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THEOREM 4. If 2°>2° then 710,((2%)*).
Proof. Let 2 = (2%)*. For each o < A choose a one-to-one function #,: & — 2 ()

and define
S, = {{&,ny: n<a&iehm)crxl.

Now suppose that there is a countable family 9 = {(D,: n < w) of subsets of 1 x 1
st {S,: a<A}<[Ci(D) U D]. Choose X < s.t. [X]= (2°)* and for each n<ow
D,n (xx X) = Dyx X for some D, <=z (X is a subset of a counter-image of the
point g: A — **°2 defined by g(n)(&,n) = 0 iff (£,#n) e D,). Thus

(8,0 (x X): a< i} e[CT].
Fix o<l s.t. Xco. Now, if g,9,€ X and 5, # , then
/71("11) # /71(’12), ie. {5 <‘fa 7]l> esa}' # {é <‘§7 "2) € Son}'

Since | X[ > 2%, it is easy to see that S, n (icx X) ¢ [C(A)], because otherwise each
set {&: (&, n) €S,} would be determined by some real number. This gives contra-
diction.

An easy corollary to this theorem is that 2° = w,, 2°* = w; and 2™ > w,
imply 71Q,((29*). Another consequence is that 71Q,((2)"). Let us also notice
that an easy modification of the proof of Theorem 4 (using the fact that —1P,(3;)
gives also that, for any n<w, Q,(x) implies ©<23%. So the following problem
might be mentioned in this context:

“does Q,(») imply ®x<2,,, for 2<n<w?

Let us finally note that in a model of ZFC obtained by adding at least w,,
Cohen reals, for every n < o we have Q,(x) iff €< @, ;-
The proof is similar to that of Theorem 3.
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Terminal continua and the homogeneity *
by

T. Maékowiak| (Wroctaw)

Abstract, In the paper we prove the following statements: (1) every hereditarily indecomposable
and continuously homogeneous continuum is one-dimensional; (2) every proper terminal sub-
continuum of a homogeneous curve is tree-like; (3) every homogeneous hereditary 6-continuum
is atriodic.

1. Terminal continna. Definitions which are not recalled here can be found
in [13]. All spaces in this paper are metric.

A compact space X has Kelley’s property at xe X if for every continuum
Y c X containing x and for every sequence X, of points of X converging to x, there
exists a sequence of continua ¥, < X converging to Y such that x,e ¥,. A space
X has Kelley’s property if it has Kelley’s property at each point (see [21]).

A space is said to be homogeneous with respect to the class M of mappings if
for every two points p and g of X, there exists a continuous surjection f from X
onto itself such that fe M and f(p) = ¢g. A continuum homogeneous with respect
to homeomorphisms (continuous maps) will be simply called homogeneous (continu-
ously homogeneous).

Charatonik has observed in [2] that

(1.1) Continua which are homogeneous with respect to open mappings have
Kelley’s property.

A subcontinum @ of X is called terminal if Ke C(X) and K~ Q % @ imply
either K< Q or Q = K, where C(X) denotes as usually the space of all subcontinua
of X with the Hausdorff distance. We will denote the collection of all terminal
subcontinua of X by T(X) and the collection of all indecomposable subcontinua
of X by IN(X). The following proposition is an immediate consequence of above
definitions.

(1.2) If a continuum X has Kelley’s property, then T(X) is closed in C(X).

We have (see [10])

(1.3) If f is a continuous mapping from a continuum X onto Y, Ke T(Y) and
C is a component of f~*(K), then f(C) = K.

* AMS 1980 Subject classification numbers: Primary 54F20, Secondary 54F45.
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In fact, let C be a component of f ~*(K) and b e K\ f(C). Consider an open
neighbourhood U of C such that U n f~4(5) = @ and take a component M of U
containing C. Then f(M)\K # @ and b ¢ f(M) which contradict the terminalit
of K in X. Hence f(C) = K.

We have (see [13], (6.13), p. 18)

(1.4) If X is a homogeneous continuum, then T(X)\{X}c IN(X).

Recall that a mapping f: X — Y from a space X onto Y is completely regular
if for given ¢>0 and ye Y there exists an open set ¥ containing y such that if
y' eV, then there is a homeomorphism / from f7'(3) to f~1(3') such that
d(x,h(x)) <e for xefY(y). It is known (see [15], Corollary 3.3)

(1.5) If f is a completely regular monotone mapping of a metric curve onto
a nondegenerate contimum Y, then dimY =1 and for cach ye Y, f~(y) is
tree-like.

Let H(X) denote the group of all homeomorphisms of a space X onto itself.
Every metric ¢ on X such that if o(x, }) <& then o(h, €) <¢ for some he H(X)
with 2(x) = y where e denotes the identity on X, will be called an Effros metric
on X. If ¢ is an arbitrary bounded metric on X, then the formula

o(x,¥) = inf{o(h, €): he H(X) and h(x) = y}

gives an Effros metric. It easily follows from Effros’ Theorem ([7])

(1.6) (e-push property). If X is ‘a homogeneous compact space and &> 0, then
there is § >0 such that if o(x,y) <38, then there is he H(X) with h(x) =y and
eCh,e)<e.

In particular, (1.6) implies (compare [3])

(1.6") 4 continuum X with a metric ¢ is homogeneous if and only if X possesses
an Effros metric equivalent to g.

We will always assume that a homogeneous continuum is equipped with an
Efiros metric. We claim that

(1.7) If a continuum X is homogeneous and Y e C(XI\T(X), then maximal
terminal continua contained in Y form a completely regular monotone decomposition
of Y.

In fact, let e={inf{dist(K,Y): KeT(X) and Kc ¥}. Since 7(X)
= T(X) ((1.1) and (1.2)) and ¥ ¢ T(X), we have £> 0. Let K be a maximal terminal
subcontinuum of X contained in Y. If ye ¥ and o(y, K) <5 <&, then there is
h'e H(X) such that y € A(K) and o (h, €) < §. Therefore £(K) e T(X) and h(K)< Y,
Suppose L e T(X) and A(K)c=Lc< Y. Then dist(L,Y)>e. We have X < h™ (L)
c Y and A~ Y(L) e T(X); thus K = A~ (L), i.e.,, L = h(K). This means that (1.7)
holds.

Since every subcontinuum of a tree-like continuum is a tree like continuum,
from (1.5) and (1.7) we obtain
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(1.8) If a curve X is homogeneous, Ae T(X), A< Ye C(X)NT(X), then A is
tree-like.

Recall that a connected space X is discoherent if and only if the complement
of each closed connected subsst C of X is connected (see [11], p. 163). The collection
of all discoherent subcontinua of X we will denote by D(X).

Recall that a mapping f: X — Y is essential provided that f is not homotopic
to a constant map. It is well-known that

(1.9) Let f: X — K be an essential map from a compact space X into K e ANR.
Then there is a subcontinuum C of X such that f|C is irreducibly essential.
Moreover

(1.10) Let [+ X — K be an irreducibly essential map from a continmum X into
a connected graph K. Then X is discoherent.

In fact, suppose X = A u B where A and B are proper subcontinua of X
and 4 n B is connected. Let p: K — K be the universal covering projection (see
[20], p. 80). Since p has the homotopy lifting property and the maps f|d: 4 - K
and f|B: B — K are inessential, there are maps g ,: 4 —» K and g,: B — K such that
fld = pgs, f1B = pgy and g.a) = gyla) for some aed B Then g, Jdn B
= gald n B, because 4 n B is connected. Hence we have a map g: X — K such
that £ = pg. Since K is a connected, simply connected, one dimensional polyhedron,
it is contractible in itself, therefore g is homotopic to a constant; thus fis homotopic
to a constant, a contradiction. ‘

We have

(1.11) If X is a homogeneous curve with D(X)< T(X), then every proper sub-
continuum of X is a tree-like contimuum.

Proof. Suppose Y is a proper subcontinuum of X which is not tree-like.
Then there is a mapping f from Y into a connected graph K which is essential
(see [1]). According to (1.9) we can assume that f is irreducibly essential. Hence
Y is discoherent by (1.10). Thereby Y is terminal. Corollary 3.6 from [8] (compare
[18]) implies that f can be extended to a mapping f* defined on the whole space X.
Since K€ ANR and K is compact, there is a positive number & such that if g, /:
X — K and ¢(g, k) <e, then g and & are homotopic (see [11], p. 379).

Let & denote the collection of all maps from X into X which are homotopic
to f*. Now, if g, he &, g|¥, is irreducibly essential and k| Y, is irreducibly es-
sential, then either ¥, n ¥, = & or ¥, = Y,, because continua Y, and Y, are
terminal.

Since f is uniformly continuous, there is § > 0 such that if o(x, x') <23, then
o(f*(x), f*(x)) <e. Let we H(X) and o(w,e) <§, then f*w, f*w ' e #. Since
S*Y is irreducibly essential, we obtain that f*w|Y is irreducibly essential; thus
S*lw(Y) is essential. Now, if Scw(Y), g e & and ¢|S is irreducibly essential, then
glw™1(S) is essential; thus w™I(S) = ¥, ie. S = w(Y).


GUEST


180 T. Macdkowiak

Above considerations imply that {Z e C(X): there is g € & such that g|Z is
irreducibly essential} gives a completely regular monotone decomposition of
a S-neighbourhood of ¥ with ¥ as an element of this decomposition. It follows
from (1.5) that Y is tree-like, a contradiction.

If X is an atriodic continuum, then D(X) < T(X) (see [13], (13.2)). Therefore,
from (1.11) we obtain (compare [9])

(1.12) CoRrOLLARY. If X is a homogeneous atriodic curve, then every proper
subcontinuum of X is a tree-like continuum.

We have

(1.13) CoROLLARY. If X is a homogeneous curve, then every proper terminal
subcontinuum of X is a tree-like continuum.

In fact, let 4 e T(X)N{X}. If there is Y& C(X)\T(X) such that 4 < Y, then
A is tree-like by (1.8). Suppose that if 4 = Ye C(X), then ¥ e T(X). Let B be
a minimal continuum in 4 with respect to the property that if B« Y& C(X), then
¥ e T(X). Then homeomorphic copies of B form a completely regular monotone
decomposition of X. Denote the quotient map by ¢. The quotient space @(X) is
hereditarily indecomposable; thus every its proper subcontinuum is tree-like by
(1.11). Since every point inverse of ¢ is tree-like, we conclude, by (6.14) in [1],
p. 18, that every proper subcontinuum of X is tree-like. In particular, 4 is a tree-
like continuum.

¥ QcLcK+#Q, Q,L,KeT(X) imply @ =L or L= K, then we say
that Q, K form a jump and Q is called the beginning of a jump and K is called
a sequel of Q and will be denoted by S(Q).

(1.14) If Q e T(X) is a beginning of a jump in a homogeneous continuum X, then
Q is homogeneous.

In fact, let ¢ = 1dist(Q, S(Q)). If he H(X),o(h, &) <e and Q n h(Q) # D,
then either Q = (Q) or h(Q) < Q. Since h(Q) = S(Q), we conclude A(Q) <= Q.
But then 2~ 1(Q) = 5(Q), O = h~*(Q), which imply A(Q) = 0. Now, (1.14) follows
easily (see [13], (6.9), p- 17).

2. Hereditary 0-continua. Recall that a continuum X is a 0-continuum if the
complement of every subcontinuum of X has a finite number of components.

‘We have (compare [4])

.1) If X is a hereditary 0-continuum, then the intersection of every two Sub-
continua of X has a finite number of components.

In fact, suppose that 4 and B are subcontinua of X such that the set 4 n B
has an infinite number of components. Then we can find infinitely many pairwise
disjoint nonempty closed and open sets C; in 4 n B. Let U, be open sets in 4 U B

o 1
such that C;c U;, U, n U; = 4, UicB<Ci,7) foris jandi,j=1,2,..where
i

B(C, &) denotes a ball around C with the radius . Consider the component K of
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©

A v U U; containing A. From Janiszewski’s theorem we obtain that K\A has

i=1
infinitely many components, a contradiction.
We claim that

(2.2) Let X be a hereditary 0-contimum. If X is homogeneous, A "\ B # &
and A and B are proper subcontinua of A U B, then both A and B are locally con-
nected at every component of A N B.

According to (2.1) the set A n B has a finite number of components. Let C be
a component of A N B We can find an open set Uin 4 U B such that Cc Uc U
c((4v B)i(A AB))uC. Then (TNU)nAn B=0. Let 0<¢ <4inf{o(x,y):
xed, ye(U\U) n B}. Put

K = cl(U{h(4): he HX), ok, &) <e, h(4) A U + BY).

The set KU B is a continuum and B(C,¢) n B< K. The set K has a finite
number of components (otherwise K\B has infinitely many components). There-
fore, by (2.11), the set B(C, &) n B is contained in a finite union of continua which
is contained in B(C, 2¢). Thereby B is locally connected at C.

Immediately from (2.2) we obtain

(2.3) If X is a homogeneous hereditary 0-continuum, then
) IN(X) = T(X),
(ii) every irreducible and decomposable subcontinuum of X is of type A,
(iii) every layer of an irreducible and decomposable subcontinuum of X is a terminal
continuum in X.
One can obtain also the following generalization of (13.3) from [13], p. 31.

@4 If X is a hereditary 0-continuum with Kelley’s property, then IN(X)
< I'(X).

Now, we will prove

(2.5) If a homogeneous curve X is a hereditary 0-contimum, and every proper
subcontinuum of X is decomposable, then X is a solenoid.

In fact, since T(X)N{X}<IN(X) and every layer of an irreducible de-
composable subcontinuum of X is a terminal subcontinuum of X, we obtain that
every proper subcontinuum of X is an arc provided that it is an irreducible con-
tinwum by (2.3) (ii). If X is not atriodic, then X contains a simple triod (a union
of three arcs pairwise disjoint except of one end-point). Then every point of X is
a vertex of a simple triod. Fix an arc pg. We construct a sequence of pairwise disjoint
arcs p,b, such that limdiamp,b, = 0, limp, = p and p,b, n pg = {p,}. This is
impossible, because X is a hereditary @-continuum. Therefore X is an atriodic
continuum containing an arc. Hence X is a solenoid by (14.4) in [13].

(2.6) If a homogeneous tree-like continuum X is a hereditary 0-continuum,
then it is atriodic.

Suppose that X contains a triod. Then applying (2.3) we easily find decompos-
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able irreducible continua pv, gv and rv such that each two of them intersect on
a common end-layer ¥ containing v. Let &, <g, = min{c(p, V), o(g, V), a(r, V),
o(p,q),0(q.r), o(r,p)} and take v, € r\V with o(v;, v) <e;. Let hy e H(X) be
such that o(hy, ) <g; and i, (v) = v,. Then 4, (V) n V = @; thus either i,(pv) n
A(pruvg) =@ or hgu)n(pvuvg) =& because /;; is a homeomorphism
and X is hereditarily unicoherent. Say 4,(pv) n (pvu vg) = . Let

&y < min{al, inf{o(x,»): xeprueq and ye /1,(/)1:)}} .

Take v, € ro\V with ¢(vs, 0) <e,. Let /1, € H(X) be such that o(h,, ¢) <e, and
hy(v) = vy, Then hy(V) 0 V = @; thus either 2,(pv) o (pv U vg) = & or hy(qv) A
n (pv v vg) = B because /i, is a homeomorphism. Say #, (pv) N (pv U vg) = @.
Moreover h,(pv) 0 Iy (pr) = @ or hy(re) N hy(pr) = & and so on. In this way we
can construct a continuum K containing vr such that K\vr has infinitely many
components, a contradiction, because K is a 0-continuum.

(2.7) If a homogeneous curve X is a hereditary 6-continuum, then X is atriodic.

Proof. Let 4 be a proper decomposable subcontinuum of X, It suffices to
show that 4 is not a triod. Observe firstly that 4 is not terminal. Consider three
cases.

(a) There is a beginning of a jump B containing 4. Then B is a homogeneous
tree-like continuum by (1.13) and (1.14). According to (2.6) the continuum B is
atriodic; thus A4 is not a triod.

(b) There is a proper terminal continuum containing 4 and no terminal sub-
continuum of X containing A is a beginning of a jump. Consider a minimal terminal
continuum B containing 4. Then B is a sequel of some jump and every subcontinuum
of X containing B is terminal. Therefore B is a maximal proper terminal sub-
continuum of X which is a sequel of some jump. These properties of B are preserved
by homeomorphic surjections. If X and L are copies of B under homeomorphic
surjections of X and KN L # @, then either K<L or Lc K, because K and L
are terminal. By the maximality of K and L we infer that K = L. Thereby the copies
of B under homeomorphic surjections of X form a decomposition of X. It is easy
to verify that it is a completely regular monotone decomposition of X with
homogeneous layers. Therefore, by (1.5), the layers of this decomposition are tree-
like continua. In particular, B is a homogencous tree-like continuum. Hence A is
not a triod by (2.6).

(c) There is no terminal proper subcontinuum of X containing A. Then the
maximal proper terminal subcontinua can be determined and they form a completely
regular monotone decomposition of X onto a homogeneous curve ¥ which is
a hereditary §-continuum containing no nondegenerate proper terminal sub-
continwum. In particular, every proper subcontinuum of ¥ is decomposable
(compare (2.3) (i); thus ¥ is a solenoid by (2.5). The continuum A4 is mapped by
a quotient map ¢ onto a nondegenerate proper subcontinuum of a solenoid, i.e.
@(4) is an arc. Denote the end-points of @ (4) by a, and a,.
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Let b,e o Ya) n A for i=1,2 and let by, be a subcontinuum of A ir-
reducible between b, and b,. Since the point inverses of ¢ are terminal subcontinua
of X and ¢(b,b,) is nondegenerate we infer that ¢~ ¢ (b;b,) = b;b,. Therefore
A = bb,, because A= p(bb,) = ¢ 'p(4). Hence A is an irreducible conti-
nuum; thus it is not a triod.

3. Corollaries. Now we will apply the construction and denotations from [13],
pp- 49-50 to obtain a little bit more general result than (20.3) in [13], p. 50; namely,
we have

(3.1) THeoREM. Suppose K = {k iZo, L= {I)i20e ¥ and K # L. Let hy:
X — Wy and hy: X — W, be continuous mappings from a Hausdorff continuum
X into the spirals Wy and W, respectively. If either hy or hy is onto, then d(hg, b)) >1.

Proof. Suppose that d(fi,A) < 1. Then nFx(2) = 7FL(2) € he(X) N Ay (X).
Firstly observe that the proof of (20.3) in [13] give us that

(3.1.1) (X)) n hp(X) n ({0} x T) = @.

Suppose now that A is onto. From (3.1.1) we obtain that 4, (X) < =nF,[z,, 3]
for some ;> 0. Take a positive integer m such that a,_, <t,. Choose p € X such
that hy(p) = n(3, 0) and let J denote the component of Ag* (a1, 3] x T) contain-
ing p. Then Ag(J) = nFyla,.,,, 3] which is an arc. Moreover /,(J) is also an arc.
Therefore |ygx(x)—yi(x)] <3 for xeJ by (20.3.1) in [13], p. 50. Now, by Jani-
szewski’s boundary-bumping theorem there is geJ such that hig(g) = nF(a,4,)
and hence Hph(q) = (@4 1> kns1), hence ye(q) = knyq. But yi(g) </l,-, <67
and 6™ <k,..; thus |yx(g)—yi(g)]>6>3, a contradiction.

We will now prove the following

(3.2) TeeoREM. Let X be a continuum such that for some xe X and for eachi

AelN (X ) there are B e T(X) and a continuous map f: B — 4 such that x € B and
f(B) = A. Then there is no weakly confluent map from X onto the unit square I*.
In particular, dimX < 1.

Proof. Suppose firstly that g is a weakly confluent map from X onto /2. Then

(3.2.1) for each Q € C(I?) there is Ae IN(X) such that g(4) = Q.

In fact, it suffices to prove that if Qe IN(Z?) then there is 4 € IN(X) with
g(4) = Q. Let Qe IN(I?. Since g is weakly confluent, there is 4 e C(X) with
g(4) = Q. We can assume that 4 is minimal with respect to this property. Then
4 is indecomposable, because any decomposition of 4 into two proper subcontinua
gives a decomposition of Q, which is impossible.

Now, we can assume that every spiral W}, constructed in [13], p. 49 is embedded
into I, According to (3.2.1) we find a continvum V7 € IN(X) such that g(Vy) = Wy.

Fix x e X. The assumptions imply the existence of U, e 7(X) and of a con-
tinuous map f,: Uy — V7, such that x e U and f;(U) = V. By the Tietze extension
theorem there is a map 4, from X into I such that /;|U, = gf;. Since L €% and
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& is uncountable, we will obtain a contradiction provided we will show that
d(hy, hy)>1for L # K and K,Le%. .

Fix K, Le & with K # L. Since continua Uy and Uy, are terminal and x € Uy
N Uy, we obtain either Uy = Uy or Uy < Ug. Assume Uy < Uy. The mappings gfy
and gf7|Ug map the continuum Uy into Wy and W, respectively, and gfy is onto.
Therefore d(gfy, gfi{Ux) =1 by Theorem (3.1). Hence d(hy, hy) > 1.

To complete the proof observe that if dimX>2, then there is a weakly
confluent map from X onto I* (see [14]; compare [16]). :

(3.3) CoROLLARY. If @ hereditarily indecomposable continuum X is continuously
homogeneous, then dimX < 1.

Since X is hereditarily indecomposable, we have the equalities IN(X) = T(X)
= C(X). Therefore, if 4 € IN(X), then A e T(X) and for an arbitrary point x e X
we have a continuous map f: X — X such that f(x) € 4. According to (1.3), the
component B of f~*(4) containing x has the property f(B) = 4. But Be T(X);
thus X bas all required properties from Theorem (3.2).

(3.4) CorOLLARY. [f every subcontimuum of X is a continuous image of X, then
dimX <1
(3.5) CoroLLARY. If X is a homogeneous hereditary 0 - continuum, then dim X<1.

According to (1.1), (1.2) and (2.3) (i) we have IN(X) = T(X) = T (X). These
relations imply that assumptions of Theorem (3.2) are satisfied, becanse homeo-
morphisms preserve terminal continua.

(3.6) CorOLLARY. If every indecomposable subcontinuum of a homogeneous
continuum X is terminal, then dim X < 1.

From (2.7) and (3.5) we obtain

(3.7) COROLLARY. If X is a homogeneous hereditary 0-continuum, then X is an
atriodic curve.

From (3.7) and Hagopian’s result (see [9]) we obtain

(3.8) CorOLLARY. If a homogeneous continuum X is a hereditary 0-continuum,
then either X is a hereditarily indeceomposable tree-like continuum, or X has a de-
composition onto a solenoid with the layers of the decomposition being homeomorphic
hereditarily indecomposable tree-like continua which are terminal in X.

4. Remarks. Corollaries (3.3), (3.5) and (3.6) generalize Theorem 11 from [17],
(13.5) from {13} and Corollary 1 from [9]. The nonexistence of hereditarily inde-
composable homogeneous continuum of the infinite dimension was proved by
J. T. Rogers, Jr. in [17]. Recently he has found another simple proof in [19] which
is based, similarly to the proof of Corollary (3.3) here, on the Waraszkiewicz spirals
and Mazurkiewicz theorem.

In particular, from Corollary (3.4) we obtain the Cook’s result (see [6]) that
if every two nondegenerate subcontinua of a continuum X are homeomorphic
then X is a curve. On the other hand, it is worth to note that if no two disjoint non-
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degenerate subcontinua of a continuum X are comparable by continuous maps,
then X is again of low dimension. An example of a continuum with such property
was found by H. Cook in [5] (for a plane example see [12]) and continua of this
type are called Cook continua (see [12]). We have

(4.1) If C is a subcontinuum of a compactum X and dim(X\C) >3, then C is
a continuous image of some subcontinuum of X\C.

In fact, let Y be a compactum contained in X\C with dim(X\C) > 3. Then
there is a weakly confluent mapping f from X onto the cube I (see [16]). Let M be
a copy of the Menger’s universal curve contained in I°. According to Theorem 1
in [22] there is an open monotone mapping g from M onto the Hilbert cube Q.
Let 1 be an embedding of C into Q. Since the mapping gf is weakly confluent, there
is a continuum D contained in ¥ such that gf(D) = h(C), i.e. the mapping 2™ gf
maps D onto C.

The following question remains open.

(4.2) Is it true that Cook continua are curves?

It follows from Theorem 8 in [19] that some continuous terminal decompositions
are impossible (compare Corollary 10 in [19]). Remark that this theorem can be
formulated more generally (the assumption of the continuity of the decomposition
is inessential); namely

(4.3) Let 9 be a terminal decomposition of a continuum X into nondegenerate
continua. If dim X > n, then the dimension of some element of @ is >n.

In fact, if dim X > n, then X contains a decreasing sequence K, of continua
with the dimension >»n and with the degenerate intersection. Since an element
of the decomposition & containing (K, is nondegenerate and terminal, it contains
sufficiently small K, . Therefore the dimension of this element of & is >n.
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Spherical maps
by

Andrzej Dawidowicz (Olsztyn)

Abstract. In this work we discuss the class of multi-vatued upper semi-continuous maps
@: M~ R" of topological space M. Their values @(x) are non-empty continua of such nature
that if Bep(x) stands for the sum of bounded components R™\@(x) the graph of the map By is
open in M'x R* and (px) := @(x) U Bp(x) is acyclic for each x & M, For such — so called spherical
maps the following theorems are proven: (1) the Brouwer fixed point theorem, (2) the Poincaré
type coincidence theorem, (3) the Birkhofi~Kellogg theorem, (4) the theorem on antipodes, (5) the
theorem on invariance of domain.

1. Although a great number of papers have been published on the fixed point
theory of various classes of multi-valued mappings, but some strong conditions
about images of points by a multi-valued maps are always assumed. In the articles
[4], [5], [9], [10] it is assumed that considered multi-valued map has acyclic images
or, more generally, it is admissible multi-valued map (i.e. composition of acyclic
maps). In the articles [8], [11] multi-valued maps with images of points having
homology of the unit sphere S"~* in the Buclidean space R" are considered.

In the present paper we consider a class of multi-valued maps into Euclidean
space R", called spherical maps. In this case homological assumptions about
images of points are quite weak, although some additional non homological con-
ditions are needed. As a special case, our class contains acyclic maps of n-spherical
type in the sense of [8]. )

Next, we generalize from the case of admissible maps or n-spherical maps
on the case of spherical maps the following results: (1) the Brouwer fixed point
theorem, (2) the Poincaré type coincidence theorem, (3) the Birkhoff-Kellogg
theorem, (4) the theorem on antipodes, (5) the theorem on invariance of domain.
Note that in the case of n-spherical maps results (2), (3), (4), (5) have been un-
known.

The autor is indebted to Proressor Lech Gorniewicz for suggesting the
problem and valuable remarks and to Dr. Jerzy Jezierski for his helpful comments.

2. Spherical maps. We will consider subsets of the Euclidean space R". We
assume that n > 2. For any set X < R", the unbounded pseudo-component D (X)
of the set R™\X is defined as follows: x & D(X) iff for every r> 0 there exists
a continuous function 4: I — R™\X such that A(0) = x and ||A(1)|| > r, where
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