@?

i<n

forn<ow.
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Let {a,: n<w} be a sequence such that
Uyyy1—a, = b(p,, mi, k) - for n<w.
For every function fe F define

CPn) = rp b 4y, a,4,) Tor n<o.

Using the_asst}mptipn E}, we will find a slalom ‘(p € ST,, such that
Vfe F 3% rm)e@®).
A§ befo‘re-,. we can assume without loss of generality that for n<w
o) = {1, .., U}
where ] is a 1—1 mapping from [a,, a,. ;) into w for i <A(n). We will constriict
a family {J, ,: <o,k <h(n)} by induction. Assume that the sets

Vi 1<n, j<h@}

ey

are already defined. We define {J, ;: i<h(n)}. Assume also that (e < h(i) for
i<n,j<h(). So '

lU U S < YA =p,.

i<n j<h(i)

Notice that a,,, —a,>b(p,, m,, k,); hence the matrix

U, = {“,J"(an'*”f)}jSII(n)si<u,,«-x—ay.
is (p,, m,, k,)-long.
By Lemma 1.4 there exist k, distinct columns of U, pairwise disjoint and
disjoint with i
U U J;.

i<n j<h(i)

We define the set of elements of the j-th column té be J.i» Tor j<k, = h(n). Notice
that |J, ;| < h(n) for j< h(n). We now show that for any function fe F

3°n V< h(n) J, . 0 dom(f) # .
Take any function fe F. Let #<® be such that re(n) € p(n), which means that
v ‘ b lay,, a,00)€0@m). '
In this case there exists j < /i(n) such that
reMa,, a,.0) = uf.

Take any k< /(x) and consider the set Jur- By the definitions, J, , is one of thé
columns of the matrix U,, say the i-th column. Consider the element x = uia,+i).

x f( Edom(f) a x .
Then ay ‘) d belongs to the i-th column tllelefo:(e X €
Thus x E"n,h dom(f). a
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Implications (3) — (4) — (5) — (6) are obvious. .
(6) — (1) Assume that ]n,‘, holds for some function hew®. Let F< w® be
any family of power < 2”. We have to find a.function g e w® such that

Vfe F 3% fln) = g(n).

Just as in the proof of the implication.(2) — (3), we are going to find a family
(ot n<w,k<h(m} of finite pairwise disjoint subsets of w such that

VfeF 3%n Yk<h(n) J,, n dom(f) # ©.

But cach function from the family F has a domain equal to e. Hence it is enough
to put W .
o= {k+ Y B} for n<w, k<hn).
B T & S S A
Now, ‘a5 before, Tot fe F and n< o défine
‘,n = U ‘,n,k and’ f’(”) =fI\J".
B kS hin) C E
Functions /' are also complete; so, applying assimption In; to the family F’
= {f': fe F} and arguing as in-the proof that (2)— (3), we get the required
function g e ©”. B & .
From Theorem 1.3 and 1.5 we immediately get the following
TugortM 1.7. The following conditions are equivalent:
(1) B(o),

@) VFsw® Agew® VfeF3%n fin) =g(m),
|F|<2@

(3) Int. @
In fact we have proved
COROLLARY 1.8. R is not the union of 1 meager sets iff
VFcw® Agew® Ve F 3%n fin) = g(n). B
|Fi<x - .
Define
Kp = the least cardinal & such that R can be covered by x many meager sets.

From Corollary 1.8 immediately follows
THEOREM 1.9 (Miller). cf (i) > w.

Proof. Assume that cf(iy) = w. '
By Corollary 1.8, in order to get a contradiction, it is sufficient to show that
for every family Few® of size Ky there exists a function g e w® such that

Yie F 3% f(n) = g(n).

Let F< o® be any family of power K. Using the fact that cf(ig) = w we can find
a sequence {F,: n<w} such that .
F={F, and |F|<Kks forn<aw.
L AL ‘
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Now fix a sequence {4,: n <} of pairwise disjoint, infinite subsets of w. Define
for n<w:
Fy={ft4, feF}.
By Corollary 1.9, for every n < we have a function g, € @** such that
VfeF, Ame A, f'(m) = g,(m).
Let
g="Ug,.
It is easy to see that
Ve F A%n f(n) = g(n). ]
2. Uniformity of the ideal of meager sets. In this section we show that U(c)

= Out,. This will allow us to give a positive answer to the question posed by
A. Miller in [Mil] and [Mi2], whether
U(e) = VF<o® Igeo® YfeF Y f(n) # g(n).
|F|<2e
Consider the following combinatorial principles.
DerNtTION. For any function ke 0®
Out}, = V& <ST, Jgew® IXe[0]° Voe d Yne X gin)ép(n).
[@< 2@
and
Out;y = Vheo® Outf,.
This terminology is motivated by the following obvious implications:
Out, — Out,, = Out, .
In the paper [Mil] A. Miller proved
THEOREM 2.1 (Miller). U(c) = Out},. M
THEOREM 2.2. The following conditions are equivalent:
(1) Out,,
(2) OutZ:
(€)] Ou‘i1+,
4) Outy,.
Proof. Implications (1) — (2) = (3) are obvious.
(3) = (4). Assume that condition (4) does not hold. This means that for some
function /e there exists a family of slaloms & < ST,, |®| <2* such that
Vgew® VX¥elw]” 3pe® A%ne X g(n e o).
We will show that under this assumption there exists a family F < o® of power < 2¢
such that
Vgew® YXe[w]® Afe F I%ne X gi) = f(n).
Assume that [ = 1<2%. We will need the following lemma.
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CLAIM 2.3. For every & <) there exists a family {J5,: n<o,k<h(m)} of
finite, pairwise disjoint subsets of w such that
VXe[w]® ¢ <l 3% VE<hn) Jf,k NX#£0.
Proof. As in the proof of Claim 1.6, we define sequences {m,: n<o},
{k,: n<w} and {p,: n<w} by
m, =k, = hin)
= Y h@Y

i<n

for n<w.

Let {a,: n< o} be a sequence of positive integers such that

Apir—a, = b(p,,m,, k) forl<n<ow (g, =0).
Let
H, = {seaf™™: sis 1-1} forn<o.
There exists a family of slaloms ¢’ = {p;: &< i} =8T,, such that

Vie[[H, VXe[o]® 3E<i 3% (f(n) e pin) &ne X).

Without loss of generality we can assume that
[pm)| = h(n) and o@mcH, for i<in<o.

By the above remarks, for £ <. and n <o the set ¢z(n) can be interpreted as
a matrix having A(#) rows and a,,,—a, columns.
Moreover, by the definition of the sequence {4,: n<w} this matrix is

(pn: My, kn)'long- .
Now, using Lemma 1.4 and arguing as in the proof of Claim 1.6, we can defifin

families {JZ,: n<w, k<h(m)} of finite, pairwise disjoint subsets of w for £ <1.
Let X e [w]® be any infinite subset of w and ry € @® its increasing enumeratlon Put

Px(m) = ry May, a,0q) forn<w.
Notice that #y(n) € H, for n < o. Therefore we have
37 ty(m)e pum) for some £<A.
Take the family { v n<o,k<h(n)} defined from ¢z Repeating the argumcnl
from Claim 1.6 we immediately get
30 Ve<h(n) Jiyn X # O.
Since X was arbitrary, this proves the claim. B

Let {{Jf en<o, k<hm): &< Z} be the family of partitions from the claxm
For ¢ < ) define

Jf = U Jf,k
kghtn for n<w.
5
H = o™

5 — Fundamenta Mathematicae 127. 3
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By our assumption, to every ¢ < Awe can find 4 family ¥, = ST, of size A such that
Vre[[H: VXelol® 3y eV, Ine X finey@).
n .
For { <A and ¥ € ¥, define 2 function fie»® in the following way:
As before, assume that

Y = {Wi, ..., wisy} where wi: J; — o for j<h(n).
Put
fow= U Wit forn<o andfi=Uf,.
k<h{n) n

Finally,
e [T if nedom(F),
file) = {o* if ng dom(f%) .

Let F= {f§: £< 1, Y e ¥,}. We will show that F is a family we are looking for.
Take any function g € w® and a subset X e [0]®. By Claim 2.3 there exists £ <4
such that

A°nVE<h(m) Jxn X # &,
Letg(m) = g }J; for n< o and .
Y={n:Vk<h@) . nX # B}
We can find a slalom e ¥, such that
I°ne Y §() e ¥().
Arguing as in the proof of Theorem 1.5 we get

. A°ne X fin) = g (n)
and this finishes the proof.

(4 - (1). Take any function se w® and a family ¢ < ST, of size < 2, For
every slalom ¢ € ST, define a slalom ¢’ by

') = U o).
k<n
’ — - ] ’ ’ ’
Let k'(n) = ;ﬂh(z) for n < . Obviously ¢’ € STy,. Let &' = {¢': ¢ & &}. By Out,y
there exist a set Xe[w]® and a function g € ©® such that
Voe® Vne X §(n) ¢ o'(n).
Let {x,: <} be an increasing enumeration of X, Put
gm) =§(x,) forn<w.
For every slalom ¢ e ¢ and for almost eilery n<w we have

gn) = g(x) éo'(x,) = kg P& =2 o).
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Therefore
Voed Vn gn)¢o(n). M

From Theorems 2.1 and 2.2 immediately follows
THEOREM 2.4. The following conditions are equivalent:

1) Ulo),
) Vs o® Agen® Ve FV*n fn) # g(n),

|F| <2
(3) Out,. B
For fe w® let I, be the o-ideal generated by the sets of branches of trees on w
whose n-th level is bounded by f(n). It is easy to see that I, is the ideal of count-
able sets.
In the paper [Bal] the author asked whether

(Il =U().
By an easy generalization of the proof of Theorem 2.1 we get that V/feo®
c(;) s I, = Outyy. Thus Theorem 2.2 implies
THEOREM 2.5. Vfe w® c(I;)cI, = U(c). M
Notice that I, = {J I, and for this ideal we have

Jew®
TuporeM 2.6. c(l) eI = ey, (£ U(©). |
(For the proof see [Bal])

3. Bases of the ideal of meager sets. In this section we show that C(c) = Out!
v Out,. Let us start with

TaeoreM 3.1. C(c) = U(c)vIn,.

Proof. « This implication was proved by A. Miller. (see [Mi3]).

— Assume T1U(c) & “1lng.

Let F< w® be a nonmeager sets of power less than 2%.

Cra 3.2. Vgeow® 3fe FA%n (g(n) = f(m) & Vi<n f@ <n).

Proof. Let 27 = {yew®: V*n (g(n) # y() or Fi<n y()=n)}. It is easy
to see that Z° is meager. Any element of F—Z¢ has the required properties.

Tt is also not hard to see that the assumption ~1In, is equivalent to the existence
of a family G < »® of power less than 2° such that

Ygeo® Afe G Y g(n) <f(n).

Let G be any such family. We can assume that G consists of increasing functions.
We will show that the existence of two such families of functions allows us
to construct a base of the ideal of meager sets whose size is less than 2°.
Let {s,: n <} be an enumeration of »=®. For functions fe F and g € G define

Ufm = Ulsh S Ssoety = Srgmeml  for m<o
nzm
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and
Ul =nul,.
m

For m<w the sets Ugf m are open and dense in w”. Let

H = w°~U/ and @ ={H]:feF, geG}.

We will show that € is a base of the ideal I,. Let C < w® be any meager set and
let a sequence {C,: n<w} be a covering of C by closed and nowhere dense sets.
Define a function fy e o® as follows:

Jo) = min{m: Vi, k<n Vi, ..iy<n [s;, 85, "8, sp] 0 C, = @)

for n<ow.
We can find a function fe F such that

) A°n(fen) = f(n) & Vi<n f@)<n).
Let }
X = {n: fon) = f() & Yi<n fi)<n}.

Let X € »® be an increasing enumeration of . By the properties of the family G
we can find a function g e G such that

Von X(m)y<gm).
We will show that
CsUGeH =w-U].

It is enough to show that for every n < w there exists m <  such that
CoUl,=0.
Fix n<w. Let m>n be a positive integer such that
Ve Xm)<gm)+m.

The set UJ,, is the union of basic intervals of the form

I8 S50 Srgerty e “Stamyrm]  for kzm>n.

By the choice of m<w, for every k< w there exists ie [k, g(k)+m) such that
e = f0) & Vj<i f(j)<i.

Hence, by the definition of £,

[ Sy - Sromysm] N Cy =@ for k>n.
. 7 .
This means that C, n U, , = @. Since n<w was arbitrary, this finishes the

proof. B
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Theorems 3.1 and 2.4 immediately imply
TueoreM 3.2, C(c) = Out,vOut'. ®
The following diagram summarizes the contents of this paper.

Alm) = In?
Alc) =10y & In' ————nin = B(c/

Alk) = Ufk) = Out? = In —=0ut' = iny = Bfk) = Clk)
Ufc) m Outy ————=-Out, v Out' = Cfc/

Outy=C(m/

Remarks. (1) A more general version of this diagram (without its combinatoria
part) is called Cichon’s diagram (see [Fr]).

(2) Problem (D. Fremlin): Suppose M is a model of ZFC. Assume that there
exists a function g € w® such that

Vfe M now*A%n f(n) = g(n).

Does this mean that there exists Cohen real over M?
(3) This paper is a part of my Ph. D. thesis. I would like to express my deepest
gratitude to my advisor Wojciech Guzicki.
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