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Reduction and irreducibility for words and tree-words
by

Lee Mohler and Lex G. Oversteegen * (Birmingham, Ala.)

Abstract. In a semigroup of words modulo a certain equivalence relation (inspired by the
notion of a piecewise linear map from an arc to an arc) we show that equivalence classes have
unique irreducible representatives. Further in the paper we develop some results with applications
in continua theory. In particular we investigate when different reduction paths for a word commute
with respect to certain letters. We also generalize the notion of a word to a tree-word and give
sufficient conditions for reducibility of tree-words to (chain-) words. These results have applications
to chainability of tree-like continua.

1. Introduction. This paper contains a collection of combinatorial results on
words. In particular we are interested in irreducible words modulo a certain class
of reductions and when these words are unique. Many of the results in sections
2, 3 and 4 can be phrased in the language of semigroups of words (see e.g. Corol-
lary 3.7) and we hope they may be of some independent interest to algebraists.
However, they were proved for the purpose of establishing the existence of chain
covers for certain tree-like continua (see [2]). In Section 5 we develop machinery
more specifically directed to this end.

The results in Section 4 were first obtained by Peter Minc. We wish to express
our sincere thanks to Professor Minc for several valuable conversations leading to
the use of this material in the paper.

2. Throughout this paper .sxl:will be a fixed set called the alphabet. If n and m
are natural numbers with n<m, then [z, m] will denote the set {n,n+1, ..., m}
of all natural numbers between n and m (inclusive). A word is a finite sequence
of elements of «f, i.e., a function w: [1, n] - & for some natural number n. » is
called the /ength of the word and is denoted ||w|{. Let n and m be natural numbers.
A function r from [1, n] onto (*) [1,m] is called a reduction function if for every
i,je[l,n], [r@)—r()| <1 whenever |i—j| < 1. (In other words r “sends adjacents
to adjacents”. r may also be thought of as a piecewise linear map from the linear
graph with vertices 1, 2, ..., » onto the linear graph with vertices 1, 2, ..., m.) Let

* The second author was supported in part by N. S, F. grant number MCS-8104866.
(1) In this section and the mext, we will consider only surjective reduction functions. In
Sections 4 and 5 we will drop the requirement that r be onto.
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wy: [1,n] = of and w,: [1, m] - o be words. We say that w, is reducible to w,
if there is a reduction function r: [1, n] ~ [1, m] such that the following diagram
commutes:

1,n]
wy
r o
1,m]
Fig. 1

We will write r: w; — w, to denote the fact that r is a reduction function as above.
Note that in this situation ||w4]| = ||w,|]. As a concrete example, we may note that
the word ABCBABCD is reducible to the word 4BCD and the graph of the reduc-
tion looks like this:

Fig. 2

This reduction function is an example of a simple fold. It has been shown that every
reduction function is a composition of simple folds and monotone maps; so our
next job is to describe these reduction functions. The simple folds are of three types.
DeFINITION 2.1, A reduction function r: [1,n]—» [1, m] is called an interior
Jold if there are integers b and ¢ such that 1 <b <c<n, r is one-to-one on the sets
[1,5), [b, c] and [c,n] and r([b, c]) = #([1, B]) n r([c, n)).
The graph of an interior fold looks like ome of the following two figures.

Fig. 3
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Note that by the third condition there will be integers a.and d such that 1<a <b
and c<d<n, b~a = c~b = d-c, and r([a, b]) = r([b, c]) = r(lc, d]). The sets
[a, 8], [b, c] and [c, d] will be denoted D}, D} and D} respectively and their union,
the interval [e, d], will be denoted D".

DEepmvITION 2.2, A reduction function r: [1, n]—» [1, m] is called an end fold
if r is not one-to-one, but there is an integer b, 1 <b < n, such that r is one-to-one
on the intervals [1, b] and [b, n].

The graph of an end fold looks like one of the following four figures. In all

Fig. 4

cases there will be an integer @ such that 1<a<bd (or b<a<n), b—a = n—>b
(or a—b = b—1) and r([a, b)) = r([b, n]) (or #([b, a]) = r([1, bI)). The sets [z, b]
and [b, n] (or [1,B] and [b, a]) will be called D] and Dj respectively, and their
union will be denoted D",

DerNiTION 2.3. A reduction function which is one-to-one will be called
a trivial fold (or simply trivial). Trivial folds which reverse orientation will be
called flips.

DerNITION 2.4, A simple fold is either an interior fold, an end fold or a trivial
fold. For nontrivial folds, the number {¢—b|+1 will be called the length of the
fold. The points b and ¢ will be called pivot points.

DEFINITION 2.5. A reduction function r: [1, n] - [1, m] is said to be monotone
if for every te[l, m] there are integers a,, b, € [1, n] such that r~(t) = [a,, b,].
Below are sketches of the graphs of two typical monotone reduction functions.

P

Fig. 5

DEFINITION 2.6. A reduction function r: [1,2n]—» [1,m] is said to be light if
for every ie[l,n—1], r(@) # r(@+1).

The following lemma was proved in [3] and [5].
1*
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LeMMA 2.7. Let r: [1, n]—» [1, m] be a nontrivial reduction function. Then there
is a sequence of reduction functions ro, Iy, ..., I, such that

(1) ro is monotone

() r; is a nontrivial simple fold for all ie[l,k]

@)r=ryory_yo..or or.
Moreover, if r is light, then rq is a trivial function. (*)

3. The Main Theorem for Chain Words. Before proving the main theorem we
need a preliminary lemma. We will then prove the theorem for a special case.
Finally, we will prove the main theorem by induction and using Lemma 2.7,

DerINITION 3.1. Let w, and w, be words and let s: wy — w, be (nontrivial)
simple fold. s is said to be minimal if it has minimal length among all (nontrivial)
simple folds with domain wy.

LeMMA 3.2. Let w be a word, let s: w — wy be a simple fold and let m: w — w,
-be a minimal fold. Suppose D} n D} n Di.y # @ for some i and j (note that D} A
D,y is always a singleton set). Then either D} < D} or D} < Di,y.

Proof. The proof is by contradiction. Let X' = D} n Djand ¥ = D} n Dj_,.
Since m is minimal X U ¥ = D}. Now suppose D7} ¢ D} and D} & D7 ;. Then
neither X nor Y is a singleton set. Suppose further (case 1) that j>2. Let DJ_; n
n D} = {a} and D} n D};; = {b}. Let k be the cardinality of X. Then k is strictly
less than the length of the fold m (= the cardinality of the set D). By the symmetry
of the word w about the pivot points a and b, we have for all [ = 1, 2, ..., k—1,
w(a—1I) = w(a+1) and w(b~1) = w(b+1). From this, it is straightforward to
construct an interior fold on w with length k, contradicting the minimality of m.
(See the next paragraph for a visual description of what is happening here.) The
case j = 1 is similar and is omitted. M

‘We may picture what is happening in the above proof as follows. Note that
DY, D}y, Dj, D},4, X and Y may all be considered subwords of the word w (by
restricting the function w to any of these sets). We have indicated the relationships
of these words to one another in the figure below. X~ represents the word X
“written backwards”,

b
o} l Diy
. l X X I | v ~—e—m the word w
. I x! X y sev 0 the word w
k——-—-—,——dtg.__.v.__a
m pm
Zall 7
a

Fig. 6

(%) If r is-a nontrivial, light reduction function, we may take r, to be the identity by putting
a flip in r, if necessary,
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The contradictory interior fold is obtained from the sequence  of subwords
X7'XX"! In the case j =1, a contradictory interior fold ¥~ ¥¥-1 will be
obtained. Diagrams like the above will be used in the proof of the following lemma.

Lemma 3.3 (special case of the main theorem). Let w, wy and w,, be words, let
st w— wy be a nontrivial simple fold and let m: w — w, be a minimal fold. Then
there exists a “common reduction” of w, and w,, i.e., a word v and reduction Junctions
Fitwy = v oand ryt w, — v,

Proof. The proof falls into four main cases, depending on whether s and/or
m is an interior fold or an end fold. Bach main case falls into as many as five sub-
cases, determined by the way D™ and D* overlap. Lemma 3.2 gives some control
over these cases. We enumerate six subcases, of which one is trivial.

Case 1: D" 1 D° = &, Case2: D" Dj for some j. Case 3: D™ < D} u D4
for some j, but not case 2. Case 4: D™ = D®, but not case 2 or case 3. (By Lemma 3.2
and the minimality of m, this case can only occur if m and s are the same interior
fold, in which case the lemma is trivial.) Case 5: D™ & D, but D™ n D* < D} for
Jj=1or 3. Case 6: D" & D°, D" A D* = D} U Dj, 4 for some j, but not Case 5.
(By Lemma 3.2 and the minimality of m, Cases 1, 5 and 6 exhaust the possibilities
when D™ ¢ D)

All of the twenty remaining cases are easy. Several are trivial. We will consider
only one in detail. Suppose m and s are both interior folds and Case 3 holds. Then
by Lemma 3.2, either DY = D} and D3 U D% < D}, or D U D2 < D and D% D3,
or DY = Dj and D U D} « D§, or DY L D} < D3 and DY < DY, These possibilities
are all symmetric to one another. We will consider only the first one. The following
diagram indicates how r, and r, can be constructed.

YTy T

m
1
o by Df
X | x7x I

SR o A
Yy x | x fxt o x yyfxer | x| e

Fig. 7

DEFINITION 3.4. A word w is said to be irreducible if every reduction function
with domain w is trivial,

THEOREM 3.5. Let w be a word and let ry: w — wy and ry: w — wy, be reduction
Sunctions. Then w, and w, admit a common reduction.
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Proof. Without loss of generality, we may suppose that w; and w, are ir-
reducible. (If they are not, reduce them until they are. Any common reducti'o‘n of
the resulting words will be a common reduction of w, and w, by composition.)
Now factor the reduction functions r; and r, as in Lemma 1.1: r; = 1o Ao,
wordand ry=13erf oo rS. Now the mappings #f (i = 1,2) collapse any
two adjacent letters in w which are the same letter and are collapsed by r, (they
are constructed like the monotone parts in the monotone-light decomposition
theorem). Moreover, since w; and w, are irreducible, they do not contain e.my ad-
jacent letters which are the same letter. Since r, and r, send adjacents to adjacents,
they must then collapse any two adjacent letters in w which are the same letter;
and r? and rj must always do this collapsing because the remaining functlogxs whose
compositions make up r; and r, are light. But this means that ) and r? are the
same map. (%) Therefore, they have the same range W, which is the domain of both
r} and rj. And since the remaining maps are light, so is their composition. So we
may suppose for the rest of the proof (by starting from W if necessary) that the
maps r; and r, are light.

Now let m be a minimal fold on W. Then by Lemma 3.3 we can form the follow-
ing diagram. v, and vs are given by the lemma. Next let r be a reduction function
on v5 whose range is an irreducible word vs. We proceed by induction on the length

w\i-—-———> V3
|
Fig. 8
Y JOR— -y
,/ \\\
fo..orf K AN
7 A
VYV, Vg
1 /
.
1 rd
/
i—s v
AY
\
1
rz \\
*
Vym———— V5 Vig
A\
o..orf AN e
\ pd
A4
. Wy > Vy
Fig. 9

(%) r{ and r; may actually differ by a flip. However, we may make them into the same map
by taking the flip out of r} and composing it with r}. The result will be a new r} which is still
a simple fold.
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of the word w. Since all the words in question have length strictly less than
liwll, by the induction hypothesis, we can fill in the dotted arrows to obtain
the diagram in Fig. 9. The words marked with asterisks must all be irreducible

words and- are therefore the same word modulo a flip. The theorem now follows
easily. B

COROLLARY 3.6. Let w be a word and let r.: w — wy and ry: w — w, be re-
duction functions. If wy and w, are irreducible words, then Wy = W, modulo a flip.

Proof. By the main theorem w; and w, admit 2 common reduction ». Since
wy and w, are irreducible, the reduction functions onto v must be trivial, M

COROLLARY 3.7. Let W be the set of all words in the alphabet sf. Let & be the
smallest equivalence relation on W such that if w, and w,, are words in W and there
is a reduction function from wy onto w,, then (wy, w,) € 8. Then each equivalence
class in W has a unique irreducible representative (modulo a flip).

Proof. Suppose that w, and w, are equivalent and that both are irreducible.
Then w; and w, can be connected as in the following diagram by a sequence of

Fig. 10

alternately reversing arrows representing reduction functions. Applying the main
theorem repeatedly to obtain the successive common reductions vy, vy, .., vy, We
may connect wy and w, by a sequence of trivial reduction functions. M

4. Commutativity on first, middle and last letters. Irreducibility of subwords.
In this section we generalize our notation somewhat. If w, and w, are words, the
notation o: wy — w, will denote the fact that « is a reduction function of w, into w,
(so that w, is reducible to a subword of w,). If « reduces w; onto w,, we will write
ol wy ~» wyp. If wis'a word with first letter f and last letter I, we will write w = [£, /].
Words marked with asterisks will always be irreducible.

Lemma. 4.1, Let o, f: wy — wi. If o is onto, then so is p.

Proof. Let B(w,) denote the subword of w which is the “range” of f. Then
{1B0»)I < |Iw2]]. By Theorem 3.5 B(w,) and w% admit a common reduction. Let
w3 be an irreducible common reduction of f(w,) and wi. Then ||wii| = [[w4][.
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But since f(w,) is reducible to w}, we also have |[w3]| <
18Il = W3]l W

DerNITION 4.2. Let wy = [£1, j] and let &, f: w — wy. I a7i(f)) = (1))
and a~1()) = B~1(l,), we will say that « and B commute with respect to endpoints
and will write « e B. Note that we are treating o and § here as if they map the

BGwoll <

|Iw3]|. Therefore

Jetters of w to the letters of w;. Strictly speaking, this is not true (see the introduction
to Section 2); however, the meaning is clear and we will continue to use the con-
vention throughout the rest of the paper.

THEOREM 4.3. Let a: wy — w*, where wy = [fy, ] and w* = [f*,I*], be a re-
duction function with o(fy) = f*. Then a(w,) admits a reduction function r: a(w,)-»
~»w}, where w} is an (irreducible) initial subword of w* (i.e., f* e w}). Moreover,
rlor(f¥) = f*.

Proof. If a(w,) is an irreducible word, we are done, If not, then any nontrivial
function on a(w;) can be realized as the composition of a sequence of simple folds
(see 2.7). Moreover, since x(w,) is an initial subword of the irreducible word w*,
any such fold must be an end fold on the “right” end of a(w). («(w,) cannot admit
any nontrivial monotone reductions by the same reasoning.) As each such endfold
is performed, the result is another initial subword of w*, admitting only endfolds
on its right end. Eventually, no more such folds are possible, and the resulting
word is the desired wy. r is the composition of the right endfolds. If any of the end
folds ever failed to be one-to-one on f*, then w* would admit a “left” end fold,
violating its irreducibility. Thus r™* o r(f*) = f*. &

THEOREM 4.4, Let o, iz wy — w¥, where wy = [f, l;] and w* = [f*, I*]. Sup-
pose further that either o is onto or a(f) = B(fy) = f*. Then ae B.

Proof. We consider first the following

Special Case. Suppose o is onto and moreover & maps no proper subword
of w; onto w*. Then any other reduction y: w; — w* must have this same property.
(By 4.1 y must be onto and if y|w; is onto then by 4.1 «|w; is also onto.) Thus
B %N = {f1. i} = «”Y({f*, I*}). So the only way o and B can fail to
commute with respect to endpoints is if one of the two maps “flips endpoints” and
the other does not. Suppose that this happens. Without loss of generality, assume
that «(fy) = f* = B(l;) and a(ly) = I* = B(f;). Let x be a letter which is not
in w¥*, and consider the new words xwy, xw* and w*x and new reduction functions
& xwy-» xw* and B: xw,-» whx given by &(x) = x, &w, =a, f() = x and
Blwy = B. Then since xw* and w*x are both irreducible, 3.6 implies that there is
a flip carrying xw* onto w*x. But this implies that w* possesses enough symmetry
to admit an endfold., This contradiction establishes the special case.

‘We now prove the general statement by induction on n = |[w*|. f n=1
(or 2 or 3) the theorem is trivial, So assume the theorem true for all n <n, and
let |[w*|| = no. Let X = o« ({f*, 1*}) U B~*({f* 1*}). We must show that a(x)
= f(x) for all xe X. We first claim that a(x) = B(x) for some x € X. If neither
o nor f is onto, this follows immediately by hypothesis, since we must have a(f)
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= B(fy) = f*. So we may assume that one of the maps is onto and it follows
from 4.1 that both are onto. Now let w, = [f;, I,] be a subword of w, such that
ow, is onto and « maps no proper subword of w, onto w*. Then by the special
case o|w, e Blw, and we have «(f;) = B(fy) e {f*, I*}.

Now let yo = min{x € X: a(x) = f(x)} and z, = max{ze X| for all xe X
where yo < x <z, a(x) = B(x)}. Suppose that for some y € X, a(y) # B(»). Then
either y <y, or y> z,. Without loss of generality, we assume that y >z, and let
z; =min{ze X: z>zp}. Then z; is well defined and «(z;) # B(z;). Assume
further (without loss of generality) that a(z,) = B(zo) = f* There are then two
possibilities:

Case 1. Either a(z;) = I* or f(z,) = I* (but not both). Then by the special
case of[zg, 2] e Bi[zo» z,] and we have a(zy) = f(z,) = I*, a contradiction,

Case 2. Either a(z;) =f* or B(zy) =f* (but not both) and «(z) # I*
# B(zy). Assume (without loss of generality) that o(z) = f*. Let Z = [z, 241
By 4.3 there are reduction functions 7;: a(Z)—» w} and r,: B(z)—> wj where w3
and w¥ are (irreducible) initial subwords of w* and ry ' (f*) = f* = r3 '(f*). Bither
wicwi or wicw}), and by applying 4.1 to the maps ry calZ and r, o f|Z, we
conclude that w§ = wi. Moreover, |[wi||<||a(Z)}| <ny, so the induction hypo-
thesis applies and we have ryoa(zy) = f* = ry o f(z;). But since rz(f¥) = f*,
this implies that f(z;) = f*, a contradiction. B -

COROLLARY 4.5. Let a: wy — wh and B: wy—» wy, where wy = [f,1;], w3
= [f,, I,] and wy = [f3, I3]. Suppose further that o(fy) = f, and B(f) = fs. Then
there is a reduction function r: wy — w3 such that r(fs) = fa.

Proof. Let r: wy ~» w} be a reduction function where w} is an initial sub-
word of w§, as in 4.3. It follows from 3.6 that there is a reduction function r: w; —w3.
By 4.1 rob is onto. By 44 ryoa Eroﬁ. ]

DERINITION 4.6. Let w = [f, I] and let m, and m, be letters in w with f<m,
< my < 1. Then we write w = [f, my][my, my][my, I].

Lemma 4.7. Let w = [f, my][my, m,][m,, 1] and suppose there exist reduction
Sunctions a: [my, my] — [f, my] such that o(my) = my and B: [my, my] = [my, 1]
such that B(my) = my. Then w admits an interior fold. In particular w is not irreducible.

Proof. If [m,, m,] is irreducible, then « and § are one-to-one and the lemma
follows easily. So let s be a minimal fold on [my, my]. If s is an interior fold, we
are done. So suppose s is an end fold 47%4 (where 4 is an irreducible word. See
the text preceding figure 6 for an explanation of this notation). Without loss of
generality, assume that 4714 sits on the “left end” of [my, m,]. Then o must
carry A~1 one-to-one onto the word 4, which must consequently sit at the right
end of [f, m,]. Consequently, w admits the interior fold 44~ 14. M

THEOREM 4.8, Let w* = [f*, I*] be an irreducible word with ||w*|| =3. Then
there exists a letter m in w* with f* <m<I* such that [f*,m)] and [m,1*] are ir-
reducible.
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Proof. Let z be the letter in w* immediately following f*. Since w* is irreducible,
z cannot be the same letter as f*. Therefore, [f*, z] is an irreducible word. Let
my = max{x e w*: f* <x<I* and [f* x] is irreducible}. We claim that [m,, /*]
is also irreducible.

Suppose not. Then by 4.3 [m,, [*] admits a reduction function r; onto the
irreducible word [m,, I*] where m;, <m, and r{*(*) = I*, Thus my <I*. r; must
be the identity function on [m,, I*]. Thus if we let f = ry|[my, m,], we have B:
[my, my] — [my, I*] with B(my) = m,. Since my <my <I*, [f* m,] is not ir-
reducible by definition of m,. So by 4.3, there is a reduction function r,: [f*, m,] -
— [f*, x] where [f*, x] is an irreducible word. Since r, must be the identity on the
irreducible word [f*, m], it is not difficult to see that we must have x = m,. Thus
if we set o = ro|[my, m,], we have a: [my, my] — [f*, m(] with a(m,) = m,. By
4.7 w* then fails to be irreducible.

Lemma 4.9. Let wy = [fy, [] and wy = [f3, 1,] be words. Let m be a letter in w,
such that f, <m <1, and let o, B: wy ~ w, such that a(w,) < [f,, m], B(wy) < [m, 1,]
and a(f;) = B(fy) = m. Suppose further that either (1) a(ly) = f; or () a(l) =m
and B(ly) # m. Then either w,, [fy, m] or [m, 1,] fails to be irreducible.

Proof. Suppose [f,, m] and [m,l,] are irreducible. We will show that Wy
admits an endfold. We claim that we may take a(w;) and B(w,) to be irreducible
also. If they are not, then reduce them “toward m” with reduction functions ry
and r,, using 4.3. It is not difficult to verify that the reduction functions r, o & and
7, o B still satisfy the hypotheses (note that if (1) holds then a(w,) is automatically
irreducible).

So assume that o(w,) and B(w,) are irreducible, Then by 3.6, there is a 1—1
reduction y: B(wy)~» a(w,). By 4.4 o ¢y B. Thus y(m) = Y(B() = a(fy) = m.

It follows that (2) cannot hold. For if a(!;) = m, then y(B(/;)) = m. But this implies
that B(/;) = m, since y is one-to-one. So we must have a(l,) = f,. Thus «(w,)
= [f,, m]. It follows easily (using y™*) that w, admits an endfold. W

TreoreM 4.10. Let w* = [f*,I*] and let m be a letter in w* such that f* <m
<I*and[f*, m] and [m, I*] are irreducible. Let o, B: wy — w* be reduction functions
such that either (1) o is onto or (2) a(fy) = B(fy) = f* Then « and B commute
on the set {f*, m,1*}; ie., for all y e {f* m, *}, a~1() = B~1(»).
~ Proof. Let X = a™!({f*, m, I¥}) u B~H{f*, m, I*). We must show that «(x)
= B(x) for all xe X, By 44 « e B, so there is an x, & X such that a(xy) = f(x,).

Suppose there is an x € X such that a(x) # B(x). Assume, without loss of generality
that xo < x. Then let

%, =max{ye X: for all ze X with x, <z<y, a(z) = f(2)}.

Let' x; be the “immediate successor” of x,; in X. Then by our assumption on X,
X, is well defined and a(x,) # B(x,).

Case 1, u(xy) = f* (=P(x,)) or a(x,) = I* (= B(x,)). Then by the definition
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of x,, we have a([xs, x,]) U B(Ixs, X)) e [f*,m] or a(lxy, xo1) v B(fxy, X,1)
e [f*, m] or a(lxy, x;]) U B([xy, x,]) < [m, [*]. It follows from 4.4 that a(x;)
= f(x,), a contradiction.

Case 2. a(x,) = m (= P(x,)). By the definition of x,, o maps [x,, x,] into
either [f*, m] or [m, I*] and similarly for . If « and f both map [x;, x,] into the
“same side” of w*, then 4.4 implies once again that «(x;) = B(x,). So « and 8
must map [x,, x,] into opposite sides. But then 4.9 applies to yield a contradiction. M

5. Tree words and graph words. In this section we generalize the notion
of word and obtain some results with applications in continua theory. Recall that
a word is a function on an initial set X of natural numbers into an alphabet. We
may think of X as being embedded in an order preserving way in a topological
arc 1. Conversely, any triple (w, X, I), where w is a function on the finite subset X
of the arc I, may be viewed as a word. We will use this language to generalize the
concept of a word, The main result of the section is 7.7, which is somewhat analogous
to 3.5. It states that under certain strong conditions, if 7;: w — w; and 7,1 w — wy
are reduction functions, where w is a graph- word, w, is a tree-word, and w, is
a word, then there is a reduction function from w, onto w,. This result will be used
in [2] to show that certain hereditarily indecomposable continua of span 0 (which
are necessarily tree-like) are chainable. (It will follow that continua of span 0 which
are the image of P under an induced map are chainable). We would be very interested
to know if the set B can be dropped from the hypotheses of Theorems 5.6 and 5.7.
If so, it will follow that the hypothesis of hereditarily indecomposability is not
needed.

DEFINITION 5.1. A tree-word is a triple (w, X,T) where T is a tree
(a topological graph with no cycles), X is a finite subset of T, and w is a function
from X to some alphabet. A graph-word may be defined similarly, where T is
replaced by any topological graph G. In cases where no confusion is likely, we
will simply use the letter w to represent the tree-word or graph-word (w, X, T) or
w, X, G). Ordinary words (w, X, I) will sometimes be called chain-words. Note
that every chain word is a tree-word and every tree-word is a graph-word. One
‘may think of a graph-word as a graph with “letters” w(x) attached to it at the
points x € X. As in some of the arguments in the previous section, we will occasion-
ally identify the points x and the letters w(x).

DEFINITION 5.2. Let (w, X, G) be a graph word and let x, and x, be (distinct)
points in X. We say that x, and x, are adjacent if there is an arc 4 < G such that
An X ={x,x}

DErINITION 5.3, Let (wy, Xy, G;) and (w,, X5, G;) be graph-words. A re-
duction function from w, to w, is a function r: X; — X, carrying adjacent points
of X, to adjacent points of X, and such that w(x) = wy(r(x)) for each x € X.
If r is a reduction function from wy to w,, we will write r: wy — w,. If r maps X
onto X,, we will call » an onto reduction function and will write r: w; — w,. Note
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that for chain-words this notion of reduction coincides with the previous definition
(see Section 2). )

DEFINITION 5.4. Let (wy, Xy, Gy} and (w,, X5, G;) be graph-words and let
f: Gy = G, be a (continuous) function. f is called a complete reduction ( function)
if f|X; is a reduction function and in addition f~Y(f(G,) N X,) = X,.

DeFNITION 5.5. Let (wy, Xy, Gy), (2, Xz, G3) and (ws, X3, G5) be graph-
words. We say that (w3, X3, Gs) is completely embeddedin (wy, Xy, G() x (wy, X, G,)
and write (ws, X3, G3) < (wy, X1, Gy) % (wa, Xy, Gy) or simply wy cwy xw, if Gy is
(topologically) embedded in Gyx G, and the projection functions m,: G, = G,
and n,: G, — G, are complete reduction functions.

THEOREM 5.6, Let (w, X, G) = (wy, X1, T)x (W, X3, 1) where G is a graph,
T a tree and I an arc. Let B and S be graphs whose union is G. Let w, = w|S, w,
=wB, X, =XnS and X, = X B. (It is not difficult to show that (w,, X,, S)
and (w;, X;, B) are then completely embedded in (wy, Xy, T)x (Wy, Xo, I).) Let
E(T) = {eq, ey, ..., &} be the set of endpoints of T and E(I) = {0, 1} the set of
endpoints of I. For each j=1,2,...,n let 8; = ny'([eq, ¢;]) 1 S where [e,, el is
the unique arc in T with endpoints ey and e;. Suppose that | X,| >3 and

0) wy is an irreducible word,

(1) (e0, 0) & X,,

(2) S separates Tx {0} from Tx {1},

B Vi=1, ’S'Z, ws 1 AB; e 7 ([, €]) such that By U 8; is arcwise connected,

Moreover, B = | B;.
=1

Let m be any letter in w, = [f,, ,] such that [f,, m] and [m, 1] are irreducible.
LetS, =S nn;'(m) and B, = B~ 73 (m). Then

(@ For each tem (S, v B,), ni'(t) N G is a single point.
Let {T(1), ..., T(k)} be the set of closures of the components of T—m,(S,,). For each
i=1,2,..,k let ¢ be the unique endpoint of T(i) which separates all other end-
points of T(i) from ey. Then

(i) For each i = 1,2, ..., k there exists S() < S, B(i) = B and I() = I such that

(a) I(i) is either the topological are.[0, m] or the topological arc [m, 1),

() (0)-(3) above are satisfied, where i) replaces eq, m replaces 0 or 1, and w,,
Wy, Wy and w, are restricted to S(i), B(i), T(i)) and I(i) respectively.

Proof of (i). Suppose (i) fails. Then there are x, and X5 in ' B such that
me my({xy, x2}), M) # my(x,) and (%) = m,(x;). We consider three cases.

Case 1. xy, x, € . Suppose without loss of generality that 75(x;) = m and
n,(x,) # m. Choose Je{l,2,..,n} such that 7y (¥1) € [eq, ¢;]. By (3) there are
arcs Iy and I, in S, U B joining (e, 0) to x, and (e,, 0) to x, respectively. These
ares determine chain-words v, and v, by intersecting I, -and I, with the set X.
Q_rlent the words so that they “start” at (e0, 0). Now let v be the chain-word v,3,,
(vy rtepresents v, “written backwards”) and let y be the natural endfold mapping v
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to vyv,. Let u = wylle, e;] n X. We claim that there is a reduction function
r:u— w, such that r(e,) = 0. Since § separates T'x {0} from T'x {1}, there must
be a point x of §; in {e;} xI. Since S; U B, is arcwise connected, there is an arc
Ac S; U B, joining (ey, 0) and x. Note that n;(A4) = [e,, ¢,]. Let p be the chain
word obtained by restricting w to 4 n X. Then m,: p— u and ,: p - w, are re-
duction functions “carrying first letters to first letters”. By 4.3 p admits a reduction
function r; onto an irreducible subword w§ of w,. By 3.5 u must then admit a re-
duction function r4 onto wj3. By 4.4 r, & raomy. It follows that ry(e,) = 0, com-

pleting the proof of the claim. Let ot = ryomy oy: w— wy and B = my0 9: w — w,.
These reduction functions carry first letters to first letters, so by 4.10, they commute
with respect to m. But a(x,) = a(x,) and B(x,) = m # B(x,). This contradiction -
completes the proof of case 1.

Case 2. x; €S and x;eB. Choose je{l,2,...,n} such that x,eB; and
repeat the argument for case 1.

Case 3. xy,x, €B. Suppose, without loss of generality, that m,(x;) = m.
Since § separates T'x {0} from T'x {1}, there must be an xS such that m,(x)
= my(x,). By case 2 we must have x = x;. But then case 2 applies to x; and x,.
This completes the proof of (i).

Proof of (ii). By (i) and the fact that S separates, we have B,<S,. Let
ie{l,2,...,k} and let E(T()) = {e}, ¢}, ..., er} be the set of endpoints of T(i),
where e is defined as above. Let S(i, 1) = S n (T() x [0, m]) and S(, 2) = $ N
A (TE % [m, 1]). ([0, m] and [m, 1] are topological arcs.) We claim that either
S(i, 1) separates T({)x {0} from T(i)x{m} or S(i,2) separates T(})x {m} from
T(#)x {1}. For suppose not. Then let 4, and 4, be arcs in (T'(i)x [0, m])—$ and
(T@) % [m, 1])—8 respectively such that A, is irreducible between 7'())x {0} and:
T@)x {m} and A, is irreducible between T(i)x {m} and T'(i)x {1}. Since S meets
the tree T'() x m only in its endpoints (points of S,,), the arcs 4; and A4, meet T'(i) x m
in points @, and a, which may be joined by an arc 45 in T'(i) xm which misses 5.
But then 4, U 4, U 4, is an arc in (T'x])—S joining T'x {0} and Tx{1}. This
contradiction establishes the claim.

Suppose (without loss of generality) that S(i, 1) separates T'(i)x {0} from
T'(#) x {m}. Since T'(i) x [0, m] is unicoherent and locally connected, some component
of S(I, 1), call it S(i), separates T'(i) x {0} from T'G)x{m} (see [1], p. 438). Let
I@) = [0, m]. It follows from (i) that (5, m) e S(i). Thus (1) and (2) are satisfied.
It remains to show (3).

Let je{l,2,..,n} and choose /€ {l,2,...,n} such that [}, ¢}] [eq, e]].
Note that (eb, m) € S. If also (e}, m) € S, let B(i); = C; U C, where C; is the com-
ponent of (S; U B) n (T() x 1(i)) containing (e, m) and C, is the component of
(S; v B) n (T(i)x I()) containing (¢}, m). If (e}, m) ¢ S, let B(i); = C,. Note that
in this case we must have ¢} = ee E(T). Let S(i); = S() 0 ([eb, €1x I()). We
claim that B(i); u §(7),is arcwise connected.

Let p, ¢ € B(i); v S(i);- By (3) there is an arc J= B, v S, connecting p and g.
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Let J, = the component of J N (Leb, e,]x[(z)) containing p and J, = the com-
ponent of J r ([eh, €51 x I(3)) containing ¢. If either J, or J, is J, we are done, If
not, then J, and J, must be arcs joining p and ¢ to elther of the “corner points”
(eh, m) or (e > M) ThlS is so because (i) and the relationship of T'(i) to S, (see the
definjtion of T'(7)) lmply that these pomts are the only two places where J can “run
out of the box™ [eh, ef] x I(i). If (¢}, m) ¢S (second case above), then J, and J,
must both contain the point (eh, m) and J, U J, is the desired arc, If (e 7, M) eS
let 4 be a component of S(i); which separates [eo, 1% {0} from [}, e ]x{m} in
[eb, €] I(5). (Such a component must exist by the unicoherence of [ef, )] x /()
and the fact that S(i) separates T'(7)x {0} and T'(})x {m}.) Then (i) implies that
A must contain the points (¢}, m) and (03', m). J, U A U J, thus contains the desired
arc. Finally, comstruct the set B(i), for every je{l,2,..,n} and let B()

= GB(i)j. |
Jj=1

THEOREM 5.7. Let everything be as in the hypotheses of Theorem 5.6. Then there
is a reduction function r: wy — w,.

Proof. We will show that there is a set S* < § which separates T'x {0} from
T'x {1} and such that the reduction function nf = ,|S* is one-to-one and onto w,.
The desired reduction function will then be r = m, o 7¥~*.. We prove the existence
of §* by induction on n = ||w,||. First note that if n = 1, 2 or 3, then. we can take
S = §* This is because w, will have to consist of distinct letters and =, and m,,
being reduction functions, must map “same letters to same letters” (7, must be
onto because S is a separator).

So assume that the theorem is true for all # < n, and let ||w,|| = ny. Choose m
in w, such that f, # m # I, and [fy, m] and [m, [,] are irreducible (see 4.8). Let
T({), S@), B@) and I(§), i = 1,2, ..., k be defined as in the statement of 5.6. Then
by 5.6 the induction hypothesis applies and we obtain separators S(i)* such that
;S (7)* is one-to-one and onto for each i and S(i)* separates T'(i) x {m} from T'({) x

k

x{0} or T())x{1}. Let S = {J S(i)* First note that the reduction function
i=1

= m;|$* (or more properly, x,|X, n §*) is one-to-one, because n} is one-to-one
on each of the sets T(7)x.P({) and the T(}) x P(i)’s meet one another only along
arcs {m,(8)} x I({), where s e 8,. Moreover, X, contains exactly one point in any
of these arcs by (i) of 5.6. Tt remains to show that S* separates T'x {0} from T'x {1}.

Suppose not. Then there is a polygonal arc 4 < T'x I—$* running from I'x {0}
to T'x{I}. Consider the behavior of a point p moving along A from 7'x {0} to
Tx{1}. Note that as p passes from one of the sets T'(}) x I to another, it must pass
through an arc {x}xI, where x e m,(S,). Moreover, p cannot pass through
the point (x,m) because this point s necessarily in S* (see 5.6, (i)). It follows
that p must cross the set T'x{m} in the interior of some set T'(j)xI. That
is, there must be an ie{l,2, ..., k} and a subaic 4’ of 4 such that 4' =T () x [
and 4’ contains points p,, p, and p; such that p, = (x, y) where either y = 1 or
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y>mand xen(S,); p, = (x, y) where y = m and p; = (x, y) where either y = 0
or y<m and x € my(S,,). Suppose, without loss of generality, that S(i)* separates
T()x {m} from T(i)x {1}. Then A4’ contains a subarc 4" contained in T(})x [m, 1]
passing from a point g, to a point g,, where g, = (x, y) with x € 7,(S,) and y > m
and ¢, = (x, m) for some xeT({) (we cannot have y = 1 since S(i)* separates
T () x {m} from T({)x {1}). But by 5.6, (i) the arc {x} x[y, 1] misses S(;)*. Thus
A" u ({x}x [y, 1]) is a connected set joining T'(i) x {m} and T'() x {1}, contradicting
the fact that S(i)* separates.

QUESTION 5.8. Does Theorem 5.7 remain true if the set B is dropped, i.e.,
if § = G and hypothesis (3) is deleted?

Added in proof. This question has been recently answered in the affirmative by the second
author. The proof will appear in a forthcoming paper tentatively entitled ““On reduction of tree-
words to (chain-) words”.
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