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Paracompactness
in the class of closed images of GO -spaces

by

Witold Bula (Warszawa)

Abstract. We prove that closed images of GO-spaces are paracompact if and only if they
contain no closed copies of stationary sets. In addition, we show that every closed continuous
map from a GO-space G onto a paracompact space X can be extended to a closed continuous
map from some paracompact GO-space containing G onto X.

R. Engelking and D. Lutzer [2] proved the following characterization of
paracompactness in the class of GO-spaces: a. GO-space is not paracompact if
and only if it contains a closed subset which is homeomorphic to a stationary sub-
set of a regular uncountable cardinal.

The aim of the present paper is to show that the same property characterizes
paracompactness in the (larger) class of images of GO-spaces under closed continu-
ous maps as well. In addition, we prove that every closed continuous map from
a GO-space G onto a paracompact space X can be extended to a closed continuous
map from some paracompact GO-space containing G onto X.

Let us note that our Lemma 2 expresses ideas which are similar to those in-
cluded either in the conclusion or in the proof of the mentioned result due to
R. Engelking and D. Lutzer [2].

All ordinals below are considered as linearly ordered topological spaces. Let
us recall that a subset of a regular uncountable cardinal x is said to be sfationary
if it meets all closed unbounded subsets of k. The crucial fact about stationary
sets is the following

PrEssiNG DowN Lomva (G. Fodor; see [6], Theorem 8 p. 347). Let S be
a stationary subset of a regular wuncountable cardinal x. If @: S — x is a function
such that @(a) <o for aeS—{0}, then there exists an ordinal y<r such that
o (v is stationary. ’ .

By Lim we will denote the class of all limit ordinals. By A% we will denote the
set of all cluster points of a set 4.

Let G be a GO-space. A pair {4, B) is called a pseudo-gap in G if both A
and B are open subsets of G such that 4 U B = G, each point of 4 precedes each
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point of B and either 4 # @ and 4 has no last point or B # & and B has no first
point.

A pair {a, by of points of G is called a jump in G if a<b and [a, b] = {a, b};
points a, b are called (the /eft and the right, respectively) ends of a jump in G.

Let us recall that every GO-space G has a linearly ordered compactification
which preserves the order on G (cf. [1], Problem 3.12.3 (b)). By an easy modifi-
cation of the usual construction of this, we may obtain a linearly ordered com-
pactification AG of G which preserves the order on G and such that for every pseudo-
gap (4, B) in G the intersection cl,g4 N clyeB is empty. Let us note that there
is the unique linearly ordered compactification of G which satisfics this condition;
namely, AG is maximal among linearly ordered compactifications of G (cf. V. V. Fe-
dorduk [3] and R. Kaunfman [5]). Notice that each point p e AG—G is an end of
a jump in AG. Furthermore, a pair {4, B) of subsets of G is a pseudo-gap in G if
and only if there is a point p € AG—G suchthat 4 = («,p) n Gand B = (p, —»)NG.

A pseudo-gap (4, By in G is called a left pseudo-Q-gap in G if there is a regular
cardinal x> ® and an increasing sequence P = {p,: « <x} <A such that P has
no upper bound in 4 and for each limit p, y <wx, supyc{p.: « <y} ¢ G. A right
pseudo-Q-gap is defined analogously. A pseudo-gap {4, B) is called a pseudo-Q-gap
in G if either 4 has the last point or {4, B) is the left pseudo-Q-gap in G and either
B has the first point or (4, B) is a right pseudo-Q-gap in G. A pseudo-gap {4, B)
in G is called a left (right) pseudo-non-Q-gap in G if 4 has no last point (B has no
first point) and {4, B) is not a left (right) pseudo-Q-gap in G. The concept of
(pseudo)-Q-gaps for lincarly ordered spaces is originally due to L. Gillman and
M. Henriksen {4]; for GO-spaces it was introduced by D. Lutzer [7].

Amap @: X Z° ¥Yis called an embedding (of X into Y)if it is a homeomorphism
when considered as a map from X onto ¢(X). }

Let G and G' be GO-spaces. A function ¢: G — G' is said to be order-preserving
(order-reversing) if ¢(a)< @(b) whenever «,beG and a<b (a=b).

The elementary proof of the following lemma is omitted.

Lemma 1. Let K be a compact ordered space, p a point of K and x a regular
cardinal. The the weight of the space («, p] < K at the point p is equal to x if and
only if there exists an order-preserving embedding ¢: w+1 — («,p] such that
o({x}) = {p}.

Lemva 2. Let G be a GO-space, {4, B) a pseudo-gap
P =sup,;cA ¢G. Then

() {4, B) is a left pseudo-Q-gap in G if and only if either AG is first countable
at p or there is a regular uncountable cardinal x and an order-preserving embedding
@1 k+1 = AG—G such that ¢({x}) = {p},

in G such that

(b) {4, B) is a left pseudo-non-Q-gap in G if aid only if there is a stationary
subset S of a regular uncountable cardinal and an order-preserving embedding @: S — A
such that ¢(S) is a closed subset of G and sup,s¢(S) = p.
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Proof. (a) I. Let {4, B) be a left pseudo-Q-gap in G. Suppose that AG is not
first countable at p. Let {p,: o <x} = A be a sequence from the definition of a Ieft
pseudo-Q-gap. Notice that 1 > w. Put g, = sup,s{p,: & <} for limit o < . Notice
that g, € A\G—G. Let Y:  — & N Lim be an increasing enumeration of limit ordinals.
Put @ () = gy for e <, and ¢({x}) = {p}. Notice that ¢ satisfies the conclusion
of our lemma. .

II. If AG is first countable at p, then there is an increasing sequence P
= {p,: n<w} < AG which converges to p. Since G is dense in 1G, we may assume
that P < G. Thus, {4, B) is a left pseudo-Q-gap in G.

Now, suppose that there exists a rcgular uncountable cardinal x and an
order-preserving embedding ¢: x+1 -+ 1G—G such that ¢ {x}) = {p}. Notice that
for every « <« the sct (@ (o), @(x+2)) N G is nonempty. Choose a point r, from this.
for every limit &, @ <. Let Y k+1 - (x+1) n Lim be an increasing enumeration
of limit ordinals. Put Pa = Fy@ for o <x. Notice that p, € G and, for limit § <x,
sup;g{p.: a< By = o(y(B)) € A\G—G. Thus, {4, B) is a left pseudo-Q-gap in G.

(b) 1. Let {4, B) be a left pseudo-non-Q-gap in G. Then AG is not first count-
able at p, and so, by Lemma 1, there exists a regular uncountable cardinal x and
an order-preserving embedding ¢: x+1 - AG such that §({x}) = {p}. By (a),
the set k N $~1(AG—G) does not contain any closed unbounded subset of x, and
so the set !(G) is stationary. Put § = ¢"1(G) and ¢ = @|S. Observe that ¢(S)
=G n@(+1), and so @(S) is closed relatively to G. Obviously, ¢(S) =4 and
sup;6 ¢ (S) = p.

II. Let S be a stationary subset of a regular uncountable cardinal x and let
@: S — A4 be an order-preserving embedding such that ¢(S) is closed in G and
sup;ge(S) = p. Let p be a regular cardinal and let {p,: « < u} = 4 be an increasing
sequence such that sup,g{p,: «<p} = p. Notice that u = «, since both u and
i are regular. Both sets ¢(S) and {p,: o <x} have no upper bound in 4, and so
we can define by induction increasing functions : x — S and y: ¥ — x such that
@ (@) < Py < @((a+1)) for @ <x. The set y(x) is unbounded in x, and so
there exists an ordinal Be§ A [W(S)]" Denote 4 = {ax<k: (x) <p}. Observe
that sup,(4) = fe S, and so supgp(Y(A) = ¢(f) € A. Thus, sup{p,u: o€ 4}
= supgp(Y(A)) = ¢ () & A. Hence, {4, B) is a left pseudo-non-Q-gap in G.

Let G be a GO-space. The following notation will be used below.

G~ = {sup4d e AG: {4, B) is a left pseudo-non-Q-gap in G},

G* = {infBe AG: {4, B) is a right pseudo-non-Q-gap in G}, and

GF=GuG UGt

LemmA 3. The space G* is paracompact for every GO-space G.

Proof. Let {4, B) be a pseudo-gap in G. Assume that 4 # & and p
= sup,eA ¢ G. If 1G is first countable at p, then {4, B) is a left pseudo-Q-gap

in G*. Assume that AG is not first countable at p. Notice that {4 n G, Bn Gis
a pscudo-gap in G, and, since p ¢ G*, it is a left pseudo-Q-gap in G. Thus, by
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Lemma 2 (a), there exists a regular uncountable cardinal x and an order-preserving
.embedding ¢: x+1 — AG—G such that o({x}) = {p}.

Fix a limit ordinal y <. Let ,: cfy — y be an increasing continuous function.
Define ,: (cfy)+1 - y+1 by assuming Wylefy = ¥, and ¥,({cfy}) = {y}. Notice
that the map ¢ o t/?,,: (cfy)+1 — AG~G is an order-preserving embedding, and so
the pair {(«,p®) NG, (¢, )N G) is a left pseudo-Q-gap in G. Thus,
90) ¢ G~

Hence, ¢((x+1) n Lim) = AG—G, and so {4, B) is a left pseudo-Q-gap in G*,
"Thus, each gap in G* is a pseudo-Q-gap, and so G* is paracompact in view of
D. Lutzer Theorem [5]. )

Remark. The paracompactness of G* has an interesting interpretation in the
space G. For formulating this, let us define a special type of coverings of G. An
open cover % of a GO-space G will be called a Q-cover of G if for each left (right)
pseudo-non-0-gap {4, B) in G there is a set Ue¥ (Ve %) and a point ped
{q € B) such that (p, ») n A= U ((«~, ) n B= V). Now, Lemma 3 can be equiva-
lently expressed as follows.

LemmA 3'. Every Q-cover of a GO-space has a locally finite open refinement.

Lemma 4. Let S be a stationary subset of a regular uncountable cardinal « and
let f be a closed map. from S onto a space X. If each fibre of f is a nonstationary
subset of k, then X contains a closed copy of a stationary set.

Proof. The family {f~(x): x & X} is a partition of § onto fionstationary sets,
and 50, by Pressing Down Lemma, the set {minf~*(x): x € X} contains a stationary
subset S’ which is closed relatively to S. Thus, the map f|F: S'— f($’) is closed
and one-to-one, and so it is a homeomorphism.

LeMMA S. Let @ be an order-preserving embedding of a stationary subset S of
a regular uncountable cardinal into a GO-space G. If ¢(S) is » closed unbounded
subset of G, then for every open subset U of G containing ¢ (S) there exists a point
PG such that (p, »)<=U.

Proof. Let C(a), where o€ S, be a convex component of U which contains
¢(@). Put f(&) = min(¢~*(C(«))). Notice that f(3) <y for every y e S ~ S and so,
by Pressing Down Lemma, there exists an element y, such that /= *({yo}) is
stationary. Observe that the point p = ¢ (y,) satisfies the conclusion of our lemuma.

Let G be a GO-space and U an open subset of G. We will use the following
notation.

U=Uu{peG: there is a point r <p such that (r,p) n Gc U} L
U {geG*: there is a point s> ¢ such that (g,s) n G U}.

LeMMA 6. Let G be a GO-space and U an open subset of G.If L is an open convex
subset of AG such that LA G< U, then L A G*<U.

) Proof. Fix a point peL n G™. The point p is not the right end of a jump
in 4G, and so there is a point r <p such that (r,p] =L. Thus, (r,p) n G=Ln
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~nGcU, and so pe U. Hence, LA G~ <T; analogously, L n GT < U, and so
LnGtcU.

Lemma 7. Let G be a GO-space. Then for every open subset U of G the set U
is open in G*.

Proof. Let U be an open subset of G and p a point of U.

If pe U, then there exist points @, b e AG such that peintygla, ] n G U.
By Lemma 6, we have peintgla,blnG*e U, and so peintgl,

Ifpe U n G~, then there is a point r < p such that (r, p) n G < U. By Lemma 6,
(r,p)nG*c 0. Since p is the left end of a jump in 1G, the set (v, p] is open in AG.
Thus, p e (r, p] 0 G* cinte 0.

The case of pe ¥ n G* is analogous.

Lemma 8. Let G be a GO-space, F a closed subset of G* and U an open subset
of G* containing F. Then there exists an open set W< G* such that Fc W< U and

for every convex component C of W, if sup,cCeG™, then sup,cCe W, and if

inf;sCe G, then inf;sCe W.

Proof. Let D be a convex component of U. Notice that the set Fn U is
closed in G*.

Assume that x = inf;gD € G* —D. Then x ¢ F and, since x is not the left end
of a jump in AG, there is a point p e D n G such that (x, p] n F= @. Put D'= D n
A(p, ). In the case when x¢G*—D, put D’ = D.

Analogously, if y = sup,aD € G~ —D, then there is a point ge D n G such
that [q, y) N F = @. In this case, put C(D) = D' N (+, 4); in the opposite case,
put C(D) = D'. Notice, that the set W = |J {C(D): D is a convex component
of U} satisfies the conclusion of our lemma.

LeMMA 9. Let G be a GO-space and V an open subset of G* such that for evel;y
convex component C of V, if sumeeG“, then sup,cC eV and if inf)cCeG™,

then inf,sCe V. Then VG = V.

Proof. Fix a point pe VnGn G™.

Since p € Vnr?-(‘?—G, there is a point g <p such that (g, p) n G = V. The point
peG, and so, by Lemma 2 (b), there is a stationary subset S of a regular un-A
countable cardinal and an order-preserving cmbedding @: S — (¢,p) n G such
that ¢(S) is closed in G and supo(S) = p. .

Suppose that p ¢ V. Put F = ([¢, p) n G¥)—V. Observe that F is closed in
G*~{p}. Let C be a convex component (in G*) of the set (7,p) 0 V. Since p ¢ ¥,
we have supC < p. Thus, supF = p.

Define a function y: F— ¢(S) by assuming ¥(x) = min{y € ¢(S): x<y%l.
The set ¢ ~1( (F)) is unbounded in S, and so there is an ordinal a € § nlo™* (W .(F ))] .
Notice that @(@) e F' A ¢(S), and so FAn Vo Fno(S) # 4 a contradiction.

e~

Hence, ¥ n G < V. The reverse inclusion is obvious. ‘
The following lemma results immediately from Lemmas 8 and 9.
4 — Fundamenta Mathematicae CXXVL 3 ,
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LEMMA ‘IO. Let G be a GO-space, F a closed subset of G* and U an open subset
oft\G_’* containing F. Then there exists an open set V< G* such that Fe Ve U and
¥nG =7,

THEOREM. Let f be a closed continuous map from a GO-space G onto a space X.
If X does not contain any closed subset homeomorphic to a stationary subset 01.”
a regular uncountable cardinal, then there exists a closed continuous map f from G*
onfo X such that f|G = f. Consequently, the Spdce X is paracompact.

P%‘oof. I.’ut F) = f(p), for peG.

Fix a point q.e G™. By Lemma 2 (b), there is a stationary subset § of a regular
un;o?ntable c-ardlnal and an order-preserving embedding ¢: 8- G such that
[ f( ) is closed in G and supg.(S) = ¢. The space X does not contain closed copies
o _ftatxonary :ielts, an'd 50, by Lemma 4, there is a (unique) point x & X such that
© .(qo(ﬁ) Nf7Yx)) is a stationary subset of S. Denote S(@) = ¢(8) nfx)
Notice that sups.S(g) = ¢. Put f(g) = x. -
} Analogo%lsly, if ¢ eQ*, then there exists a closed subset S(g) of G which is
1omeomo.rphlc to a stationary set (by an order-reversing homeomorphism) and
such that inf4S(g) = g, and a point x € X such that S(S(@) = {x}. Define f(q) = x.

Let us observe that f ~Y(U) = f ‘1(U) for each open subset U of X.

f-hf fact, F "' (U) n G = £ "1 (U) = F~1(U) A'G. Ifgef~Y(U) n G-, then S(g)
; (U). Thus, by Lemma (5,\;}here is a point r < ¢ such that (7, g) " G f “XU).
But :thlS implies that gef ~Y(U). Conversely, if gef %) N G7, then there is
;1 point r <g such that (r, ) n G = f ~(U). Notice that the set §" = S@ (. q)
s:?\qnempty, and so f({g}) = f(S(@)) = /(S) = U. Thus, gef{(U), and so
fr Oy ei . )

Hence, in view of L i i i
oo e I of Lemma 7, the map f is continuous. We will show that it is

Fix a point x € X and an open set U = G* which contains F7Yx). By Lemma 10

}l}eée is an open set V'« G* such that f "'(x) = V= U and Vcn“G = V. The ma
: G — X is closed, and so there is an open set W< X such that £ ~(x) Cf"l(Wl;
;:gor;eg.m;rm;s, f-l*(x)cf-l(m =f W) eVaG=vel, ad so f is
p from G* onto X.
paracF;;a;Z} ge:suzv :ﬁ)tei nth;lit, by Lemmz% 3, the space G* is paracompact, an so X is
o, , ew of E. Michael’s Theorem [8] (see also [1], Theorem
con,,-g;i,?;@;‘{ tlj;e]{ :; I;Ac‘zraco'nqmcr space is an image of a GO-space under a closed
continious mﬂp, then ¥ an image of some paracompact GO-space under a closed
In view of E. Michael’s Theorem [9] (see also [1], Problem 5.5.11 (), every

n P p P P pact- - ]
closed continuous maj fr om a paracompact 18 CO. ct-coverin, T hl.lS we
space mpa £
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COROLLARY 2. If a compact space is an image of a GO-space under a closed
continwous map, then it is a continuous image of some compact ordered space as well.
In the following corollary we formulate the announced characterization of

paracompactness.

COROLLARY 3. Let a space X be an image of a GO-space under a closed continu-
ous map. The X is not paracompact if and only if it contains a closed subset which
is homeomorphic to a stationary subset of a regular uncountable cardinal.

COROLLARY 4. Let a space X be an image of ¢« GO-space under a closed continu-
ous map. Then X is not hereditarily paracompact if and only if it contains a subset
which is homeomorphic to a stationary subset of a regular uncountable cardinal.
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