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A minimuwm theorem for n-~valued multifunctions
by

Helga Schirmer (Ottawa)

Abstract. A multifunction is n-valued if all its point images consist of exactly n pdints. Con-
tinnous n-valued multifunctions ¢: [K| -~ |K| on a compact polyhedron K| possess a Nielsen
number N(g) which is a lower bound for the number of fixed points of all continuous n-valued
multifunctions homotopic to ¢, Here it is shown that if ¢: M -+ M is a continuous »-valued multi-
function on a compact triangulable manifold (with or without boundary) of dimension at least three,
then N(p) is a sharp lower bound, i.e. there exists a continuous rn-valued multifunction ¢’ : M —~ M
which has precisely N{p) fixed points.

1. Introduction. An n-valued multifunction is a correspondence ¢: X — Y
from a topological space X into a topological space Y for which ¢ (x) consists of
exactly n points for all x € X, Such multifunctions have been studied in [8], [9], [10]
and [11] under the additional assumption that they are continuous, i.e. both upper
and lower semicontinuous. (See e.g. [2], Ch: VI, for definitions.) From the point
of view of fixed point theory they behave in many ways like single-valued continuous
functions. .

The fact that they possess simplicial approximations [9], Theorem 4 and a ge-
neralization of the “Hopf construction” can be used to show that the fixed point set
Fixp = {xe|K|| ~xe @ (x)} of an n-valued continuous multifunction ¢: K| — |K]
is penerically finite if |K| is a compact polyhedron. Lefschetz numbers L(p) with
the property that L(p) # 0 implies Fixq # @ have been defined by B. O'Neill [8]
for o class of multifunctions which includes the #-valued continuous ones. Exten-
sions of Brouwer's fixed point theorem and the Borsuk--Ulam theorem are con-
tained in [10]. A fixed péint index for »-valued continuous multifunctions on com-
pact polyhedra was introduced in [11],"as well as & Nielsen number which is a lower
bound for the number of fixed points of ¢ and invariant under homotopy. By a ho-
motopy between two n-valued continuous multifunctions ¢g, ¢y: X — T we mean
in this paper always an n-valued continuous multifunction @: X'xJ/— Y, where
I=10,1}, ¢(,0) = @y and &(-, 1) = ¢,.

Here we prove a Minimum Theorem (Theorem 5.2) which shows that the Nielsen
number N(¢) of @: X — X is in fact a sharp lower bound, i.c. that there exists
an n-valued continuous multifanction ¢': X — X homotopic to ¢ which has pre-
8* B


GUEST


84 H. Schirmer

cisely N(p) fixed points, if X is a compact triangulable manifold (with or without
boundary) of dimension at least three. For maps (i.e. single-valued continuous func-
tions) such a minimum theorem is well known. It was proved in 1942 by F. Wec-
ken [13] for a certain class of compact polyhedra which includes manifolds of di-
mension at least three, and extended to a wider class of polyhedra in 1966 by Gen-Hua
Shi [12] (see also [3], Ch. VIII) and in 1980 by Boju Jiang [4]. Shi and especially
Jiang also simplified Wecken’s proof considerably, but it is still a complicated one.
The assumption in our Minimum Theorem 5.2 that M is at least three-dimensional
cannot be weakened, as it is now known that the theorem is false for maps on sur-
faces. This fact, which was announced without proof by J. Weier [14] in 1956, was
finally proved by Boju Jiang [6] in 1984,

Our proof of Theorem 5.2 uses ideas from Jiang’s proof [4], as it extends his
concepts of special homotopies of maps and of paths to special homotopics of
n-valued continuous multifunctions and of n-paths. (By an n-path in X we mean
an n-valued continuous multifunction «: 7 — X.) But as we restrict our setting to
triangulable manifolds, we can simplify many parts of Jiang’s proof. We do not need
the concept of a normal PL path [4], § 3, and can e.g. replace the sophisticated but
lengthy proof of [4], Lemma 5.1 by an casy general position argument concerning
coincidences of two maps to obtain our corresponding Lemma 4.3. The proof that
two isolated fixed points of a proximity map on certain polyhedra can be united is
a tricky one (see [12], Lemmas 1.2 and 1.3, or [3], Lemmas 2 and 3, Ch. VIII C,
Pp- 126-131), whereas the proof of our corresponding result is quick (see Lemmas 3.2
and 3.3). As an n-valued continuous multifunction is a map if # = 1, this paper
includes therefore a proof of the Minimum Theorem for selfmaps of compact trian-
gulable manifolds which is considerably shorter than Jiang’s proof for selfmaps of
more general polyhedra. (See the final Remark 5.3.) But one should keep in mind
that if the manifold is further assumed to be differentiable, then the Minimum
Theorem can be proved very elegantly with the help of the Whitney trick [5].

This research was conducted while I was a visiting faculty member at the Uni-
versity of California, Los Angeles. I want to thank Robert F, Brown for many useful
discussions. I am also indebted to one of the editors of this journal for drawing my
attention to a paper by S. Banach and S. Mazur [1].

2. Some tools: Coincidence Lemma and Splitting Lemma, The proof of our
theorem will use, in the proof of Lemma 4.3 and in the final part of the proof of
Theorem 5.2, the Lemma 2.2 which concerns coincidences of two maps. Lemma 2.2
will only be needed in the special case where P = Jx [ is the unit square, but the
Jproof of this case is not simpler than the one of the general form in which we have
stated it. It is in’ the application of the Coincidence Lemma 2.2 that the assumption
that M is at least three-dimensional is crucial, as it is false if P = I'x Jand M is a sur-
face. We shorter the proof of the Coincidence Lemma 2.2 by separating a detail
in the form of Lemma 2.1.

We need some notation. o* stands for an open k-simplex, & for the correspond-
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ing closed simplex and &% for its boundary. As usual we define 6~ = @. The
interior, closure and boundary of a space X are denoted by TntX, ClX and BdX,
We write B"(#) for the ball {x & R"| dy(0, x)<r} in Euclidean m-space (R, dy)
with origin 0. If o is a metric for M, then d(/, f') denotes the distance in the sup
metric between the two maps f, /" X — M.

Lomma 2.1 Let O <k <m, —1<I<k and r>0. If ' is a face of o*, then
every map

vi (6%, ¢, &) > (B7(r), B™(r)~0,0)

has an exiension 10
iis (8% 6% &' &) - (B"(r), B"(r)~0,0).

Proof. If /= ~1, then v is of the form ov: ¢* - B"(r)—0, and as
Ty (B"(r)—0) = 0, the map v extends to i: & — B"(r)—0.

Now assume that /2 0. Then there exists a homeomorphism A from the quotient
space 7/ onto B*(1). We write h({#"}) = 1y, and label the points B4(1)~y, as y,
with 0 < £ < 1, so that 1, ranges over Bd B*1)—y, and y, is the point on the segment
from yq to 11y, with dy(1g. ) = ldy(o. 1y). Hence the points of /& can be labelled
X = h"'(0). Let §: & = &&" be the quotient map, let g: 6% — ¢*/7" be its rte-
striction to ¢* and define a map

wi (aé', (6% o%et, &) — (B"(r), B"(r)—0,0)
by w=veg”' If we extend w to the map

Wi (843, (6"~ &, 55') > (B"(r), B"(r)~0,0)
given by

- m(x) if 0<r<g1,
w(x,)-_—.{o(‘ i o1=0,

then § == Wo § extends v as required. )

LeMmA 2.2. (Coincidence Lemma), Let M be a compact manifold of dimension
mz3, let P be « compact polvhedron of dimension p <m, and let Py <P, be sub-
polyhedra of P. (Py and Py can be empty.) Given ¢ > O and two maps f, g: P — Int M
so that

Je=gon Py, [#gonPy—Py,

there exists a map '3 P - IntM so that
0 " =ron Py,
@) /" #gon PPy,
(i) d(f,/) <3,
Proof. The proof is essentially a general position argument, but we need some
s-tics to satisfy condition (iii).
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As f(P) U g(P)is compact, we can choose finite collections {¥;}, {U;} of open
sets in M so that f(P)ug(P)c UV}, cach V,c U, ClU; < IntM, and so that
for each index j there exists a homeomorphism /;: (CLU;, CLV) - (B™(1), B"(3),
where m is the dimension of M. Let 2> 0 be the Lebesgue number of the cover {¥/,}.
As all h; are uniformly continuous, we can determine, successively,

Bpr Bt s Opets s 15 010 By
with
k=1,2,.,p,

= min(e, A/3)

0<é, <4 for
0<30€81\<, e 48”

so that for all x, y e ClUj, for all indices j and for k= 1,2,..,p

dg(ly(x), h(»)) €8, implies  d(x, p) < hay,
d(x, ) <28, implies  dy(hy(x), (1) < 8.
Using a subdivision, if necessary, we can assume that for each simplex o of P

the diameters diam f () < &/4 and diamg (7) < &o/4 and that Py is full in P (i.e. that
& n P, is either empty or a face of ¢; see e.g. [7], p. 52). We write

= {xeP| f(x) = g(x)}
for the coincidence set of f and g, and proceed to define f* inductively on all
0-, 1-, ...,p-simplexes of P,

If ¢° is a O-simplex of (P—P,) n C, we choose f/(c%) & J ¥, arbitrarily so that
0 <d(f'(c%),g(c%) < &y; otherwise we define f'(s") = £ (¢%). Then /" satisties (i), (u)
and d(f,f) <e, on the 0-skeleton of P.

Now we assume that f/* has been constructed on the (k-—1)-skeleton of I’,
for 1<k <p, such that f' satisfies (i), (ii) and d(f,f") <g,~,. If ¢* is a k-simplex
of P—P, and & n C # @, then

diam[£(6%) U g (6%) U f(6")] <teo+200-1 < 3. <A,
50 £(6%) L g (") U f(¢") < V; for some index j. We define a map v: o‘ - B™(1)

by choosing v(x), for each x & 6% as the tip of the vector /t}(g (x))h,( (x)) attached
to the origin of R™ As

d(g (). f(x)) <d(g(x), S ) +d(f (), /(%)) < ooty <285

and as ¢* n P, is a face &

of o* of dimension 1 /< k, the map v is actually of
the form A

vi (¢, 6~ 5", &) ~ (B"(8y), B"(5)~9, 0),
and has according to Lemma 2.1 an extension to
b1 (7 0% U ("~ ), &) - (B"(3), B"(3)~0, 0).
We define, for each xed, a pomt S'(¥) € CLU; by the condition that Ohj(f ’(x))
is the sum of Ohj(g(x)) and Ov(x) in B"(1) under vector addition in R™. Then
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dg (g (), Bi(f/(x))) < &, and hence
d(f(x), (X)) <d(f(x), g(x))+d(g(x),. 1 (x)) <leg+5ex <8y

for ail x € 6. We now complete the definition of /* on all k-simplexes ¢* of P by
putting f* = f on & if c* <P or  n C =@, and so obtain a map f’ on the
k-skeleton of P which satisfies (i), (i), and d(f,/") <&, At the pth stage we have
constructed thus a map f* with the desired properties.

Many results in [9], [10] and [I1] concerning n-valued multifunctions have
been obtained with the help of the “Splitting Lemma”. We say that a multifunction
o2 X — Y splits into n distinet maps it @ (x) = { /1(x), f200), ... [(x)} for all x € X,
where f;: X — ¥ are maps with /',(x) # fi(x) for all xe X, i,je{l,2, .,n} and
i j. We write ¢ = {fy,f2,..,/,}, and call it simply a splitting of ¢, as epllttmgs
into nondistinct maps are not uSed in this paper. The following lemma was proved
in [9], Lemma 1, but is essentially due to S. Banach and S. Mazur [1], Satz 1.

LemMa 2.4. (Splitting Lemma). Let X and Y be compact Hausdorff. If X is path-
connected and simply connected and @: X — Y is n-valued and continuous, then ¢
splits into n distinct maps.

The Splitting Lemma is used here ¢.g. in the case X = fand X = I'x [ to show
that n-paths o: / — M and homotopies of n-paths have splittings. )

3. Special homotopies of n-valued multifunctions. Let ¢y, ¢;: A ~ X'be n-valued
continuous multifunctions from a subspace 4 of X into X. We write ¢ = {@;}/er
for a homotopy ®: A4 x[— X from ¢q to ¢, and call @ a special homotopy if
Fixp, = Fixp, for all te] and ¢[x) = @y(x) for all xe Fixgy and rel Two
n-valued continuous multifunctions @o, @;: 4 = X which have the same fixed
point set are called specially homotopic if there exists a special homotopy from ¢,
to ¢;.

LemMA 3.1. (Special homotopy extension property for n-valued multifunctions).
Let A be a subspace of X and let A and X be ANR’s. If ¢o: X = X is an n-valued
continuous multifunction and ®,: AxI — X-is a special homotopy of @ol4, then $4
can be extended to a_special homotopy ®: XxI— X of ¢o.

This lemma is equal to [4], Lemma 2.1 if .= 1, and its proof is analogous.

Special homotopies will be used in the proof of Lemma 3.3. If # = 1, Lemma 3.3
states the well-known fact that two isolated fixed points of a proximity map can be
united. The proof of the case n 2 needs a slightly sharpened version of the case
n = 1 which is given in Lemma 3.2. Two maps fo,f;: 4 — X are y-homotopic,
for y> 0, if there exists a homotopy {fi}ies from f, to f; so that d(f;, fi} <y for
all t,' el

LemMMA 3.2. Let M be a compact manifold of dimension >2, let Q be an arc in
IntM from x, 16 x, and N a closed neighbourhood of Q. Given y>0, there exists
an >0 such that if f: N— M is a map with the properties

() Fixfn Q = {x;, X3},
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(ii) x, and x, are isolated fixed points of f,

(i) d(x,f(x))<e for all x€Q,
thenfis y-homotopic relative N—Int N'to amapf': N — M with Fix f* = Fix f~{x,}.

Proof. We select 5> 0 so that if f,f": N — M are two maps with d(/,f) <§
and f = f on a subset 4 of N, then fis y-homotopic to f* relative 4. (Se¢ Corollary 4,
Ch. 11T A, p. 40 in [3] and its proof.) We can also choose & > 0 so that d(x, f(x)) <&
for all x e Q implies that there exist closed tubular neighbourhoods U and ¥ of Q
in N with f (U) < V. We consider U and V" as the cones of their boundaries from x,,
and define a map g: (U, x;) = (V. x;) by

g(tx2+(1~t),vc) = txy,+(I=1)f(x) for all

Then Fixg = {x,}, so g extends to the map f': N - M with Fixf” = Fix /- {x}
given by

xeBdU and 0.

xeU,
xeN-U.

, '__fg(_x) for
F@ =170 for

It is easy to see that it is possible to choose &> 0 and U so small that d(x, / (x)) <e
for all xe Q implies d(f,f) <0, hence f is p-homotopic to f* relative
N—-UoN~—IntN. '

The proof of the next lemma uses the gap 7(p) of an n-valued continuous multi-
function ¢: X — M. It was defined in [9], § 3 as

y(@) = inf{d(v;, y)l yi, ye p(x), x€ X,y 5 13}

Hence y(p) >0 if X is compact.

Lemma 3.3. Let M be a compact manifold of dimension 22, let x;, X, € IntM
be two isolated fixed points of an n-valued continvous multifunction @: M — M
and let Q be an arc in IntM from x, to x, with Fixe n Q = {x(, x5} Then there
exists an ¢ >0 so that if ¢|Q is specially homotopic to an n-valued continuous multi-
Sunction = 1{g,,95, ., g.}: @~ M with x,,%,eFixg, and d(x,g9,(x))<e
Jor all x € Q, then ¢ is homotopic to an n-valued continuous multifunction ¢': M — M
with Fixe' = Fixe—{x}.

Proof. It follows from Lemma 3.1 (with X = M and 4 = Q) that ¢ is specially
homotopic to an n-valued continuous multifunction @ M - M with ¢"|Q = .
Let N be a closed tubular neighbourhood of Q with Fix @' N = {x, xz‘}. Then
(p:’lN splits according to the Splitting Lemma 2.4. We index the splitting
"IN = {f1, /2, -, 1y} 50 that £;]Q = g,, and use Lemma 3.2 to choose ¢ >0 so
that f; is y(¢'')-homotopic relative BAN to a map fi: N— M with Fixf{
= Fix f; —{x,}. It we define ¢’: M — M by o ’

o) = {{f{(x),fz(x), s fu(x)} for
o"'(x) for

then ¢’ has the properties described in Lemma 3.3,

xehN,
xeM~N,
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4. Special homotopies of n-paths. Let Q = g(I), for g: I > M, be an arcin M
and a: I — M an n-valued continuous multifunction. We say that « is an n-path
from x; to xp if @ = {ay,a,,..,4,} can be indexed so that a,(0) = x; and
a,(1) = x,, and call & special (with respect to g) if & = {ay,ay, ..., a,} can be indexed
so that

a;(0) = q(0), a,(1) = q(1)
and .
afs) #q(s) for i=1,0<s<landi##1,0<5<1.

Homotopy of n-paths is always understood to be relative to their endpoints, i.e. two
n-paths og, o1 I - M are called homotopic if there exists an n-valued continuous
multifunction {o},ert IxT— M so that 4(0) = 0g(0) and ey(1) = ay(1) for all
t el Two special n-paths o, oy IxI — M are called specially homotopic if there
exists a homotopy {of};er: I — M so that every n-path «: J— M is a special
n-path. Hence an n-valued continuous multifunction {Hy, Hy, ..., H,} is a special
homotopy if and only if it can be indexed so that

H(0,0) = q0), Hi(l,£) = ¢(1) for 0<1<1,
(1) Hs,f)#q@) for i=1,0<s<1,0<¢<1 and i#1,0<s,2<1,
Hi(o’ t) = Hi(O’ O)i Hi(lit) = Hi(l"o) for i= 2,3:"':71‘

Special homotopies of n-valued multifunctions and of n-paths are related as follows.

Lemma 4.2. Let Q = g(I) be an arc in Mfrom Xy 10 Xy, let @2 M — M be an
n-valued continuous multifunction with Fixe n Q = {x;, x,} and let a: I - M be
an n-path from x, 10 x,. Then the n-valued continuous rultifunction olQ: 0 M
is specially homotopic to the n-valued continuous multifunction o g Q-Mif
and only if the n-path a: I - M is specially homotopic to the n-path ¢ © ¢: I M.

Proof. If gx1: IxI— QxI is given by (gx1)(s, 1) = (4(s),1) and
&: IxI — M is a special homotopy from @|Q toa s q Y, then Po(gx1): IxI—> M
is a special homotopy from « to ¢ og. The converse is proved similarly, using
@xD) 1 QxI—1Ixl

The mext lemma, which is crucial for the proof of Theorem 5.2, is modelled
on [4], Lemma 5.1, but its proof is much simpler for manifolds.

LemMa 4.3. Let M be a compact manifold of dimension 2 3. If two n-paths
0, oyt I — IntM are special with respect to an arc q: I — Int M and are homotopic,
then they are specially homotopic with respect to gq.

Proof. Let {o}ier = {Hi, Hz, ..., H,} be the given homotopy, indexed so
that (4.1) is satisfied. Using a collaring argument if Bd M # @ we can assume that
Hs, t)eIntM forall i = 1,2, ..,n, 0<s, 1< 1. We write y for the gap of {&}rer
and §: IxI - IntM for the map defined by g(s,?) = q(s) for all (s,t)elIxl

We can use the Coincidence Lemma 2.2, with P = IxJ = {(s, )] 0<s,t< 1},
P, = BdP, P, = (BAI)xI and with H; and gy instead of f and g, to change H;
to H| with Hi(s,t) = H(s, #) for all (s,?)e(BdI)x ], Hi(s, 1) # g(s, t) for all
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(s, tye (Int7)x T and d(Hj;q) <%y. Then we use the Coincidence Lemma 2.2 with,
P =1IxI, P, =(BdxI, Py =@ and H; (i=2), ¢ instcad of f, g to change H,
for+iz2-to H{ with Hils, t) = Hs, ) for all (BAD) x I, H{(s,1) % §(s, t) for all

(s,0€IxI and d(H,, )<}y The homotopy {ebiey = {H{, Hj, ) H}} is

a special homotopy from o, to «;.

5. Proof of the Minimum Theorem. The proof of the Minimum Theorem for
maps needs three steps: an approximation by a fix-finite map, the uniting of two fixed
points in the same fixed point class and (if necessary) the removal of an isolated
fixed point of index zero. For n-valued continuous multifunctions, the first step wag
done in [9], and the second will be described in the proof of Theorem 5.2, We shall
now deal with the third one. The index ind (¢, x) of an isolated fixed point x of thcf
n-valued continuous multifunction @: M — M, where x lies in o maximal simplex
of M, was defined in [I1], §3. If @|F = {f;, /2, . fi} and fi(x) = x, then
ind(p, x) = ind(f;, x), where ind(f;, x) is the ordinary fixed point index of the
map fi at x [3], p. 122.

Lemma 5.1. (Fixed points of index zero). Let o be a maximal simplex: of the com--

pact polyhedron |K| and let x & o be an isolated fixed point of index zero of the n-valued
contiriuous multifunction @: |K| = |K|. Then @ is homotopic to an n-valued continuous
multifunction ¢': |K| - |K| so that Fixe' = Fixep-{x}.

Proof. Let Uco be a closed Euclidean neighbourhood of x with
UnFixe = {x}. We index ¢|U={f,fs, ... ;} so that f,(x) =x, hence
ind(fy,x) = 0. Then we select §>0 so that the two maps Lof U~ K with
dA(f,f)<ydnd f = f on BdU are y(p)-homotopic relative Bd U, where p(p) > 0
is the gap of ¢. (See the proof of Corollary 4, Ch. 11T A, p. 40 in [3].) It follows
from [3], Theorem 4, Ch, VIII B, p. 123, that there exists a map fi: U~ K with
a(fi, 1)<, fi'=f, on BAU and Fixf{.n U = @. If we define o't |K| - |K| by

’ _ {fl’(x)afz(x): veey n(»x)} for xe U,
‘q)(x)—{‘P(x) for xelK|-U,

thenAthe 7(¢)-homotopy from f; to f7 induces a homotopy from ¢ to the n-valued
continuous muitifunction ¢’ with Fixe' = Fixp—{x}.

We are finally ready to prove the Minimum Theorem for z-valued continuous
multifunctions.

THEOREM 5.2. (Minimum Theorem). Let M be a compact triangulable manifold
(with or without boundary) of dimension > 3. Then every n=valyed continmous. multi-
Junction @i M = M is homotopic 10 an n-valued continuous multifunction ¢'s M - M
which has N(@) fixed points.

. Proof. According to [9], Theorem 6 and [11], Lemma 4.1 we can assume that 1)
is fix-finite and that all its fixed points are isolated and lie in maximal simplexes.
If B‘dM # @, then a collaring argument allows us to assume that @(M) < IntM.
Inview of Lemma 5.1 it is therefore sufficient to show that if x; and x, are two isolated
fixed points of an n-valued continuous multifunction @: M - Int M which belong

icm°

Minimum theoreny for n-valued multifunctions o1

to the same fixed point class, then ¢ is homotopic to an n-valved continuous multi-
function ¢': M — IntM with Fixe’ = Fixp—{x,}. :
" So let x; and x, be two isolated fixed points in the same fixed point class of
@: M~ IntM. As in [11], § 5 this means that there exists a path gq: I~ M from
x; to x, so that @ o g = {ay,a;, ..., a,}, where a,(0) = x;, a;(1) = x, and ¢, is
homotopic to ¢ relative {0, 1}, and according to [11], Lemma 6.1 we can assume that
q(I) = Q is an arc in Int M with Fixp n @ = {x;, x,}. Let 7 >0 be chosen so that
d(g, u)>n for i=2,3,..,n, and let p(p)>0 be the gap of ¢.
We determine &> 0 as in Lemma 3.3, and define a path p;: 7— IntM by
pos) = g(s—dsinzms), 0<s<l,
where § = §(g) >0 is sclected so that d(p,. ¢) <min(e, #). Then d(p,, a;) >0 for
i=2,3,..,n and therefore a, = {p,, ¢y, .., t,}: T~ IntM is an n-path.

As «, is homotopic to ¢, it is homotopic to p, relative {0, 1}, and we can assume
that this homotopy is of the form Hy: IxI — IntM. We define H;: I'xI— IntM,
for i=2,3,..,n, by Hfs,1) =a/s) for all (s,)eIxI. As H(s, 1) # Hfs, )
for s =0,1 or =0, we can use .the Coincidence Lemma 2.2, with P = IXI
={(s,0)] 05,11}, Py={(s,0)] s=0,1 or t =0}, P, = and with H,,
H, instead of fand g, to change H; to H: I'xJ = IntM so that for i = 2,3, ...,n

Hi(s,t) = Hs,t) fors=0,1ort=0,
Hi(s, 1) % H(s,1) forall (s,t)elIxI,
d(H;, HY) <min(3y(e), 7).
Ifi,j=2,3,..,n and i # j, then
AW, H) 2 d(H,, H)—a(H;, B)—d(H;, H)>0,

s0 W = {Hy, H}, ..., H.} is n-valued. If we define a;: I — IntM by ai(s) = Hi(s, 1),
then ¥ is a homotopy from the n-path ¢ o q to the n-path «;, = {Pes ey i}

As the paths ¢ o ¢ and af, are special, it follows from Lemma 4.3 that they are
specially homotopic, hence Lemma 4.2 shows that ¢|Q is specially homotopic to
W= olog™t O — M. But d(p,, ¢) <é so we see from Lemma 3.3 that ¢ is homo-
topic to an am-valued continuous multifunction ¢": M — M with Fixg'’
= Fixp—{x,}. Using a collaring argument we can obtain ¢’ as desired.

Remark 5.3. An inspection shows how the arguments leading to the proof
of the Minimum Theorem 5.2 simplify if » = 1, i.e. if ¢ is a map. In this case
Lemma 5.1 is well known and Lemmas 3.1 and 4.2 are contained in [4], Lemma 2.1
and beginning of § 4. Therefore all that is required to prove the Minimum Theorem
for selfmaps of compact triangulable manifolds are Lemmas 2.1 and 2.2, slightly
shortened proofs of Lemmas 3.2 and 3.3, the first half of the proof of Lemma 4.3
and the beginning and end of the proof of Theorem 5.2.

b .
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Stratégies gagnantes
dans certains jeux topologiques

par

Gabriel Debs (Paris)

Abstract. We prove that on an a-favorable space for the Banach-Mazur game, there exists
always an a~winning strategy depending only ona and # last moves. We give an example of a com~
pletely regular a-favorable space on which the player a has no winning strategy depending only
on f last move,

Tntroduction, Rappelons que le jeu de Banach-Mazur sur un espace topologique

(X, 7) est un jeu infini ol deux joueurs o et § choisissent alternativement & chaque

coup, un ouvert non vide contenu dans Iouvert choisi par I'autre joueur au coup

précédent; c’est le joueur B qui commence & jouer. Ainsi au cours d’une partie les

joueurs o et § construisent deux suites d’ouverts non vides (¥, )uey €t (U Tespecti-

vement, avec V, > U, o V,,; le joueur a gagne la partie si N U, =NV, # @.
neN neN

Le jeu (ou I’espace X) est dit «-favorable si le joueur « posséde une stratégie gagnante.
L’interét des espaces o-favorables tient au fait quils forment une large classe
d’espaces de Baire stable par produit et qui contient tous les cas classiques.

La notion de stratégie est utilisée ici au sens des jeux & information parfaite,
cest-d-dire qu’a chaque coup les joueurs sont informés de tous les coups précédem-
ment jouds et un joueur peut tenir compte de ces informations dans la construction
d’une statégic. Le but de ce travail est d’étudier pour un jeu o-favorable donné,
Pexistence de stratégies simples: plus précisément on s’intéressera & trois types de
stratégies:

(I) Les stratégies o dépendant seulement du dernier coup joué (par le joueur f),
Sest-a-dire de la forme a(Vy, Up, Vis ers Uy, V) = 7(Va).

(IT) Les stratégies o dépendant seulement des deux derniers coups joucs (les der-
niers coups joués par Jes joueurs o et f§ respectivement), c’est-d-dire de la forme:
(Vo Ugs Viy ey Un-1s Vi) = ©(Uy-1, Vn)'

(IID) Les stratégies ¢ dépendant seulement des deux derniers coups joués par le
joueur B, cest-d-dire de la forme (¥, Uo, Vs s Vam1s Un=1s V) = 1(Vye1s Vo)-
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