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PROPOSITION 4. The space of all infinite subsets of natural numbers with the Ellen-
tuck topology contains a closed and separcble subspace which contains a closed and
discrete subset of the cardinality continuum.

Proof, Let ¥ be the set of odd numbers and let

F={MeT: VaM}=TU {{B, N\{t}>: teV}.

The subspace F is obviously closed. It is separable becausc the set {V U'x: x e H}
is dense in F. Let A be a one-to-one mapping of the Cartesian product of natural
numbers by itself onto the set of even numbers. We set

A* = {z=h(t,s): te A and s ¢ A}
and
U={Vud* @+AsN}.

The set U has the cardinality continuum and it is contained in F. Since
™NU = U {K{r(t, 8), h(r, )}, N>t 5,1, 2eN} U
vU G, Vudn{z})): AcN and ze 4* U V}
the set U is closed. It is discrete in the Ellentuck topology because
Un{@,Vudy={Fud}. a

Proposition 4 implies Keesling’s result, [S], which says, in our terms, that the
Ellentuck topology is not normal, To see this it is enough to note that the subspace ¥
from the above proposition cannot be normal. Note also that, since there is a closed
discrete subset of the cardinality continuum, there is one of arbitrary cardinality
less than the continuum.
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Squares with diamonds and Souslin trees
with special squares

by

U. Abraham (Beer Sheva), S. Shelah (Jerusalem) and R. M. Solovay (Berkeleyy

Abstract, The squarcs and the diamonds are useful set-theoretic axioms used in construction:
of infinite objects. Here we introduce and study different versions of such combinatorial prin-
ciples on sueccssor of singular cardinals. We prove some implications (in ZFC), inquire the:
situation in L, and give an application.

Tntroduction. One feature of the work of Jensen and Johnsbraten [J&J]is the
construction in L of a Souslin tree T such that its square — minus the diagonal, of
course — is a special trée (that is, embeddable into the rationals). We present in § 4
a generalization of this result to higher cardinals. In L:

For any cardinal x there is a Souslin tree of height »* such that its square —
minus the diagonal — is special.

The proof of [J&J] can be generalized to successors of regular cardinals — but
successor of singulars seem to require a different approach. A new kind of a diamond
sequence is used to construct the trees; it is called a “square sequence with built-in
diamond”. In fact there are several kinds of square sequences with diamonds, Such
a sequence was first presented by C. Gray in his thesis [G]. We present here, essen-
tially three other forms which are discussed in §§ 1-3. The forms in §§ 2 and 3 hold
in I and require the fine structure for their proof (the proof of §2 is simpler than
that of § 3); the form in § 1 seems weaker than that of § 2 but it holds in a very
general selting — in fact it is a consequence of GCH + usual kind of squares. (So
reading of § 1 does not require knowledge of fine structure.) Each section can be
read independently of the others (the construction in § 4 uses the square sequence
of § 1 but the reader can see that the form of § 2 yields a slightly simpler proof).

In § 1 ideas of K. Kunen (the proof that O*—¢), and of J. Gregory [Gr]
and [S] are used.

We would like to thank L. Marrington and M. Stanley who raised in conversa-
tion the question about the Souslin trees settled here.
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1. Implications in ZFC.

1.1. DerFINITION. In what follows » is a singular cardinal. A square for »* is
.a sequence {C,| o elimx*) such that:

(1) C, <« is closed unbounded in o,

(2) otp(C <,

() If §eC, then C; = C,n d. (C' is the set of limit points of C.)

We denote the existence of such a square sequence by [J(x™).

1.2. DEFINITION. A square sequence with built-in diamond on x* (denoted
TQl(x*)) consists of a square sequence {C,] « € limx*» and of a diamond sequence
{S,| o elimx®) such that

M S,se

(2) For Xsx* let G(X) = {{| X n { = S}, then not only G(X) is stationary
“but, for any closed unbounded C<x*, C,< G(X) n C for C, with order type as
‘high as we wish (below x).

In this section we prove :

1.3, THEOREM. If % is strong limit and singular, and if 2* = %, then

. 06 = [Slee™) -

Proof. First we describe a general thinning procedure for square sequences.
Suppose C = {C,| aelimx*) is a square sequence. Let E = <E| {elimx) be
4 sequence which is like a square sequence in this sense:

(1) E,={ is closed unbounded.
(2) For 1€ B, E,= E;n.

Then the thinning of C via E is the square sequence {C}| o elimx*) defined
‘thus:

qu o, let ¢ = otp(C,) and g¢,: {~C, be continuous and increasing. We set
Ce = g.lE].

Turning now to the proof let C = (C,| « ¢ limx*> be a square sequence. Let
D = {d] Eecf(x)} be closed unbounded in x such that do = 0, cf(dysy) > dy,
ef(dy) >cf (%) and

{ol otp(C,) = dy,,} is stationary in x* .

N Now fix .A;gd“l—-dg closed unbounded of order type of(dygs ). Let
£ = (E\| {elimx) be defined as follows: If {eD put '

E.=Dn{.
«Otherwise { e (dg: dsy4] for some & ecf(x); we let
B =din{ ifled;, and
Ep ={—Sup(4;~{) otherwise .
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Now we let C* be the thinning of C via E.

The sequence {Ci| x €limx*) thus obtained is a square sequence with the
following advantage. For any d..; let §(dy4,) be the collection of all f’s which are
limit points of some Cy for « such that otp(C,) is in (ds dysq). Then

(1) the S(dysy)’s are pairwise disjoint.

(2) <Cil BeSWuy)y is a (S(yy), cf(dy.))-square sequence, where:

1.4. DEFINITION. (G| 0 €S> is a (S, x)-square sequence, for §&limx™,
and x <2 a regular uncountable cardinal, bigger than cf(x), if:

(1) C,sa is closed unbounded and otp(C,) <y for ¢ eS.

2 If «e S and f is a limit point of C,, then fe S and C; = C, N B.

(3) {«] otp(C,) = x} is stationary in x*.

Similarly to Definition 2.2 we can say

1.5. DERINITION. A square -with built-in  diamond on (S, y) consists of
a (S, x)-square sequence {C,| o €S> and of a diamond sequence {S,| x€S)
such that

D) S, s«

(2) For y=»* and C<x™ a club set, there is « € S with otp(C,) = x such that
for § a limit point of C, (and hence for f = o), fe C and X n f = Sp.

In view of the above, the following lemma proves Theorem 1.3.

1.6. LEMMA. # is singular strong limit cardinal and 2* = »*. Assume S and the
regular x are such that a (S, x)-square sequence exists. Then there is a (S, x)- sequence
with built-in_ diamond. ‘

Proof. Let {C, a € S be the given (S, x)-square sequence. Let g,: otp(C)—C,
be the increasing and continuous enumeration of C,. (S0 g4 ! js the collapsing
map of C,.)

Using the square sequence, we can define a one-to-one map d,: a—x, for
xe S—x, such that for e Cl, d,} = dp. (Assume d,(0) = 0.)

We also fix an enumeration (B, {ex"} of all bounded subsets of xt x .
B, = @,

Let

I={(4,/)| A is closed unbounded subset of x and

Fi A—x is 2 bounded function.}

As x is strong limit, there are only % many bounded functions f: x—x, and
50 [I| = %. Let us enumerate [ = {I, = (4;,f)| i€ %} )

Given 1, T we are going to define an (S, x)-square sequence {C;] xeS) and
a sequence <Si| «e §) which we hope is an (S, x)-square with built-in diamond.
If we fail for a}l possible i’s, a contradiction is derived; thence the proof of I.gemma 1.6.

Well, let I, = (4,f) be given; enumerate 4 = {ad Lexd C! is defined:

(8) if © = otp(C,) is a limit point of 4, we let

C: =gJJdnr].
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(b) If = = otp(C,) e (a;, a4+, ], we get CI by cutting the tail of C, contained
in g,(ay). )

The definition of S now follows. If case (b) above holds, then set S! = .
Suppose case (a) holds, and so © = otp(C,) e 4". Let

H=d4(flAdn), M=U{B| (eH}.

M is a set of ordered pairs.
Now define

Si= M) = {ped| (u0)e M}

‘What happens if every i < fails? Then we have sets ¥ < %™ and closed un-
bounded D' < x* such that for any o e S with otp(C,) = y there is £ a limit point
of C, with X' f = S,'} or f¢ D\

Let D = () D), D is a closed unbounded subset of »*. Let

i<x
X=U{X'x{i}| i<x}.
There is a closed unbounded C < D such that for ae C

B<a=XnPxpf =B, forsomen<a.

Pick now e & C’ n S such that otp(C,) = y. C¥ = C, n C’ is a closed unboun-
ded subset of «, since x is a regular uncountable cardinal. For any ue C¥,
X pxp = B, for some ¢(n) which is below the successor of y in C¥. Since
X >cf(%) we can find an unbounded U< C¥ such that F = {d(p(w)| pe U} is
bounded in x.

Let 4 consist of the closure in y of g, *[U] = A*. 4 is a closed unbounded
subset of y. Now we know that, whatever f is, if I, = (4, f) then C! is the closure
of U in a. Define f: 4—ux by letting f(g) = 0, for o ¢ 4*; and for ge.4* let
(0 = d,(¢(g.(0)))- Now f[A4] is bounded in s, since either £(g) = 0 or £ ()  F.

~ So, for some iex, I; = (4,f). We claim that for any f a limit point of
C..feD and X' f = S. Indeed, C! < C* = D'. How was S} defined? Clearly
case (a) holds: As B = g,(r) for some t& 4, otp(Cp) e 4.
Now
H=d;j'"(fl4n1]).
But since f[4 n 7] S range(dy), and since d, | f = dj,
H=d[fl4dn) = {0} uolUnfl.
By the definition of ¢, and as U~ § is unbounded in B,
M=U{B) LeH} = U Byl neUn f}
=U{Xnuxp peUnpl=XnpBxp.

Now, 8; = M(@i) = X A fxB() = X' f.
This gives the desired contradiction.
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We shall state now some further results which can be achieved using similar
methods. No proofs are given, only some outlines.

1.7. DeFNITION. Let A be a regular uncountable cardinal, S<i. <A Cis
called a weak (S, <8)-square sequence if

() C=<C,| «&8), S is a stationary set of limit ordinals in A and C,<a
is closed unbounded for o e S.

@I feCynSthen Cp=Conp

(3) For every we S otp(C,) <d.

We say that C is a weak (S, 6)-square sequence if § is regular and (3) is re-
placed by

(3") For cvery ae S otp(C,) <6 and {ajotp(C,) = &} is stationary in A. C is
a weak square sequence if it is a weak (S, 8) or (S, < 8)-sequence for some S, 6.

So, if C is a weak square sequence we are not requiring that C, = S for a e S.

1.8, DErNITION.  Suppose O = (Cl aeS% I=1,2 are two (S, <&
or (S, 8") weak square sequences. We define

(@ C'<C?if §' = 8% and Clc C? for ae St

(b) C<*CT? if §' < S? and, for ae S?,

Clcc, but Cins?sst.

Remark. If €% is a (S?, <8%) or (8%, 6%)-square sequence (i.e., not weak)
and C' < T? or ! <*C? then C* is also non weak, Hence “weak” can be omitted
from the assumptions and conclusions of all subsequent results.

1.9. DerFNITION, For a weak square sequence C let

SP(C) = {y] {xe 4| otp(C,) =y is stationary} .

1.10. THEOREM. Suppose C = {C,| a &S isaweak (S, < 8)-square, I = SP(C)
is discréte (in the ordinal topology). For y & I' let 8, be the order-type of the ordinal
interval [sup(y A 1), ). There are then a weak (S, < 6)-square sequence CigC
and a partition of S to S, (ye I'y and Sy, such that

(1) CCH ae S,y <*C is a weak (S, <0)-square,

@) <Ci ye Sy) <4 C is a weak (S,, 6,)-square sequence for ye I,

We can instead ask in (2) that (C}| ae S,» <*C is a weak (S, cf(5,))-square
sequence,

The use of this theorem is when @ is constructed; only weak (S, J,)-square
sequences have to be dealt with.

1.11, THEOREM. Suppose y <A are regulur and uncountable. Assume p = wr<A.
Let S <4 and T be a weak (S, x)-square sequence. Suppose Surther that (P, o €S>
satisfies:

(a) P, is a family of <p subsets of c.

(b) For every A< ), G(A)={a] xeS and 4N aeP,} is stationary in A;
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moreover, there is a e G(A) with cf(€) = y such that for some closed unbounded
Cca, CnScGA).

Then there is C'<C and {A, a€S) such that for every AS A and closed
unbounded C< A, for some 0. €S, cf(®) = x and C, < C and

(VBeSn(Ciufa)) Unp=4dp).

The proof of this theorem is similar to that of Theorem 1.3.

1.12. TuroreM. Suppose C = {C,| a e S) is a weak (S, <)-square sequence,
where S is stationary in A and |6|* < A. Suppose also that §;< S, 1 <8, are stationary
sets. Then there are C'< C and stationary subsets S§ =S, such that

E; = {1eS| 1e(C} v {0}) for some 0.e S}}, i<$,

are pairwise disjoint.

Proof. Firstly, we can use Theorem 6.2 of [BHM] to find stationary subsets
which are pairwise disjoint; hence we assume tha tthe S,’s are pairwise disjoint.

For any i < A there is 6; < 1 and a stationary subset of .S; such that, for « in that
stationary set, if (C,)’ n S is bounded in o then it is bounded by 0 (good for all
i<?).

By shrinking the §;’s and redefining C, to be C,—0 for « > 0, we can assume now
that for each i <4, S;<A—0 and either

(1) YaeeS; (C) n S is unbounded in o or

@) VeeS; (CY nSna=69.

We make a further change of the C,’s and define a sequence C¥: If
X=(C) nSna—0# O then we let Cf = C,— u for the first uin X. If X = &
we leave C¥ = C,.

Now we know that if i satisfies (2) above then for any j # i, E;n E, = @.

So we can assume without loss of generality that all / satisfy (1) above.

Now, g € S is called a good point for S, if g € (C}Y' for stationary many « & S,.
There must be J many good points for §; (4 is regular).

Our aim is to find ¢(¥) good for S; for i< such that for i 5 j

() e() ¢ (Cop)* v {e (N}

If we succeed, then Sf = {xe S o() e (C¥)'} are as required. Because for any
e S we can define C; thus: If there is  such that g (i) € (C¥y, then there is a unique
such i and we let
Ca = Ci—a(i).
Otherwise we let
ct=1cr.

. We try to define the ¢(i)’s by induction on i <& so that (¥) holds. If we fail,
i.e. we arrive at some i< such that, for any ¢ good for Sy, there is some j<i
which destroy (x); then we try again, but this time choosing g's which are
different from all those picked before. We try A many trials. Suppose we. always
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fail. Then A many trials fail at the same i < 4. Look at the first [6]* many trials.
which fail for that i. There are only <A many points which were chosen as good
points so far or which are in C. for some good point & chosen so far, Pick any ¢ good
for S; which is not among those <A many; this ¢ could not serve as g(i) for no-
trial among those |6|* many which failed at i. Hence for some j<i, at |§]* many-
trials, the good point ¢(j) chosen for j satisfies

e(Ne(C) .
It follows that |C, >4, a contradiction.
1.13. COROLLARY. Assunte C is a weak (S, < 8)-square sequence. S is stationary
in the regular cardinul A and 2 < A Let S, 8, i <8, be given stationary sets con-

sisting of uncountable cofinality ordinals. Then there is C* < C such that for any closed
unbounded E< A and i< 8 there is o€ S such that

limCrcE.

Proof. We can assume that C and S}, i < §, are already as given by the theorem.
Let us define o & 5, iff for some 7€S; and feS n (C,u {a}), feC; v {z}. Now
ifoeSandye Clthenye S, iffwe§,: S; <5, and the §;s are pairwise disjoint. Let
R=8-{J8, then S~ C,=R for xe R.

i<g
Now for each §; separately we can find C'<*C (as in Theorem 1.3) and then

recombine to get the desired C*.

2. The combinatorial principle SD,.

2.1, Let % be an uncountable cardinal. In this section, we shall introduce a new’
combinatorial principle SD,. We shall also show that if ¥ = L, then SD, holds for
every uncountable cardinal x.

The principle §D, is best thought of as a combination of (1, and OF, Like these
principles SD, asserts the existence of certain systems of sets satisfying certain
requirements. The cast of characters is as follows:

(1) For « a limit ordinal less than %", C, is a subset of a;

(2) § is a subset of x* consisting of limit ordinals greater than x;

(3) for ye S, X, is a subset of y.

The axioms which we will put on these data will imply, in particular, that the C,’s-
are a [, sequence, and that the X)'s are a OF(S) sequence.

@) ¢, is a closed unbounded subset of e.
(i) The order type of C, is <.

(ili) Let y be a limit point of C,. Then C, = C,ny.

(iv) Let y be a limit point of C,. Then ye§ iff aeS.

(v) Let aeS. Let y be a limit point of C,. Then X, =X, n 1. .

(vi) Let A be a subset of »%*. Let K be a closed unbounded subset of x™. T_hefm
there is a y € § such that: (a) the order type of C, is %; (b) X, = A 0 y; () The limit
points of C, arc in K.
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Discussion : Keeping the notation of (vi), it follows that y € XK. Axiom (vi) readily
jmplies that S is stationary, and that {(X; v €Sy is a O (S) sequence.

2.2. From now on, we assume ¥ = L, and prove SD,,. Our proof will rely heavily
.on the material in Chapter 5 of [J1], and we shall need to assume the reader is familiar
with this material.

The system of C,’s that we use is essentially the one constructed in [J1]. However,
we find it important to use a slightly different notion of parameter. We only use
finite sets of ordinals as parameters, (It is clear that there is no loss of generality in
.doing this since, for any B, every element of J; is ¥,(J,) definable from some finite
set of ordinals less than wf.) We use the following standard well-ordering of finite
sets of ordinals: Let 4 = {&, ..., o} and B= {f, ..., B} be finite sets-of ordinals
listed in strictly decreasing order. Then 4 is less than B if, for some k, we have

= B, for i<k, and either (a) o is undefined, and f, is defined; or (b) o, < B,.
(The following alternative description makes it clear that this is a well-ordering:
If 4, as above, is a finite set of ordinals, let f'(4) be the ordinal:

O™ ™,

‘Then 4 is less than B is the ordering described above iff /' (A) <f (B) qua ordinals.)

The construction of square-sequences in Section 5 of [J1] can be easily adapted
to this new convention, and we leave it to the reader to carry this out.

The construction in [J1] contains a phase (centered in Lemma 5.14 and its proof)
designed to insure that if % is singular, no C, has order type %. Four our current
purposes, it is quite important to omit this phase of the construction. That is, the
square-sequence will extend the partial square-sequence provided by the proof of
Lemma 5.13 [J1].

We take as our C,’s the ones provided by the proof of Theorem 5.2 of [J1] with
the two changes just indicated. It is then evident that axioms (i} through (iii) of $D,
are satisfied.

2.3. Before giving the definition of S, it is necessary to recall some of the nota-
tion from [J1]. Let a be an ordinal with » <« < x*. Following [J1], p. 272273, we
let B(x) be the least § > a such that there is a Z,(J;) map of x onto a; we let ()
be the least integer 73> 1 such that there is a Z,(Jp) function which maps a subset
of % onto «.

We now define the set S. It will consist of those «’s such that:

@ n<a< x“.

) n(e) =

(c) Let 8 be ﬁ(tx) Let p be the canonical parameter pj. Recall that by the con-
5?1;10“ of § 1.2, p is a finite set of ordinals. We require that p have a single member,

o

(d) Let & be 6(x). Then J,, is a model of ZF-, The ordinal « is the largest car-

dinal of J;. Finally, « = x* holds in Jy.
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2.4. We now verify axiom (iv) of SD,. Let « be a limit ordinal less than %™,
and let & be a limit point of C,. We shall show that « .8 iff e S.
There is a class of ordinals named § which is referred to during the proof of
Theorem 5.2 of [J]. To avoid confusion, we shall refer to this class as S”. S’ consists
of those ordinals o such that

(@) x<a<u™;
(b) « is closed under the Gddel pairing function;
(c) each v < a has cardinality < inJ, (i.e. some fe J, maps » onto vif v 5 0).

It is evident from clause (d) of the definition of S that S < $’. Moreover, it is
clear from the proof of Theorem. 5.2 of [J1] that u € §” iff &e S”. Thus we may assume,
without loss of generality that o e §”.

In the proof of Theorem 5.2 of [J1] there is a division mto 4 cases, Since 2 € S,
it follows that & does not come under Cases 1 or 2a. Since C, has the limit point &,
it follows that o does not come under Cases 2b or 3. Hence, o comes under Case 4.

Since « and & lie in S, they both satisfy clause (a) of the definition of S.

Lemma 5.9 of [J1] shows that clause (b) of the definition of. S holds of « iff it
holds of & Hence, we may assume that n(e) = n(@ =1, . .

Since n(e) = 1, there is a canonical X, map #: J,,(,)~+J,,(,) The proof in [J1]
that 7 preserves parameters applies equally well with our revised notion of parameter.
It follows that clause (c) of the definition of S holds of & 1f£ it. holds of & Hence, we
may assume that clause (c) holds of a. ‘

We set & = 6(a) and & = §(8). Since 7 preserves: parametzrs, wc have #(0) =.0.
Since # is X, it follows that #(J5) = J;. Moreover the restriction of % to Jz is a. 2
embedding (which we call n,) of J5 into J,.

Recall that for o coming under Case 4 of the proof of Theerem 5 2 of [J1],
the ordinal ¢ () is-defined to be gf =3, Since n(«) = 1in the case under consideration,,
we have ¢ = B. The construction in [J1] is designed so that ¢ = o holds iff (&) = &
(Cf. the discussion of the following paragraph.). Moreover, in the: case that « <@
then #(() = ¢, for { <& and #(%) = « It follows readily -that. o satisfies clause
(d) of the definition of § iff & does. The verification. of axiom (iv) of Dy is
complete,

Discussion. Actually, there is a slight bug in.the proof of Theorem 5.1 of [J1]
(on which, the proof of Theorem 5.2 of [J1] is based) in that no steps are taken in the
construction to insure that if ¢ = . then ¢(&) = & This bug is easily repaired by
a minor modification of the definition of the function # on page 279 of [J1].

2.5. We now define the “diamond sequence” (X,; a€ S) The “definition  is
by induction on & for « & S. The definition we give will be absolute for models of ZF~
in which o has cardinality < x. The following definition of X, will take place in the
model Jy (where § is as in clauses (c) and (d) of the definition of §)- (Recall that J;
thipks that o = %) In making this definition we shall use the sequence
{X,; &S na) which is uniformly definable in Js. o
8 ~— Pundamenta Mathematicae 127, 2
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Case 1. There is a subset of x*, 4, and a club subset C of »* such that for every
7€ 4, one of the following three conditions does not hold: (a) the order type of C,
is 5; (b) X, = 4 ny; () The limit points of C, are in C.

Let {4, C)>be thé least such pair in the canonical well-ordering of L. Set X, = 4,

Case 2. Otherwise.

Then set X, = @.

2.6. Tt is now quite easy to verify axiom (v) of SD,. Let «e .S, and let & be
a limit point of C,. Let § = &(7) and § = d(e). Then X is definable in J; be the same
definition that defines X, in J;. It follows that my(X3) = X,. But 74({) = { for
{ <@ Hence X; = X, nd The verification of axiom (v) is complete,

2.7. We turn to the verification of axiom (vi). This will be by far the most difficult
axiom to verify. Towards a contradiction, assume that (vi) fails. Let <4, C), be
the L-least pair that counterinstances (vi). Let M be the Z';-elementary submodel
of J++s generated by » U {x**}. Let : M—J; be the transitive collapse map.
Let 6 be y(x*™).

If is clear that any set which is definable in J,++ from parameters < » lies in M.
In particular, » and »* lie in M. Let o be y (™). (Of course, i/(x) = %.) We shall
show that @€ S, and eventually that o meets the three conditions that prevent
{4, C) from being 4 counterexample. This will contradict the choice of {4, C),
and show that axiom (vi) of SD, is satisfied.

Since %" is a cardinal in J,. .+, it is clear that « is a cardinal in. J3. Moreover,
it is clear from the definition of # that there is a X,(J;) map of a subset of » onto Jy.
It follows that B(x) = B and that n(x) = 1.

. We next must argue that p(a) = {6}. It is clear from the definitions of f and §
that there is a % (/5) map of a subset of % onto Jy with parameter {6}. In view of the
ordering of parameters used, (cf. § 1.2), it is clear that if p(a) # {6}, then p(x) 6.
It follows that § is %, definable from ordinals less than 6, Employing #, we see
that %** is ¥, definable from ordinals less than »**. But this contradicts a well-
known consequence of ‘the Mostowski collapse theorem to the effect that. e+ 18
a Z; clementary submodel of L. Thus p(a) = {5},

_ 2.8. We have verified that « satisfies the first three clauses of the definition of §.
It is clear that the inverse of the collapse map i restricts to a Z,-elementary embed-
_ding of J; into J,... which maps o onto x%*. Hence clause (d) of the definition of §
also cledrly holds for o, and we have completed the verification that o e S.

2.9. We next show that X, = 4 n a. Indeed, it is clear that the pair <4, C> is
definable in J, .. and hence lies in M. Since M contains all the ordinals < x, it is
clear that the intersection of M with »* is an initial segment of %™ (and therefore
must be o). It follows that the map y is the identity on the ordinals < ¢, But then
¥({4, €) = {4 n«, C o) satisfies the same definition in J, that (4, C satisfies
in Jo++. If we now recall the definition of X, it follows readily that X, = 4 no.
Le., the pair {4, C) satisfies condition (vi-b) at a.
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2.10. We next verify that {4, C) satisfies condition (vi-c) at ¢, Let & be a limit
point of C,, and let my: Jz—J; be the canonical clementary embedding discussed
in § 1.4. In view of the properties recalled there, it is clear that 7,(C N &) = C na.
It follows that C n & is closed unbounded in &, and thus that & e C (since C is closed).
Thus {4, C) satislics condition (vi-c) at .

2.11. It remains to verify that the order type of C, is precisely.#. Recall that the
construction of C, in [J1] requires the construction of three auxiliary functions k, I,
and m defined on some ordinal 0<x. We shall prove first that 0 = 5.

We begin by recalling some notation from the Jensen proof. Let /1 be the cano-
nical £ Skolem function for {Jy, @). Recall that p = {8}. Set A(i, x) = h(i, {x.pd.
Define a map g: u-a where ucx by

g(wv+i) = (i, v)

if i<w, v<s, and h(@i, v) <o; otherwise g(wv-+i) is undefinéd. Then y maps %
cofinally into . Let y be the least ordinal < such that ¢ maps y cofinally into a.
The following lemma implies that y = sx.

LEMMA. Let n<x. Let By be the sup of i'(wxJ,). Let ay be the sup of g''(n).
Then oy <o and i <f.

Proof. The proofs of the two claims are entirely similar. We show that 8, < B
and leave the proof that oy <« to the reader.

Let D < wxJy be the precise domain of the restriction of F to wxJ,. Then
DelJ,. Let m: Jp—J s be the ¥y clementary embedding that is the inverse of the
transitive collapse map . The ordinal #, is ¥, definable from the parameters 6
and D as follows: There is an ordinal ¢ such that in J, the function k is defined at
all points in .D and the sup of its range is f;. (To see that such a { < § exists, employ
the map = and the fact that the cofinality of »*** is greater than z.) It follows
that m(f;) <%™*", and hence that §; < p. ;

2.12. It is now clear that the map g has domain an unbounded subset of x.
If % is regular, the fact that y = s readily implies that the cofinality of « is %, and thus
that C, has order type ». 8o from now on, we may assume that x is singular, and
therefore that » is a limit cardinal.

Let F& wxJ, be the precise domain of f. We define a function k2 %~ by
transfinite induction as follows: Let ¢ < 5. Then ky(£) is the least ordinal 4 such that:

(1) sup{k(C): § =} <n.

(2) Jy is & model of ZF-, o

(3) Let y <#. Then 7 is a cardinal in J, iff y is a cardinal in L.

(4) The structure {/f,; I N J,» is amenable. . .

1t is clear that k() is defined for every { < (since any sucS:essor‘cardmal will
satisfy requirements (2) through (4)). One can check easily by mductlo.n on { <%
that k,(f) < max(8y, £*): (Fere {¥, for any ordinal { is the least cardinal greater
than {.) Tt follows that k, maps x into .

G*
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We define functions /,: x—a and my: x—f as follows:
1,,(0) is the sup of g"'ky({) .
my(0) is the sup of fi'wxJeq) -

Lemma 1.11 is needed to see that [,(¢) < o and ny(£) < B for all { < 5. Moreover,
the proof of Lemma 1.11 and the definition of &, imply easily that 1,({1) < 1u((,)
and my({1) <my(Ls) if {4 <o

We shall prove by induction on { < that k({) <Ix({), 1() < D), and that
m() < my(0). This will establish, in particular, that the common domain, 0, of k, ,
and m is precisely %. Before beginning this inductive proof, we shall need to establish
several lernmas. We remark that it is crucial for the lemmas that follow that n(e) = 1,
so that the canonical master code (4 in Jensen’s notation) is simply &.

2.13. LeMMaA. Let £ be a limit ordinal < 0 (so that m({) is defined), and let n be
a primitive recursively closed ordinal such that m({) <n <pf. Then m({) and K{)
are X,(J;) definable in the parameters {, n, and 6.

Proof. We give the proof for m({). The proof for I({) is totally analogous.

If one carries out the definition of k, /, and m, on ordinals less than ¢ within
the model J, one gets the same answers as when the definitions are carried out in J,.
This is easily checked by induction. The key point is that g, agrees with ¢ on ordinals
of the form k(¢) (for £ < {) since n>m({). (Here g, is the analogue of g defined
in J,,.) It follows that the sequence {m(£); €< () is X, definable from {, #, and & in J;.
Since m({) is the sup of this sequence, the lemma follows.

214, Lemma. Let { <x. Let § <n<my({). Let g, be the analogue of g defined
in J,. Let oy be the sup of gyx. Then o; <1(0).

Proof. By increasing 7 if necessary, we may assume that n is ¥,(J;) definable
from ¢ and some y; <ky(0). It suffices to see that « is Z;(/;) definable from & and y,.
But the definition of o in the statement of the lemma provides such a %, definition,
if we replace 7 by a ¥ definition of # from & and y,. The only possible problem is
that the sup used to define «; might yield & However, applying = to this sup, we get
a sup of at most % ordinals less than x*. Thus = maps the sup into an ordinal less
than x*, and it follows that the sup is less than o.

2.15: 1t is now quite straightforward to prove the stated bounds on k({), I(0),
and m({), in terms of k.({), 1,({), and m,(¢) by induction on {. Lemma 2.14 is used
to get the estimate on /({), and Lemma 2.13 is used to handle clause (iii) in the
definition of m(v+1) on p. 284 of [J1]. The proof that 0 == % is complete.

2.16. In the Jensen construction of C,, the sequence <I(8); <0 is subjected
to a further thinning in order to obtain C,. We shall show that in the particular
‘case at hand, no further thinning takes place. It will follow then that the order type
of C, is precisely » since we have already established that 0 = x,

In the first place, it is easily seen that m(0) = 8-+ 1. It follows (in the terminology
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of p. 279 of [J1] that « e X; (since o is definable in J;). Also, /(0) is clearly 3 x.
Hence #(0) = 0. (Cf. [J1] loc. cit, for the definition of 1.) '

We continue to use X, in the sense of [J1] It is clear that X, n J; is an elementary
submodel of J;. Since % < X, and x € X,, it follows that & n X, is an initial segment
of . But then & n X, must be /(v). It follows that the transitive collapse of X, " J;
is a model of ZF-, and /(v) is the »* of this model. Hence I(v) is a limit poirt of Q.
(Here @ is the set of ordinals greater than o that are closed under the Godel pairing
function.) It is now quite easy to check that #(¥) =y by induction on v<x.

In view of our previous remarks, this establishes that C, has order type . I.e. the
pair {4, C) satisfics condition (vi-a) at «. We have checked that (4, C) satisfies
all the requirements of (vi) at «, and that a € S. This contradicts our choice of
{4, C>. Since the assumption that SD, is false has led to a contradiction, our proof
of SD, (from V = L) is complete.

3. A strengthening of the principle [7,.

3.1. Throughout this section, we assume ¥ = L. Let » be an uncountable car-
dinal, fixed once for all. Our work will rely heavily on the first sections of [J1],
and we refer the reader to that paper for any unexplained notation. We recall the
statement of the combinatorial principle [J,: There is a sequence C, defined for o
a limit ordinal <" such that

@) C, is closed and unbounded in o;

(ii) the order-type of C, is <u;

(i) if y is a limit point of C,, then C, =y n C,.

3.2. Discussion, In [J1], condition (ii) is replaced by the following stronger
condition:

(iix) if cf(d) <, then C, has order-type less than x. )

It is not hard to show that if there is a sequence of C’s satisfying conditions (i)
to (iii), then there is a sequence which satisfies, in addition, the condition (jix).
However, we shall be interested in sequences which satisfy, in addition to (i)
through (iii) a certain further condition (iv). If % is singular and of uncountable
cofinality, then condition (iv) is incompatible with condition (jix).

3.3. Our next task is to describe the additional condition (iv) that we shall
impose on our square-sequences. Roughly speaking, for certain «, there is a natural
choice of C,, Condition (iv) says that we make this natural choice whenever we can.

Let « be an ordinal greater than » such that for some ordinal § greater than «, Jj
is a model of ZF~ which thinks that o« is the least cardinal greater than s. In this
situation, we define a sequence of elementary submodels of J;, as follows: M, is
the elementary submodel of J generated by the ordinals < . My, ; is defined iff M,
is defined and is a member of J;. In that case, My, is the elementary submodel
of J; generated by M « U {M,}. Finally, if 1 is a limit ordinal, and M, is defined for
all ¢< 4, then

M, = M.

2<a
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We say that o e 4, if for some & as above, and some limit ordinal 1< x, we
have M, = J;. It is not hard to see that the 6 which serves to put « into 4 is com-
pletely determined by o. For suppose that 6, and d, can both play the role of § in
the preceding definition, and 6, <J,. Then « has cardinality » in the mode] I
(ef the argument of the following paragraph) contradicting one of the requirements
imposed on 4.

Leto € 4, and let 5, A, be as in the definition of 4. It is easy to prove by induction
on ¢ that M, has cardinality % in J; for each & <. (The proof uscs the fact that
Mgy €J;5.) 1t follows that M, ~ a is an ordinal less than a. We set

Cl={Mgno| £<1}.

We leave it as an exercise to the reader to verify that C is a closed unbounded subset
of o of ordertype <x, and that if y is a limit point of C%, then ye€ A, and
C;4 =C4ny.

We can now formulate precisely condition (iv): Let ¢ & 4. Then C, = C4.

The following result is the main theorem of this section.
¥
3.3. THEOREM. Assume V = L. Let % be an uncountable cardingl. Then there is

a sequence C, defined for o a limit ordinal <w* which satisfies conditions ()
through (iv).

We remark that if & is admissible, then J, = L,. This certainly happens if
either J; or L; is a model of ZF™.

3.4. The obvious first attempt at proving Theorem 3.3 would be to use the Jensen
square-sequence Cy for « ¢ 4, and our given sequence C# for « e 4. This runs into
the following difficulty. It might happen that « is not in A, but some limit point
of C; lies in 4. In this case, we would have a conflict between conditions (iv) and (jii)
at this limit point. We get around this difficulty by the following approach: We
shall partition the limit ordinals less than %™ into a finite number of pieces £y, ..., E,.
(In particular, we will have 4 = E, .) We shall, at stage i of our construction, define C,
for « € E;. We shall do this in such a way that if y is a limit point of C,, and « € E;,
then y e E;. We shall also arrange that C, satisfies (i) through (iii) “on £,”. If we can
do this, then it is clear that the union of the different square systems (on the various
Ey's) will satisfy conditions (i) through (iv) provided we use C; on the picce £,

Discussion. In [J2, Chapter 6] an alternative proof of [, is given, which
selects, for many o’s a “natural choice” of C, It is natural to conjecture that for
& 4, this natural choice is just €2, This conjecture, if true, would imply the main
theorem of this section, Unfortunately, the conjecture is false.

3.5. We now outline the proof of Theorem 3.3 and make some comments on
the ideas underlying the proof. The first phase of our proof will consist of a detailed
?fudy of the “Jensen invariants” (such as f (o) and n(2)) of an  in A, We shall succeed
in geﬁing a complete characterization of membership in 4 in terms of these in-
va-rlants and one other concept which we shall describe presently, The classes E;
will correspond to those «’s failing to meet one of the clauses of the characterization.
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In the second phase of the proof, we shall define the E;’s, and define the set C,
for o & E,;. In defining C, for o & E;, a delicate point will be to insure that if & is a limit
point of C,, then & e f;. The C,’s we define will be derived from the C.s of [J1],
and an important tool in handling this point will be the naturality properties estab-
lished in [J1] for the C; construction. (We have in mind the following sorts of facts:
If & is a limit point of C;, then n(&) = n(x), (equals say) and there is a canonical
2,-y map 7 of Jygy into Jyqy. Unfortunately, simple examples show that # need not
map the projecta of (&) onto the corresponding projecta of f(x). We get around
this difficulty in the following way. The map % does preserve the canonical par-
ameters. In [J1] the parameter is an arbitrary member of the appropriate J,, and the
“preservation of parameters” is not particularly useful. Instead, we take as possible
parameters the finite sets of ordinals. Again, the map # will preserve parameters,
(if the theory of [J1] is redone with this new notion of parameter), and the ordinals
which are members of the new parameters will frequently have concrete significance.
(For example, if « € 4, one of the canonical parameters associated with « will turn
out to be {6}.) The fact that % preserves these new parameters will be an adequate
substitute for the missing “preservation of projecta”.

This completes our sketch of the ideas underlying the proof of Theorem 3.3
We turn now to the details of the formal proof.

3.6, Let o be an ordinal with % <o < %", Following [J1], p. 272-273, we let B ()
be the least 8 2 « such that there is a X,(J;) map of % onto «; we let n(x) be the least
integer n > 1 such that there is a X,(J;) function which maps a subset of % onto a.

Our next goal is to prove:

LeMMA. Let o€ A. Then B(e) = §+1. (The ordinal 5 was defined when the class A
was defined, and it was shown there that & depends only on o.) Moreover, n(®) = 2.

Before proving this lemma, we shall have to develop some preliminary material
on X, elementary submodels.

3.7. LemMA. Let B be an ordinal. Then the following two sets are in natural 1—1 cor-
respondence.

&) The set of M such that M is a X, elementary submodel of Jp.

(b) The set of N such that f& N and N is a Xy elementary submodel of Jg 1.
The 1—1 correspondence associates 1o an M as in (a), the Xy elementary submodel
of Ty generated by M U {B}. The inverse map assigns to an N as in (b), the set
N,

Proof. It is necessary to verify three points:

(1) Let N'bea.z, clementary submodel of Jp..4 such that € N. Let M = NnJy.
Then M is a X, elementary submodel of J.

(2) Let M, N be as in (1). Let N* be the X, elementary submodel of Jg, gen-
erated by M u {}. Then N = N*

(3) Let M, be a X, clementary submodel of J;. Let N be the Z; elementary
submodel of J,.; generated by Mo U {8}. Let M; be Ny nJp. Then Mo = M;.
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We first consider (1). It is clear that M is closed under, ordered pairs, and that
JpeN. Let yeJy be 2, definable from x € M, we must show that y e M. But yis
clearly Z; definable from J; and x in Jp, ;. Hence yeN. It follows that ye jf

We turn now to (2). It is clear that N* = N. Let y € N. We have to show that.
y € N*. Pick an integer k so large that y € S, There is a map f of Jp onto S
such that fe Jp, and f is Z; definable in Jp4q from the parameter . Let x e ]%;;
such that f(x) = y. Then clearly x e M. It follows readily that y e N*,

We turn to the proof of (3). It is clear that My, < M,. Let x e My. We must
show that x € M. Since x e M, we have x € N,. Hence there is a y €M, and a suf-
ficiently large integer k such that x is X, definable from V> Bin Sypir. It follows that
there is a rudimentary function r such that x = r(J,, y). Using Lemma 1.2 of [51]
we see that x is 2, definable from y; Jj in J; U {J}. It follows readily that x is 2’
definable from y in J;. Hence x € M, as was to be proved. ?

3.8. .We return to the situation of § 3.6. Thus we are given a € 4, and an ordinal
8>a as in the definition of the set of ordinals 4. It is clear that § () > & since « is
a cardinal in J;. Now let § be 6+1. We shall show: i :
(1) There is no £,(J;) map of » onto a;

(2) There is a X,(J;) map of x onto a.

From (1) and (2), it will follow immediately that B(x) = B and that n(e) = 2
as claimed in Lemma 3.6. _—

‘We begin with the proof of (1). Since o € A4, there is a limit ordinal 4, and a chain
lc;f el;.mentary submodels of J;, {M,: &< A) with union J; as discussed in §3.3

or £ < A, we let N, be the X, submodel of J, 5 I
: P 1 generated by M, U {6}.
is the union of the N,’s. e g : 0} Clearty

If (1) isfalse, then there is a parameter p & J;., , such that the %y submodel of J;, ;
generated by % U {p} contains all ordinals less than o. But we can find a ¢ < 4 such
that P € Ny. Since J.V'; contains all the ordinals less than x, it follows that it must
contain all the qrdmals less than o. From the discussion in § 3.7, it follows tHat
Ng nJs = M. Since ¢ < J;, we must have ¢ < M,. But we have already seen in § 3.3

;]?att' M:nais bounded in a. Our assumption that (1) is false has led to a contra.
iction.

3.9. Our proof of (2) will be somewhat more involy i
- ed. Let & be an ordinal such
that J; is a model of ZF-. Let E be the set of » < & such that x < y and J, is an ele-
mentary su’F)model of J_‘,. The set E will play an important role both in your proof
of (2) and in the remainder of the proof of the main theorem of this scction. ' '

LammA. Let M be an elementary submodel of Jy such that x e M and the ordinals

of M are not cofinal in 5. (This will cortainl ha ] g
the ordinals in M. Then y ¢ E. e FMEJy) Lty be the o

"Proof. Since cofinally many ordinals in M ¢
; f ; are closed under the Gédel pairin,
functions, it _sufﬁces to establish the following: Let ¢, 15 {2, and % be ordinals sulc:h tha%
(i<t C2eM, and 1 is definable from ¢, in J,. Then n<vy.
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Fix ne w such that n is £, definable from {, in J;. Let #, be the sup of those
ordinals which are X, definable in J; from an ordinal less than {,. Clearly n<#;.
Using the fact that satisfaction for Z, formulae is expressible in the language of set-
theory, it is easy to see that #, is definable in Jj from {,. Hence #; € M. It follows
that < n <7y, as was to be shown.

COROLLARY. Let e A and let § = §(&). Then if E defined as above, then E is
cofinal in 6. .

Proof. This is immediate from the preceding Lemma and the definition of
the set 4.

3.10. LummA. Suppose that Jy is a model of ZF™. Let E <0 be defined as in the
preceding paragraph, Then B is a 1,(J54.() subset of 8 (in the parameters % and d.)

Proof, The ordinal ¢ les in E iff # < { < 6 and for every n < { and every ordi-
nal 7, which i8 X;(Jy.()-definable from the parameters # and &, we have n; <{.
(This follows readily from the results in § 3.7.) The lemma is now clear.

3.11. Suppose that o € 4, that § = (), and that £ is as defined above. Let M,
be one of the chain of elementary submodels that witnesses o € 4. Finally, let {e E
be such that { is greater than every ordinal in M. Since % < {, and J; is an elementary
submodel of J;, it is easy to see that if the sequence M,;" is defined for # < £ from J;
the way that the sequence M, was defined from Jy, then My = M, for all n<&.
Morcover, the whole process (which generates the sequence of M,’s from Jp) can
clearly be carried out within J;. )

Tt is now easy to see that the function with domain 2 which assigns to the ordi-
nal ¢ the model My is £;(J5.). Indeed N = M, iff there is an ordinal { € E such that
if M is computed from J; as described in the preceding paragraph, then the com-
putation works and has output N. It follows readily that the function that lists C*
in increasing order is also £5(Jy..;). The proof of (2) now follows easily from the facts
that A< and that o is the least cardinal greater than x in Js. As we remarked
previously, Lemma 3.6 follows immediately from the claims (1) and (2).

3.12. Our treatment of parameters differs in some minor, but essential, ways
from that of [J1]. In the first place, we only use finite sets of ordinals as parameters.
(It is clear that there is no loss of generality in doing this since, for any f, every
element of J; is ¥,(/y) definable from some finite set of ordinals less than wf.) We
use the following standard well-ordering of finite sets of ordinals: Let 4 = {0y, .0, @}
and B = {f,, ..., B,} be finite sets of ordinals listed in strictly decreasing order. Then 4
is less than B if, for some k, we have o, = f§, for i<k, and either (a) «; is undefined,
and B, is defined; or (b) oy < By (The following alternative description makes it
clear that this is a well-ordering: If 4, as above, is a finite set of ordinals, let f(4)
be the ordinal:

o™+ ...+ o™,

Then A is less than B in the ordering described above iff f (4) < f(B) qua ordinals.)
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We shall also adopt a slightly different definition of the ordinal p(«) that appears
in the proof of [1, in [J1]. Let o & S, and let f(a), n(x) be as previously defined. Then
gp = We set ¢ = g(0) = ¢} %, and let 4 = d(a) = Aj~™1 be the corresponding
master code. We let p(¢) be the least parameter p'such that there is a Z,({J,, 4)
map of a subset of » onto & with parameters %, p. The construction of square-se-
quences in Section 5 of [J1] can easily be adapted to these new conventions, and we
leave it to the reader to carry this out. (In particular, in various places where in the
original proof p(a) appears, in the revised proof the pair {x, p(®)} will appear.)

3.13. We return to our study of what the Jensen invariants amount to for « € A4,
Let f = f(2) = 6+1. Let g = g} be the X, projectum of B, and let p* = p} be the
corresponding canonical parameter. (We use, of course, the conventions on para-
meters just indicated in the preceding paragraph.)

LemMA: With notations as above, we have ¢ = § and p* = {5}.

Proof. Since g is an admissible ordinal less than 8+, we clearly have ¢ < 0.
Towards a contradiction, assume that g <§.

We first wish to argue that all the members of p* are ordinals < &. Indeed the
minimality of p*, and the particular well-ordering of finite sets of ordinals employed
insure that any ordinal which is X,(J;,,) in a finite set of smaller ordinals cannot be
a member of p*. In particular, p* must consist of limit ordinals, and hence (since it
is a member of J;.,) of ordinals <4.

Now let ¢ e E be chosen so that (1) o < {; (2) { is greater than any member
of p* m 4. (This choice is possible since £ is cofinal in 6.) Let M be the Zy elementary
submodel of J; 4 generated by J, U {3}. On the one hand, since ¢ U {p*} is a subset
of M, we must have M = J;.,. On the other hand, the results of § 3.7 show that
M nJs=J;. This contradiction establishes that ¢ = §.

It is clear that there is a Z(J;..1) map of & onto J,., with parameter {6}. Taking
account of the well-ordering of parameters we are using, we see that if p* # {6},
then p* = 8. Using the fact that § is closed under the Godel pairing function, it is
quite easy to see that if there is a X, map of § onto J3,., with parameter a finite subset
of 8, then there is one with the parameter &. Thus towards a contradiction, we may
assume that there is a 3;(J;,,) map, f, of § onto J5..1 With parameter @.

Suppose then that f(x) = J,. By the proof of Lemma 3.7, this is equivalent
to a certain X, formula ¢ (x) holding of x in J;. Let { & £ be such that x ¢ Jy. Sinee Jy is
an elementary submodel of J;, ¢ (x) holds of x in Ji. But then f(x) = J; holds inJ..q
and hence (since ¥, assertions are upward absolute) in Jy,.,. This contradicts our
assumption that f'(x) = J; holds in J;..,. The proof of the current lemma is complete.

3.14. We have to establish the value of one last parameter of o for o & 4. Let

= A}, be the canonical master code. (Thus Ay < J,, and for B Sy Bis Zy(J5ey)
T it is 2,({J,, 44)).) Recall that P = p(a) is the least parameter such that there is
a Z1({J,, Ayy) map of a subset of » onto J, with parameters %, p.

LemMA. Let o e A. Then ()= @.
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Proof. We have scen in the proof of Lemma 3.6 that there is a Z,(J;, ) map-
of a subset of % onto Jy,., with parameters » and 6. It follows readily. that there is
a 2,(<J,, Ax>) map of x onto J, with parameter x. This clearly implies that p(x) = @..

3.15. We can now describe the characterization of 4 in terms of the Jensen
invariants. The proof that this characterization is correct will be developed at the:
same time that we define the Es and the Cs.

For o to be a member of A, it is necessary and sufficient that:

(@) x<a<u';

(b) « is closcd under Gddel’s pairing function;

(c) each v <« has cardinality < in Jy;

(d) n(x) == 2 and fi(x) is the successor of an ordinal d;

(e) the canonical parameter p} is equal to {6};

) J; is a model of ZF™;

(2) the canonical parameter p(o) (cf. § 3.14) is equal to &;

(b) the sct E (cf. §3.9) is cofinal in § and has order-type <.

3.16. We now turn to the main part of the proof where we shall define the:
sets Ey, ..., E,; when we define I;, we shall simultaneously define C, for a € E;.
We shall do this so that the following requirements are met:

@) If & is a limit point of C, (where a€ E)) then e E;.

(iiy If & is a limit point of C,, then C;= C, N &

(iti) €, will be a closed unbounded subset of « of order type at most x.

(iv) Either E, = 4 or E, and A are disjoint.

We let R, be the set of limit ordinals less than »* which are not members of’
Ey U ... U E,. We require of our construction that the E’s are pairwise disjoint, and
that for i<n, we have 4 < R,. We will eventually succeed in getting R; = 4. We
will then terminate the construction at the next stage, by setting n = j+1, E, = 4,.
and setting C, = (4 for o€ 4.

The following metaphor may perhaps be useful. We think of the Ei’s.as the
different layers of an. onion whose innermost layer is 4. We strip away different
subsets of the set of limit ordinals less than x™ disjoint from 4, until we are finally
left with just the set A.

3.17. Following [J1, p. 283], we let S be the set of all limit ordinals & such that

@ n<a<n’;

(b) « is closed under Godel’s pairing function; .

(c) cach v < & has cardinality < inJ, (i.e.; some feJ, mapsx onto v, provided
v % 0),

Then § is closed unbounded in %, and it is easy to see that A< S. W.e shall
take I, to consist of those limit ordinals < %" which are not in S. It is casy using t!:le
result of Lemma 5.15 of [T1] to define CE meeting the requirements (i) through (iv).
of our outline.

3.18. We let E, consist of those elements e of .S which fall under Cases 2b and 3


GUEST


152 U. Abraham, S. Shelah and R.M. Solovay

of the Jensen procedure. (Cf. pages 272-273 of [J1].) That is, a € E, iff ¢ € § and
either (1) o is an element of Q but not a limit point of @ or (2) n(x) = 1 and (e
is not a limit ordinal. Tt is clear thatno o in E, is a member of 4. Moreover, it is
shown in section 5 of [J1], that all the o’s in E, are of cofinality w. We take C, (for
€ E,;) to be some set of order type @ cofinal in a.

By C; we mean the square-sequence obtained by following the procedure of
the proof of Theorem 5.2 of [J1] after the modifications in the treatment of para-
meters suggested in § 3.12 have been carried out. We also wish to omit those steps
taken in [J1] to insure that if % is singular, then the order-type of C, is always <,
{Cf. Lemma 5.14 of [T1] where the phase of the argument we wish to omit is centered.)
It is clear from the proof of Theorem 5.2 of [J1] that if a € R, and & is a limit point
of CJ, then &€ R,.

3.19. We let E; consist of those elements o of R, such that n(x) s 2. For ae By,
we take C, to be C7. It is evident from Lemma 1.6 that Ej is disjoint from 4. In
the course of the proof of Theorem 5.2 of [T1], it is established that if & is a limit
point of C; (where « & R,) then n(%) = n(x). It is easy now to check that require-
ments (i) through (iv) are satisfied on Es. It is also clear that if « € R,, and & is a limit
point of CJ, then &€& Rs.

3.20. Before introducing the class E,, we need to establish some notation. Let
aeR;. Let B = B() be the least § such that « is singular in Jy,,. Let ¢ = g(e)
be the Z; projectum of J;. Finally, let p*(x) be the least parameter p such that there
is a Z,(J,) map of g onto J; with parameter p. We have already computed the value
of p*() in the case that a € 4, and seen that in that case, p*(2) = {J}.

We put « into E, iff € R; and one of the following three conditions is met:

(1) p*(«) (which is a finite set of ordinals) has cardinality different from 1. (If (1)
does not obtain, we let §(x) be the unique member of p*(a).)

(2) 8(e) is not the largest limit ordinal in Jp,.

(3) Jsq is not a model of ZF™.

We set, for w e Ey, C, = CJ. It should be clear from Lemma 3.13 that E, is
disjoint from A. Thus the only requirement for E, that is not evident is require-
ment (i). This requirement will follow immediately from the facts about the cl
{in the case that n(x) = 2) that we now recall.

Suppose that o € R, and that & s a limit point of CZ. Then there is a canonical Z,
map, 7, of {Jygy, A@)) into {Jye, A(e)>. Moreover, m has a canonical prolongation,
#;to 2 Z; map of Jyg, into Jy,y which sends the parameter p*(%) into p*(a).

It is also clear from the facts just recalled that if « & Ry, and & is a limit point
of CJ, then @e R,

3.21. We put o in Es iff xe R, and o(e) < 8(2). It is clear from Lemma 3.13
that Ey is disjoint from 4. Note that for any « € R, we have ¢(x) < &(a) since 6(a)
is the largest limit ordinal in Jy,. If follows that for a € Ry, we have o(a) = §(a).

Before defining C, for « € Ej, it will be necessary to develop a certain amount
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of preliminary material. For a & Ry, we let E(a) be the set of ordinals ¢ less than & ()
such that » < { and J, is an clementary submodel of J;.

LemMa. Let a@ Ry Then (o) = (o) ifff E(2) is cofinal in 6(0).

Proof. Since « e Ry, we know that f(x) = 6(c)+1 and that p*(e)) = {5(c)}.
It follows that ¢(c) can be characterized as the least ordinal ¢ such that the 2 ele-
mentary submodel of Jyuy..y generated by g U {5(@)} is all of Jyy4q. In view of
Lemma 3.7, o () can be characterized as the least ordinal ¢ such the X, elementary
submodel of J5 generated by the ordinals less than ¢ is all of J;. If E(0) = @, then
o) € %-+1. If E(x) has sup, say 7, strictly less than 8(a), then o(o) <y+1. We
leave it to the reader to verify that if’ £(a) is cofinal in 6(x), then o(¢) = &(x).

Let o & Ry, and let & be a limit point of Cj. Then'we have mentioned previously
(@in § 1.20) the canonical X, map % of Jyg 4, into Jyyy 1. Since #(3(@) = 5(), it
induces a map 7y, of Jy) into oy, It follows from Lemma 1.7 that 7, is elementary.
If greater precision is needed in specifying the map m,, we shall refer to is as 7.(%)
(if alpha can be supplied by the context) or as 7,(&, &) if absolute precision is re-
quired.

322, Limma. Let o& Ry, Let & be a limit point of Cy.

(@) If o(o) = 8(x), then the range of w, () is not cofinal in 5(w).
(b) If o(e) < 8(a), and the limit points of CJ are cofinal in Cy, then there is a limit
point a* of CJ such that the range of my(a*) is cofinal in ().

Proof. We first prove (a). Let & be the A member of CJ. We use the notation
of the proof of Theorem 5.2 of [J1]. Then the range of 7,(&) is a subset of the X,
submodel of Jy(, generated by m(2). (This uses Lemma 1.7.) By Lemma 3.21, E(%) is
cofinal in &(a). But cleatly, any member of E(x) which is greater than m (%) will be
greater than any member of the range of m.(d).

We turn to the proof of (b). If ¢(x) < §(«);then by Lemma 3.21, we can find
{ < 8(x) such that ¢ is greater than every member of E(x). If a* is a sufficiently large
limit point of CJ, then ¢ e range #(«*). Moreover the range of #(a*) is an elementary
submodel of Jy(e). But then Lemma 1.9 says that the range is cofinal in §(e).

3.23. We now define C, for we Es. ‘

Case 1. The set of limit points of CJ is not cofinal in Cj.

In this case, & has cofinality w. We take C, to be some @ -sequence cofinal in, «.

Case 2. Otherwise. . A

In this cage, we take C, to consist of those limit points, &, of C; such that m(&)
maps cofinally into &(a).

The check that the requirements (i) through (iv) are met is somewhat less trivial
than before, In the first place, it follows from Lemma 3.13 that if ae 4, then
0(e) = 8(x). Thus Es is disjoint from 4, and requirgment (iv) is.met. If « € E falls
under Case 1, then requirements (i) through (iii) are trivial, since C, has no limit
points.

If «; and a, are limit points of CJ (with o, <a,), then it is easy to see that
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rangemy (o) is a subset of range m,(,). It follows that, in Case 2, C, consists of a tajl
of the limit points of CJ. Moreover, by part (b) of Lemma 3.22, C, is non-empty.
Requirement (iii) is now clear for o falling under Case 2 of the definition.

We next check requirement (i). Let o e E5 fall under Case 2 of the definition,
and let & be a limit point of C,. Let o be the least point of C,. It is not hard to see
that 7, (0o, o) is the composition of the maps 7,(&, «) and (0, &). Since 7y (g, «)
maps cofinally into d(«), it follows that m,(co, & maps cofinally into §(&). It now
follows from part (a) of Lemma 3.22, that &e Es.

Finally, we check requirement (ii). Let & and « be as in the preceding paragraph,
Then & is a limit point of C;. By a previous remark, we know that & & R,. (Cf. the end
of § 3.20.) Hence C;J = CJ N & Since & is a limit point of C,, & is a limit of limit
points of C,'. It follows that & comes under Case 2 of the definition of C,. Now let ,
be a limit point of C;J . We have previously remarked that m,(x;, o) is the composi-
tion of the maps m.(e;, @) and my(&, «). Since m,(, o) maps J(a) into 5(x) in an
order-preserving cofinal fashion, it is clear that m,(x,, & maps cofinally into 5(®)
Hf my(xs, o) maps cofinally into §(«). It is now quite easy to verify that require-
ment (i) is satisfied.

Remark. Note that this is the first case where we did not simply set C,=C.

3.24. LemMA. Let o.e A. The set E(«) has order-type < x.

Proof. Recall from § 3.3 the sequence {My; E< M) of elementary submodels
of J5. For each £ < 4, let Y¢ be the sup of the ordinals in My. By Lemma 3.9, each
of the ;s lies in E(x). We shall show that these are all the ordinals in E(w). Tt will
follow that the order-type of E(x) is equal to 1< x.

Let £ be E(w), and let E, be the set of ve's (for £ < ). Tt is casy to see that B,
is a closed subset of 8. Towards a contradiction, assume that E—~E; is not empty.
Hence, if # is least in E—E,, there must be a largest element y of Ey which is less
than 5. (It could happen that there are no elements of E| less than #. In that case,
we set y = x.) Suppose first that y = ve. We have remarked previously (in § 3.11)
that M, is definable in J; from the parameters ¢ and Y. Since ¢ and 9, lie in the
model J,, and J, is an elementary submodel of Js, we have MyeJ,. Hence,
Mgy 1 ©J,, and therefore Yg+1 <. This contradicts the choice of y. The case when
Y = % is quite similar and is left to the reader.

3.25. We are now in a position to define the set Eg. An ordinal o« will be put
in Eq iff o € Rs and either (a) the parameter p(%) is not & or (b) the set E(x) has
order-type greater than x. It follows readily from Lemmas 3.14 and 3.24 that Ey is
digjoint from 4. Hence requirement (iv) of §3.15 is satisfied.

The definition of C, for o€ Eg will be somewhat involved. Since o € Ry, we
have §(x) = o(a). Recall also from the definition of CJ, the functions k, [ and m,
which are all defined on some limit ordinal 8 <. There is also an ordinal § <@
and a normal map r: 8. We let I: f—a be defined by I(n) = I(¢(y)). Similarly,

we (;eﬁ“e i G0 by m(n) = m(t(n)). The set C; is precisely the set of 1(n) for
<.
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The function {#(); n <& enumerates in increasing order a club subset of
0(@)) = &(a). Also, the set E(x) is a club subset of §(¢)) by Lemma 3.21. Thus, we can
define a closed subset K of § by stipulating that n e K iff #i(n) € E(a).

Case 1. K is not cofinal in 4.

In this case, the intersection of the two club subsets, E(x) and range i is not
cofinal in & (x). Hence &(«) is cofinal with w. It follows that & and « are dlso cofinal
with w. We take C, to be some w-sequence cofinal in w. It is clear that requirements (i)
through (i) are met in this case,

Case 2. K is cofinel in § but p(x) % O.

In this case, we take C, to be {I(4): n e K}. It is clear that C, is a closed subset
of CJ. So requirement (jii) is clearly met.

Let & be a limit point of C,. We shall show that & € E4 and indeed that & comes
under the current Case 2. It is clear from the definition of C, that & is a limit point
of €. Hence, by the remark at the end of § 3.20, & € R,. Also by the analogue (for
our current version of CJ) of Lemma 5.9 (a) of [J1], we have p(&) # 0.

Let A< 0 be such that & = 1(4). Let 4(«) be as in the next-to-last paragraph
of § 3.20. Similarly, let z be the canonical £, map of {J,), 4(®)) into {Jyyuy, A(°f)>'
Let M, be the range of n. As discussed in § 3.21, = has a canonical prolongation
to a I, map, my, of Jyg into Jy,y. Let M; be the range of .

M, can be characterized as the 3, -elementary submodel of (J55 A'(a) n J,;q)>
generated by » U {{», p(x)>}. Moreover, it is clear from the construction in [J1],
that {m(n): n<t(l)} is a subset of My. M, is just the X, elementary §ubmode1
of Jy generated by M,. Since M, is a subset of Jng), and m(d) e E(a), it follows
that M, S Jo0- . .

Js is the transitive collapse of M;. Let i be the transitive collapse map for M.
Let E, be the set of ordinals of the form y (i (n)) (for ne (K n 2)). It is clear from
the remarks above that E, is cofinal in 6(&). Since y is a Z,-elementary map, it is
clear that if 5, <1, are members of Ey, then J,, is an elementary submodel of J,,.
It follows that E,, < E(&). So E(&) is cofinal in § (%). By Lemma 3.21, &€ Rs. Moreovcr,
if k, I, 7, and 7 play for & the same roles that &, 7, m, and ¢ play for «, then it follows
from what we have just shown that if 7 € (K n 1), then #(¥(n)) € E(&). It follows
from this and the fact that p(&) # 0, that & & E; and falls under the current Case 2.
The verification of requirement (i) for Case 2 is complete.

It remains to verify requirement (ii). In view of what we have done so far, (ii)
amounts to the following claim. Let A, be an ordinal less than /. Then m(.i(ll))
€ E(&) iff m(z(A,)) € E(2). The “if” part of this claim has already been' estabhslfcd.
For the other direction, choose 4, such that A, <, <A and 4, € K. (This is possible
since 2 is a limit point of K.) If A,-€ E(®), then JrG,y is an clementary submodel
of S5 aap) - Since 7y, is X, it follows that Jyea,) iS an elemc?ntary submodel of Jm(,(;mi
But m(t(4,)) € E(x). It follows that nz(t(ii))eE'(oz). Th{s completes the proof o
the claim and thus shows that requirement (ii) is met in Case 2. .

Case 3. Otherwise.
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In this case, X is cofinal in @, p(¢) = &, and the order-type of E(x) is greater
than %. Let o; € C;. We put o, into C, iff (1) &; € E(s) and (2) there are % members
of E(o) less than «;. It is easy to see that C, is a closed cofinal subset of C;. Hence
requirement (iii) is clearly satisfied in this case.

We now consider requirement (i). The argument is quite similar to that ysed
in Case 2, and we use the notation established in that case. Let & be  limit point of c,.
As before, we see that & e R,, that o(%) = 5(&) (so that & € Rs), and that K@) is
cofinal in 4, (so that if &  E, then & does not come under Case 1). Moreover, since
p(2) = @, and = maps p(%) to p(a), it is clear that p(&) = @. (Thus, if & € Ey, &does
not come under Case 2.)

To complete the proof that requirement (i) is satisfied, it suffices to show that
the order-type of E(F) is greater than x. Let o, be the least element of Cy Then
oy € E(n), and there are » members of E(x) less than o, An argament similar to
that of § 3.11 shows that (for & <), the £th element of E() is definable in Jst)
from a, and &. But M, is an elementary submodel of Jsw containing oy and all the
ordinals < x. Since we have previously seen that the transitive collapse map for M,
maps members of E(x) onto members of E(&), it is clear that the order type of E(&)
is greater than x. The proof that requirement (i) is satisfied is complete.

The argument of the preceding paragraph shows that if & < x, the £th member
of E(a) is collapsed onto the ¢th member of E(®). It is now quite easy to see that
requirement (i) is met along the lines used in Case 2. We leave the details to the
reader.

3.26. We are now near the end of the road. To complete the proof, we have
only to show that R; = 4. The inclusion 4 = Rg is clear. We fix « € Rg, and show
that c e 4.

Let A be the order-type of E(x). The proof of Lemma 3.24 can be easily adapted
to show that M, is defined by the procedure of § 3.3 for £ 2, and that the ordinals
of M are cofinal in 6. To show that e 4 amounts to showing that M, = J;. Fix
xeJ;. We shall show that x e M.

Since p(a) = @, x is Z1({J5, A4) definable from » and some ordinal { less
than ». Therefore; if # is a sufficiently big member of E(w), x is £,(J;) definable
from %, { and 4, Jyi Let €< A be such that 1 is the sup of the ordinals in M,.
We have to show that x & M, Since x U {#} = M, and M, is an clementary submodel
of Jy it suffices to show that d, NJ, is a member of M,, ‘

The set Ay is-essentially the set of pairs (7, x) such that /e e, x J;, and
i(x. 8) holds in Jy, . (Here {p,> is some recursive enumeration of the X, formulas
with two free variables.) Let B, be the set of triples i, n, x> such that /e W, nE®,
xeJ; and ¢,(x, d) holds in Sostn- Itis clear that 4, A Jy is definable in J; from
By .

Let {,; ie @) be a recursive enumeration of the X, formulas with one free
variable. Let C, be the set of all pairs {7, x> such that f e w, x e Js, and ,(x) holds
in J;. The proof of Lemma 3.7 shows that By n J, is definable in Js from Cy N J,.
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Since 1 € E(2), Cx N J, Is essentially the satisfaction relation for J,, and is definable
from # in J. So it suffices to sce that n € M, to conclude that 4, n .{,, eM 3 But
it is clear from the construction of the M’s that M, € M, and hence, since 7 is the
sup of the ordinals in My, that ne M. | ‘

This completes (1) the proof that A, nJ, € M;; (2) the proof that xe M,;
(3) the proof that Ry = A; (4) the proof of Theorem 3.3.

4. Construction of a tree. .

4.1, ConvinTons. (1) In what follows » is an infinite uncountabh? cardmall,
possibly singular. (2) The letter 7'is reservedA for trees, the trees are of 11?1ght §x R
every level T, is of cardinality %, and any point hé.lS » man): successors at a;ny lughe.r
level (unless it is in a last level). For a set of ordinals C, T'|C = zl;JCTu. (3) [a, b] is
the unordered pair of @ # b, We define the square of: T some.what .differently from
usual in that we look at unordered pairs and the diagonal is qmltted

[T = {[a, b]| a # b are both in some T} .

[T}? is partially ordered by
[e, bl <e,d] iff a<e and b<d (or a<d and b<c)
(4) We define Q = Sx—{@}. So Q is the set of all nonempty finite sequences

from %. Q is ordered lexicographically:
h<g iff g=h or, for some n, gb n=htnand g(n) > h{n). (So the shorter

sequence is bigger.) .
Q has no maximal element since & is omltted. . .
(5) A special map is a function f: [T]*— Q which is order preserving.
[a, bl <[, dl—f(a,b) <f(c. d)..
(f(a, b) is f (la, b]).) We say the trec T has a special square iff there is a special map

defined on [T]%. I y
4.2, THEOREM. Assume [&S], then there is a Souslin tree of height »™ with a spec

square. L
Before going into the proof proper we need some preliminaries.

4.3. DerNiTIoNs. Let 7' be a tree and f a special map on T, fixed throughout
the definition. ’ ‘ :
(1) The imposition on T, derived from f; is the function 7: [T'T*— @ defined by
If f(a, b) = 1"¢¢> (where | # @), then i(a,b) = 1.
If f(a, b) == {{), then i(a, b) =<{+1).

we clearly have f (4, b) <i(a, b). .
(2) Let i be the imposition on T derived from f,‘
function i*: [T}~ 0, called the imposition™ on T derived from h

6 — Pundamenta Mathematicae 127. 2

as defined above. Another
is defined thus:
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i*(a,b) = i(a, b)"(&,), where Eyex is the least ¢ such that
f(a,by<i(a, b) (. '

Equivalently, we can say:

If f(a, b) = 17¢E, then i*(a, b) = I"¢C+1D .
If f(a, b) = (>, then i*(a, b) = {{+1,0).
Of course, f(a, b)<i*(z, b)< i(a, b).

(3) Let o< <height T. A map e: T,—T, is called an orderer iff:

(a) x<e(x) for every xeT,.

(b) i(a, b) = i(e(a), e(d)) for every a # beT,.

(4) Similarly, e*: T,—T, is called an orderer™ iff:

(@) x<e*(x) for xeT,.

(b) i*(a, b) = i(e*(@), ¥ (@) for ¢ £ b in T,

(5) Again, e*: T,—T, is called an orderer® iff

(a) x < e*(x) for xe T, and

(b) i(a, b) = f(e*(a), e*(b)) for a # b in T,.

(6) We say that « and o are in order (x<o' <height T) iff for any xe 7T,
and yeT, with x<y:

(2) There is an orderer e: T,—T,, such that e(x) = y.

(b) There is also an orderer™, e*: T,—T,, such that e¥(x) = y.

(c) If o’ is a successor ordinal, then there is also an orderer®, ¢*: T,—T,,
with e*(x) = y.

4.4. Lemma. Let T be a tree and f a special map on [T, Suppose o <o <o’
<height T, and o, &' as well as o, &" are in order, then o, &' are in order too. In fact

M) If e: T,—T,, € Tp—T,. are orderers, then ¢’ o et T,—T,. is an orderer.

@ If e*: T,—T, is an orderer™ and e': Ty—Ty. is an orderer, then
eet: T,—T,, is an orderer™.

B)If e T,—T, is an orderer and &*: Tu—T, Is an orderer*, then
e*oe: T,—T,. is an orderer*,

(4 For e* and e* as above, h = ¢*oe*: Ty—T,, is an orderer satisfving
f (@, h(®)) = i*(a, b).

Proof is done by checking the definitions.

4.5. LEMMA. Suppose height of Tis a+1 (so T, is the lust level of T), f is a special
map on [T, Let T' be the extension of T formed by adding % many suceessors to any
point in T,,. Then it is possible to define f on [Ty.,]* so that «,0+1 are in order.

Proof. We can find foreach y € T, three sets 4,,; (/s a, b, or ¢) so that y & A,
and for any x & T, there is exactly one x’e 4, above x, and such that, for i # j
or y # ¥, A, ;and 4, ; contain at most one common point. Now we define f on
[4,,:)* so that condition (6) (i) is satisfied. Then, on the remaining pairs, f'is defined
$0 as to satisfy the requirement that ' is order-preserving on pairs — 4.1 (5).
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4.6. DERINITION OF SYSTEMS. Let T' be of height p < s*. fa special map on [T72.
A system & for T and f consists of:

(1) A closed unbounded C<p of order type <. (If = f+1 then feC)

(2) A collection {e(x, &'): «,0'€ C and a <o’} where e(, o): T,—T, is an
orderer and the maps arc associative: for a<a' <a” in C, e(x,a”)
= e(o, o) o e(a, o).

The restriction of the system & to p' < p is defined naturally from C n ¢’ and
the maps ¢ (o, «) for o' < s & is said to be an extension of its restriction.

4.7. DEFINITION OF A GOOD SYSTEM. Let & be a system for T and f. Let
C = {y;: 1 <A} be an increasing and continuous enumeration of the club of &.
We say that & is a good system iff:

(x) Vied Ya#bel,, let i"(a,b) = l"<C>, and let o be any ordhhlal with
i=jldg <A putd = e(y;, )@ and b = e(y;, ) (b), then f' (o', B)=1 {{+e).

4.8, DEFINITION. Let & be a system for T'and f. The equivalence relation = on
T|C (induced by &) is defined by:

x=yiffx=yporxell,, el o #a arein C (say o<e’) and e(e, a)(x) =y.

The equivalence class to which x belongs is denoted by [x]. We let [x](y) be the
unique y & T, with y € [x]; if there is no such v then [x1(p) is undefined. Then [x](y)
is defined for a cofinal segment of C.

4.9. Let & be a good system for T and f as above. Assume the height of T'is
a limit ordinal y. We are going to define 7, = T (&) (so that T' with T, is a tree of
height p+1), and extend f on [T,,]Z in some definable way.

First, 7, = {[x]: xe T|C}. We define

o< [x]iff a<y for some ye[x].

It is clear that any « € 7" has some [x] e 7}, above it. To define f=f(#onlT,F,
let be given [x] # [y]e T, and let y; be the first y in C such that [x](y) and [y1()
are defined. Put a = [x](y) and b = [vI(yy). a # b for otherwise [x] = [y]. Let
I =i(a, b), then I = i([x1(2), [¥1(») for any y e C—y; (this follows from the pro-
perties of orderers). Let i*(u, b) = I"¢{D. Since & is a good system, for any o with
i=j4lto<,

4.10. £(Ix10), 1)) = "¢ +e>.

We now let ¢, be such that j+1-go = A, and define

411 f (], D = I"<C+ao-

We have

4.12, Lemma. (1) The extended f is a special map on [T’V TP

(2) The map e(yy, f): Ty—T, defined by x—[x], is an orderer.

(3) By adding the maps e(y,, p) we extend the good system & and get a good
system. : :

Proof. (1) Let [a,b]e[T]* be below [Ix], [y e [T,P, we hf.u‘/e to show
fa,b)<f([x], [y]). Since the order relation defined on ¢ is transitive, we can
6%
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change [a, b] by any higher pair which is below [[x], [y]]; for example by some
(%12, [¥1(r)]. Now 4.10 and 4.11 clearly give the proof. (2) and (3) are left to the
reader.

4.13. Let us turn to the proof of Theorem 4.2. Let % be a singular cardinal and
assume [O](%*). We are going to define a Souslin tree 7 on %™ with a special square.

The construction of T, is done by induction on p < %x*. The underlying set of T,
will be the ordinal interval [x-p, - (u+1)). At stage u, we will also define the re-
striction of the special map f to [7,]% and if y is limit, a good system &,,.

Any two levels of T" are in order. In fact, for any ¢ <o’ the family 0(x, o),
of all orderers, orderers”™ and orderers* and composition of such functions from, T,
into 7. that are defined and used in the proof, is a family of cardinality . If 4 < T,
consists of the first ¢ members of 7, t < x a limit, and if e: T,—T,. is in O(x, a’),
then e[A) is called a small set. There are only x many small subsets to T,.

Successor stages. If 4 = ¢+ 1 we use Lemma 3.5 to define 7},.,., and to extend
the special map f.

Limit stages. Assume p <»" is a limit ordinal and T|u etc. is given. We are
going to define a good system &, and then define T, = T},(&,) and extend f and
define the orderers as in 4.9-4.12. The description of &, depends uniformly on the
squared diamond sequence of . Let <S,| « &limx*) bea fixed [ diamond sequence,

Any S,, 7 <p, can be interpreted as giving us two subsets of Ty, so we write
S, = (4,, B,). (The interpretation is obtained using G&del’s correspondence
P2%7.)

4.14. Without loss of generality we can assume B, is a dense subset of Tly,
and 4, is either (1) or (2).

(1) A small subset of some Ty, f<9. (So 4, as a set of ordinals has a well-
ordering of length <.)

(@) All T|y.

In case (1), S, is understood as part of a mission to define an orderer which sends
any element of 4, above a member of the dense set B,. In case (2), S, is understood
as part of a missjon which, when successful, makes any member of T), extends some
member of B,. Let us give the details of the definition of Ly

Let C, < p be the closed unbounded subset of x given by the square, We shall
modify C, a little and replace any « in C,, which is not a limit of members of C,
by a+1. Let C be the resulting closed unbounded subset of wand let {y,| <A} be
the increasing and continuous enumeration of C. C is the closed unbounded set
of &,. It remains to define the orderers e(x, o'): Ty— T, for w<a' in C. This is
done by induction on o', e(a, o') is picked from 0(a, '), We have to be careful so
that (*) of 4.7 finally holds.

Case o' is a limit. If o is a limit ordinal and if the system &, consists of the
maps e(y;, 7)), y;<o’, defined so far and of the club C Ao, then we know
T, = T,(¥,) and we define the orderer e(y;, ') by the formula x—[x]. Lemma 4.12
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(3) promises that (x) of 4.7 still holds. If the premises above do not hold, then the
definition breaks down.

Case o is a successor. If &' =y, is a successor, it is enough to define first
¢(¥;, 7irq) and then to compleic by composition. the remaining maps.

Put 7 = 74, and look at S, = (d,, B,). Two cases werc mentioned in 4.14:

4.15. Assume case 3.14 (1) holds. Then A, T} is a small se.t with an orc_ier'
type <x. We assume <7y, otherwise put 4, = @ and f = y; in the following.
Let a be the fth member of 4, (if there is no ith member to 4, then put a to be the
first member of 1,). Put ¢q = e(f,7,), an orderer which is assumed to be dﬂﬁl:led
by the induction hypothesis. Let @' = eq(a). Now let a’eT, be tl}e first ef(,tensmn
of o’ which is above some member of B, (if there is no such extension let & be the
first extension of &' .in T).

4.16. PROPOSITION. There is in O(y;, ¥;41) an orderer e: Ty —T,,
e(a’) = d'" and
.17 Fle(), e() =i*(x,») for [x,y1 € [T]*.

Proof. We know 7,,.,&C is a successor ordinal. Put' Y4y = ¢+1, so
y; <o <o-1 (we can assume no two points in C are adjacent). Since any two levels.
of T are in order, there is an orderer™, e*: T, —T,, and an orderer*, e*: T,— Ty
such. that ¢’ = ¢% e ¢™(a’). Now let ¢ = e*oe* (Lemma 4.4 (4)).

Now we define ¢(y;, ¥,4) to be the first orderer as in this proposition.

4.18. Assume now case 3.14 (2) holds. So 4, is Tly and B, i.s a.dense subset
of Tly. If iz cf () we let e = ey, Vi41) be the first orderer satisfying (4.17). If
i <cf ¢ proceed as follows. .
’<ch(\7;2 Vf\i,x pa bijection cf () x cf(3) = cf(s), denoted by <ao, a;) =a (w1?h
dg, ay Sa). Also, {wj} j<cf(x)> is a continuous sequence cofinal in » fixed in

advance.
Now let i = (i, ,), and define E to be the first x,, members of T, . Put

E' = ¢e(y,, Y)E], E' is a small set. Let us ask: is there an orderer d: T, —T,,,
(in O(y;, y140) such that

(4.19) (i) xed[E']—>x is above some meniber ozf B,. and

(i) £(d(x), d(p)) = i*(x, ) for any [x,y]€ [T,]*? .

If there is one, then we define e(yy, Yre1) tohjni thet‘ﬁ;st szlfz)h j; OI\i:ethere is not,

e le the first orderer d which satisfies (i1 .

thchYl?slzigézé,;: incjlehgfcc T,, and the inductive definition of T is presented.
Before proving T is Souslin we need a lemma.

4.20. LemMA. If ATy is a small set and if BE T is dense, then there isB u>g
and an orderer Ty—T, which sends any member of A above.a member of B. ‘

Proof, Let 7 be the order type of 4. Look at (4, B). Thereisa close:i ur}bom}c}ed
D <t —(B+1) consisting of ordinals greater than *® closed under F}odel ] pamng
function, such that if « < { € D and x € T then there is y € T extending both x an

such that
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.an element of the sense set B. There is some u < x* such that otp(C,) = 7 and C,eD

and, for y e C; (4, Bly) = S,. Now, in the construction of .S, case 3.14 (1) always

hold. Hence any [x] for x e 4 is above a member of B and we have our orderer.
4.21. Cramm. T is ¢ Souslin tree.

Proof. Let B< T be dense. Let D = %™ be a closed unbounded set of ordinals
greater than % closed under Godel’s pairing function such that for @ <o’ € D any
small set 4 < 7 has an orderer 7,—7, as in the previous Lemma for u < «’. Observe
that if y = o'+ 1 then an orderer d: T,—T, can be found which sends 4 above B
and moreover satisfies 4.19 (ii) for [x, ] & [T,]*. To sec this pick first any orderer™
T,—T,41; look at the image of 4; apply an orderer as in Lemma 4.20 and then an
orderer*. (See Lemma 4.4 (4).)

_ Now we can find u< %" of cofinality ¢f(x) such that C,< D and for ye C,,
Sy = (Tly, Bny). It follows now that any [x]e T, extends some member of B.
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A note on the Mac Dowell-Specker theorem.
by

Peter G. Clote * (Boston)

Dedicated to G. Takeuti on his 60th birthday

Abstract. By using formalized recursion theoretic arguments, here reminiscent of a finite-
injury priority argument, one can remove the countability assumption in the Kirby—Paris refine-
ment of the Mac Dowell-Specker theorem on end extensions of models of arithmetic.

The Mac Dowell-Specker Theorem states that any model of Peano arithmetic
has a proper clementary end extension. In [KiPa], L. Kirby and J. Paris refined this
result obtaining a correlation between subsystems of Peano arithmetic and the
existence of proper end extensions which are elementary with respect to X, and I,
formulas. Their result is.

THEOREM 1. For any countable model M of IEy and nz2 Mk BZ, iff M admits
a proper n-elementary end extension K which satisfies IX,.

The Kirby-Paris construction used very strongly the countability of the model.
In view of the cardinality-free statement of the Mac Dowell-Specker Theorem, we

" might expect the conclusion of Theorem 1 to hold for models of any cardinality.

Such a possibility was first suggested by A. Wilkie. By using formalized recursion
theoretic arguments (in a manner reminiscent of a simple priority argument mixed
with G. Kreisel’s proof of Gédel's second independence theorem), we obtain the
desired result, thus answering Question 2 of [C1]. Since the early work of L. Kirby
and 1. Paris, many results in models of arithmetic have been obtained for countable
models (consider also the notion of recursive saturation in the case of countable
vs. uncountable models). G. Miiller has mentioned the desire to extend results in
models of arithmetic into the uncountablé, so as to make precise those concepts and
theorems which rely on cardinality considerations and those which do not. R. Kossak
has established several results in this direction and the present note should be seen
as a very minor contribution to this program.

“ Work done while the author was visiting the Department of Computer Sciem':e of the Uni~
versity of Toronto in spring 1984 and partially supported by the NSERC. I would like to express
‘my most hearty thanks to Professor S. A. Cook.
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