

Paracompactness in the class of closed images of GO-spaces

bs

Witold Bula (Warszawa)

Abstract. We prove that closed images of GO-spaces are paracompact if and only if they contain no closed copies of stationary sets. In addition, we show that every closed continuous map from a GO-space G onto a paracompact space X can be extended to a closed continuous map from some paracompact GO-space containing G onto X.

R. Engelking and D. Lutzer [2] proved the following characterization of paracompactness in the class of GO-spaces: a GO-space is not paracompact if and only if it contains a closed subset which is homeomorphic to a stationary subset of a regular uncountable cardinal.

The aim of the present paper is to show that the same property characterizes paracompactness in the (larger) class of images of GO-spaces under closed continuous maps as well. In addition, we prove that every closed continuous map from a GO-space G onto a paracompact space X can be extended to a closed continuous map from some paracompact GO-space containing G onto X.

Let us note that our Lemma 2 expresses ideas which are similar to those included either in the conclusion or in the proof of the mentioned result due to R. Engelking and D. Lutzer [2].

All ordinals below are considered as linearly ordered topological spaces. Let us recall that a subset of a regular uncountable cardinal κ is said to be *stationary* if it meets all closed unbounded subsets of κ . The crucial fact about stationary sets is the following

PRESSING DOWN LEMMA (G. Fodor; see [6], Theorem 8 p. 347). Let S be a stationary subset of a regular uncountable cardinal κ . If $\varphi \colon S \to \kappa$ is a function such that $\varphi(\alpha) < \alpha$ for $\alpha \in S - \{0\}$, then there exists an ordinal $\gamma < \kappa$ such that $\varphi^{-1}(\{\gamma\})$ is stationary.

By Lim we will denote the class of all limit ordinals. By A^d we will denote the set of all cluster points of a set A.

Let G be a GO-space. A pair $\langle A, B \rangle$ is called a pseudo-gap in G if both A and B are open subsets of G such that $A \cup B = G$, each point of A precedes each

point of B and either $A \neq \emptyset$ and A has no last point or $B \neq \emptyset$ and B has no first point.

A pair $\langle a, b \rangle$ of points of G is called a jump in G if a < b and $[a, b] = \{a, b\}$; points a, b are called (the *left* and the *right*, respectively) *ends of a jump in G*.

Let us recall that every GO-space G has a linearly ordered compactification which preserves the order on G (cf. [1], Problem 3.12.3 (b)). By an easy modification of the usual construction of this, we may obtain a linearly ordered compactification λG of G which preserves the order on G and such that for every pseudogap $\langle A, B \rangle$ in G the intersection $\operatorname{cl}_{\lambda G} A \cap \operatorname{cl}_{\lambda G} B$ is empty. Let us note that there is the unique linearly ordered compactification of G which satisfies this condition; namely, λG is maximal among linearly ordered compactifications of G (cf. V. V. Fedorčuk [3] and R. Kaufman [5]). Notice that each point $p \in \lambda G - G$ is an end of a jump in λG . Furthermore, a pair $\langle A, B \rangle$ of subsets of G is a pseudo-gap in G if and only if there is a point $p \in \lambda G - G$ such that $A = (\leftarrow, p) \cap G$ and $B = (p, \rightarrow) \cap G$.

A pseudo-gap $\langle A, B \rangle$ in G is called a left pseudo-Q-gap in G if there is a regular cardinal $\kappa \geqslant \omega$ and an increasing sequence $P = \{p_\alpha : \alpha < \kappa\} \subset A$ such that P has no upper bound in A and for each limit γ , $\gamma < \kappa$, $\sup_{\lambda G} \{p_\alpha : \alpha < \gamma\} \notin G$. A right pseudo-Q-gap is defined analogously. A pseudo-gap $\langle A, B \rangle$ is called a pseudo-Q-gap in G if either A has the last point or $\langle A, B \rangle$ is the left pseudo-Q-gap in G and either G has the first point or G is a right pseudo-G-gap in G. A pseudo-gap G is called a left (right) pseudo-non-G-gap in G if G has no last point (G has no first point) and G is not a left (right) pseudo-G-gap in G. The concept of (pseudo)-G-gaps for linearly ordered spaces is originally due to G. Gillman and G is the left pseudo-G-gaps for linearly ordered spaces is originally due to G. Lutzer [7].

A map $\varphi: X \xrightarrow{\text{into}} Y$ is called an *embedding* (of X into Y) if it is a homeomorphism when considered as a map from X onto $\varphi(X)$.

Let G and G' be GO-spaces. A function $\varphi: G \to G'$ is said to be order-preserving (order-reversing) if $\varphi(a) \leqslant \varphi(b)$ whenever $a, b \in G$ and $a \leqslant b$ ($a \geqslant b$).

The elementary proof of the following lemma is omitted.

LEMMA 1. Let K be a compact ordered space, p a point of K and κ a regular cardinal. The the weight of the space $(\leftarrow, p] \subset K$ at the point p is equal to κ if and only if there exists an order-preserving embedding $\varphi \colon \kappa+1 \to (\leftarrow, p]$ such that $\varphi(\{\kappa\}) = \{p\}$.

LEMMA 2. Let G be a GO-space, $\langle A,B\rangle$ a pseudo-gap in G such that $p=\sup_{AG}A\notin G$. Then

- (a) $\langle A, B \rangle$ is a left pseudo-Q-gap in G if and only if either λG is first countable at p or there is a regular uncountable cardinal κ and an order-preserving embedding $\varphi \colon \kappa + 1 \to \lambda G G$ such that $\varphi(\{\kappa\}) = \{p\}$,
- (b) $\langle A, B \rangle$ is a left pseudo-non-Q-gap in G if and only if there is a stationary subset S of a regular uncountable cardinal and an order-preserving embedding $\varphi \colon S \to A$ such that $\varphi(S)$ is a closed subset of G and $\sup_{B \to B} \varphi(S) = p$.

Proof. (a) I. Let $\langle A,B\rangle$ be a left pseudo-Q-gap in G. Suppose that λG is not first countable at p. Let $\{p_{\alpha}\colon \alpha<\kappa\}\subset A$ be a sequence from the definition of a left pseudo-Q-gap. Notice that $\kappa>\omega$. Put $q_{\alpha}=\sup_{\lambda G}\{p_{\xi}\colon \xi<\alpha\}$ for limit $\alpha<\kappa$. Notice that $q_{\alpha}\in\lambda G-G$. Let $\psi\colon\kappa\to\kappa\cap Lim$ be an increasing enumeration of limit ordinals. Put $\varphi(\alpha)=q_{\psi(\alpha)}$ for $\alpha<\kappa$, and $\varphi(\{\kappa\})=\{p\}$. Notice that φ satisfies the conclusion of our lemma.

II. If λG is first countable at p, then there is an increasing sequence $P = \{p_n \colon n < \omega\} \subset \lambda G$ which converges to p. Since G is dense in λG , we may assume that $P \subset G$. Thus, $\langle A, B \rangle$ is a left pseudo-Q-gap in G.

Now, suppose that there exists a regular uncountable cardinal κ and an order-preserving embedding $\varphi \colon \kappa+1 \to \lambda G-G$ such that $\varphi \{\kappa\} = \{p\}$. Notice that for every $\alpha < \kappa$ the set $(\varphi(\alpha), \varphi(\alpha+2)) \cap G$ is nonempty. Choose a point r_α from this for every limit $\alpha, \alpha < \kappa$. Let $\psi \colon \kappa+1 \to (\kappa+1) \cap Lim$ be an increasing enumeration of limit ordinals. Put $p_\alpha = r_{\psi(\alpha)}$ for $\alpha < \kappa$. Notice that $p_\alpha \in G$ and, for limit $\beta < \kappa$, sup ${}_{\lambda G} \{p_\alpha \colon \alpha < \beta\} = \varphi(\psi(\beta)) \in \lambda G-G$. Thus, $\langle A, B \rangle$ is a left pseudo-Q-gap in G.

(b) I. Let $\langle A, B \rangle$ be a left pseudo-non-Q-gap in G. Then λG is not first countable at p, and so, by Lemma 1, there exists a regular uncountable cardinal κ and an order-preserving embedding $\tilde{\varphi} \colon \kappa+1 \to \lambda G$ such that $\tilde{\varphi}(\{\kappa\}) = \{p\}$. By (a), the set $\kappa \cap \tilde{\varphi}^{-1}(\lambda G - G)$ does not contain any closed unbounded subset of κ , and so the set $\tilde{\varphi}^{-1}(G)$ is stationary. Put $S = \tilde{\varphi}^{-1}(G)$ and $\varphi = \tilde{\varphi}|S$. Observe that $\varphi(S) = G \cap \tilde{\varphi}(\kappa+1)$, and so $\varphi(S)$ is closed relatively to G. Obviously, $\varphi(S) \subset A$ and $\sup_{\lambda G} \varphi(S) = p$.

II. Let S be a stationary subset of a regular uncountable cardinal κ and let $\varphi\colon S\to A$ be an order-preserving embedding such that $\varphi(S)$ is closed in G and $\sup_{\lambda G} \varphi(S) = p$. Let μ be a regular cardinal and let $\{p_\alpha\colon \alpha<\mu\}\subset A$ be an increasing sequence such that $\sup_{\lambda G} \{p_\alpha\colon \alpha<\mu\} = p$. Notice that $\mu=\kappa$, since both μ and κ are regular. Both sets $\varphi(S)$ and $\{p_\alpha\colon \alpha<\kappa\}$ have no upper bound in A, and so we can define by induction increasing functions $\psi\colon \kappa\to S$ and $\chi\colon \kappa\to \kappa$ such that $\varphi(\psi(\alpha))< p_{\chi(\alpha)}<\varphi(\psi(\alpha+1))$ for $\alpha<\kappa$. The set $\psi(\kappa)$ is unbounded in κ , and so there exists an ordinal $\beta\in S\cap [\psi(S)]^d$. Denote $A=\{\alpha<\kappa\colon \psi(\alpha)<\beta\}$. Observe that $\sup_\alpha\psi(A)=\beta\in S$, and so $\sup_G\varphi(\psi(A))=\varphi(\beta)\in A$. Thus, $\sup_\alpha\{p_{\chi(\alpha)}\colon \alpha\in A\}=\sup_G\varphi(\psi(A))=\varphi(\beta)\in A$. Hence, A is a left pseudo-non-A-gap in A-

Let G be a GO-space. The following notation will be used below.

 $G^- = \{\sup A \in \lambda G : \langle A, B \rangle \text{ is a left pseudo-non-} Q\text{-gap in } G\},$

 $G^+ = \{\inf B \in \lambda G: \langle A, B \rangle \text{ is a right pseudo-non-} Q\text{-gap in } G\}, \text{ and } G^* = G \cup G^- \cup G^+.$

 $G^* = G \cup G^- \cup G^+.$

Lemma 3. The space G^* is paracompact for every GO-space G.

Proof. Let $\langle A, B \rangle$ be a pseudo-gap in G. Assume that $A \neq \emptyset$ and $p = \sup_{\lambda G} A \notin G$. If λG is first countable at p, then $\langle A, B \rangle$ is a left pseudo-Q-gap in G^* . Assume that λG is not first countable at p. Notice that $\langle A \cap G, B \cap G \rangle$ is a pseudo-gap in G, and, since $p \notin G^*$, it is a left pseudo-Q-gap in G. Thus, by

Lemma 2 (a), there exists a regular uncountable cardinal κ and an order-preserving embedding $\varphi \colon \kappa+1 \to \lambda G - G$ such that $\varphi(\{\kappa\}) = \{p\}$.

Fix a limit ordinal $\gamma < \kappa$. Let ψ_{γ} : $cf\gamma \to \gamma$ be an increasing continuous function. Define $\hat{\psi}_{\gamma}$: $(cf\gamma)+1 \to \gamma+1$ by assuming $\hat{\psi}_{\gamma}|cf\gamma = \psi_{\gamma}$ and $\hat{\psi}_{\gamma}(\{cf\gamma\}) = \{\gamma\}$. Notice that the map $\varphi \circ \hat{\psi}_{\gamma}$: $(cf\gamma)+1 \to \lambda G - G$ is an order-preserving embedding, and so the pair $\langle (\leftarrow, \varphi(\gamma)) \cap G, (\varphi(\gamma), \to) \cap G \rangle$ is a left pseudo-Q-gap in G. Thus, $\varphi(\gamma) \notin G^*$.

Hence, $\varphi((\kappa+1) \cap Lim) = \lambda G - G$, and so $\langle A, B \rangle$ is a left pseudo-Q-gap in G^* . Thus, each gap in G^* is a pseudo-Q-gap, and so G^* is paracompact in view of D. Lutzer Theorem [5].

Remark. The paracompactness of G^* has an interesting interpretation in the space G. For formulating this, let us define a special type of coverings of G. An open cover $\mathscr U$ of a GO-space G will be called a Q-cover of G if for each left (right) pseudo-non-Q-gap $\langle A, B \rangle$ in G there is a set $U \in \mathscr U$ ($V \in \mathscr U$) and a point $P \in A$ ($Q \in B$) such that $(P, \to) \cap A \subset U$ (($(\leftarrow, q) \cap B \subset V$). Now, Lemma 3 can be equivalently expressed as follows.

LEMMA 3'. Every Q-cover of a GO-space has a locally finite open refinement.

Lemma 4. Let S be a stationary subset of a regular uncountable cardinal κ and let f be a closed map from S onto a space X. If each fibre of f is a nonstationary subset of κ , then X contains a closed copy of a stationary set.

Proof. The family $\{f^{-1}(x): x \in X\}$ is a partition of S onto nonstationary sets, and so, by Pressing Down Lemma, the set $\{\min f^{-1}(x): x \in X\}$ contains a stationary subset S' which is closed relatively to S. Thus, the map $f|F: S' \to f(S')$ is closed and one-to-one, and so it is a homeomorphism.

LEMMA 5. Let φ be an order-preserving embedding of a stationary subset S of a regular uncountable cardinal into a GO-space G. If $\varphi(S)$ is a closed unbounded subset of G, then for every open subset U of G containing $\varphi(S)$ there exists a point $p \in G$ such that $(p, \to) \subset U$.

Proof. Let $C(\alpha)$, where $\alpha \in S$, be a convex component of U which contains $\varphi(\alpha)$. Put $f(\alpha) = \min(\varphi^{-1}(C(\alpha)))$. Notice that $f(\gamma) < \gamma$ for every $\gamma \in S \cap S^d$, and so, by Pressing Down Lemma, there exists an element γ_0 such that $f^{-1}(\{\gamma_0\})$ is stationary. Observe that the point $p = \varphi(\gamma_0)$ satisfies the conclusion of our lemma.

Let G be a GO-space and U an open subset of G. We will use the following notation.

 $\widetilde{U} = U \cup \{ p \in G^- : \text{ there is a point } r q \text{ such that } (q, s) \cap G \subset U \}.$

LEMMA 6. Let G be a GO-space and U an open subset of G. If L is an open convex subset of λG such that $L \cap G \subset U$, then $L \cap G^* \subset \tilde{U}$.

Proof. Fix a point $p \in L \cap G^-$. The point p is not the right end of a jump in λG , and so there is a point r < p such that $(r, p] \subset L$. Thus, $(r, p) \cap G \subset L \cap G$

 \cap $G \subset U$, and so $p \in \widetilde{U}$. Hence, $L \cap G^- \subset \widetilde{U}$; analogously, $L \cap G^+ \subset \widetilde{U}$, and so $L \cap G^* \subset \widetilde{U}$.

LEMMA 7. Let G be a GO-space. Then for every open subset U of G the set \tilde{U} is open in G^* .

Proof. Let U be an open subset of G and p a point of \tilde{U} .

If $p \in U$, then there exist points $a, b \in \lambda G$ such that $p \in \operatorname{int}_{\lambda G}[a, b] \cap G \subset U$. By Lemma 6, we have $p \in \operatorname{int}_{\lambda G}[a, b] \cap G^* \subset \widetilde{U}$, and so $p \in \operatorname{int}_{G^*}\widetilde{U}$.

If $p \in \widetilde{U} \cap G^-$, then there is a point r < p such that $(r, p) \cap G \subset U$. By Lemma 6, $(r, p) \cap G^* \subset \widetilde{U}$. Since p is the left end of a jump in λG , the set (r, p] is open in λG . Thus, $p \in (r, p] \cap G^* \subset \operatorname{int}_{G^*} \widetilde{U}$.

The case of $p \in \tilde{U} \cap G^+$ is analogous.

LEMMA 8. Let G be a GO-space, F a closed subset of G^* and U an open subset of G^* containing F. Then there exists an open set $W \subset G^*$ such that $F \subset W \subset U$ and for every convex component C of W, if $\sup_{\lambda G} C \in G^-$, then $\sup_{\lambda G} C \in W$, and if $\inf_{\lambda G} C \in G^+$, then $\inf_{\lambda G} C \in W$.

 $P_{\texttt{TOOf.}}$ Let D be a convex component of U. Notice that the set $F \cap U$ is closed in G^* .

Assume that $x = \inf_{\lambda G} D \in G^+ - D$. Then $x \notin F$ and, since x is not the left end of a jump in λG , there is a point $p \in D \cap G$ such that $(x, p] \cap F = \emptyset$. Put $D' = D \cap G$ (p, \to) . In the case when $x \notin G^+ - D$, put D' = D.

Analogously, if $y = \sup_{\lambda G} D \in G^- - D$, then there is a point $q \in D \cap G$ such that $[q, y) \cap F = \emptyset$. In this case, put $C(D) = D' \cap (\leftarrow, q)$; in the opposite case, put C(D) = D'. Notice, that the set $W = \bigcup \{C(D) \colon D \text{ is a convex component of } U\}$ satisfies the conclusion of our lemma.

LEMMA 9. Let G be a GO-space and V an open subset of G^* such that for every convex component C of V, if $\sup_{\lambda G} C \in G^-$, then $\sup_{\lambda G} C \in V$ and if $\inf_{\lambda G} C \in G^+$, then $\inf_{\lambda G} C \in V$. Then $\widehat{V \cap G} = V$.

Proof. Fix a point $p \in V \cap G \cap G^-$.

Since $p \in V \cap G - G$, there is a point q < p such that $(q, p) \cap G \subset V$. The point $p \in G^-$, and so, by Lemma 2 (b), there is a stationary subset S of a regular unacountable cardinal and an order-preserving embedding $\varphi \colon S \to (q, p) \cap G$ such that $\varphi(S)$ is closed in G and $\sup \varphi(S) = p$.

Suppose that $p \notin V$. Put $F = ([q, p) \cap G^*) - V$. Observe that F is closed in $G^* - \{p\}$. Let C be a convex component (in G^*) of the set $(q, p) \cap V$. Since $p \notin V$, we have $\sup C < p$. Thus, $\sup F = p$.

Define a function $\psi \colon F \to \varphi(S)$ by assuming $\psi(x) = \min\{y \in \varphi(S) \colon x < y\}$. The set $\varphi^{-1}(\psi(F))$ is unbounded in S, and so there is an ordinal $\alpha \in S \cap [\varphi^{-1}(\psi(F))]^d$. Notice that $\varphi(\alpha) \in F^d \cap \varphi(S)$, and so $F \cap V \supset F \cap \varphi(S) \neq \emptyset$; a contradiction.

Hence, $V \cap G \subset V$. The reverse inclusion is obvious.

The following lemma results immediately from Lemmas 8 and 9.

^{4 -} Fundamenta Mathematicae CXXVI. 3

LEMMA 10. Let G be a GO-space, F a closed subset of G^* and U an open subset of G^* containing F. Then there exists an open set $V \subset G^*$ such that $F \subset V \subset U$ and $V \cap G = V$.

Theorem. Let f be a closed continuous map from a GO-space G onto a space X. If X does not contain any closed subset homeomorphic to a stationary subset of a regular uncountable cardinal, then there exists a closed continuous map \tilde{f} from G^* onto X such that $\tilde{f}|G=f$. Consequently, the space X is paracompact.

Proof. Put $\tilde{f}(p) = f(p)$, for $p \in G$.

Fix a point $q \in G^-$. By Lemma 2 (b), there is a stationary subset \hat{S} of a regular uncountable cardinal and an order-preserving embedding $\varphi \colon \hat{S} \to G$ such that $\varphi(\hat{S})$ is closed in G and $\sup_{G^*} \varphi(\hat{S}) = q$. The space X does not contain closed copies of stationary sets, and so, by Lemma 4, there is a (unique) point $x \in X$ such that $\varphi^{-1}(\varphi(\hat{S}) \cap f^{-1}(x))$ is a stationary subset of \hat{S} . Denote $S(q) = \varphi(\hat{S}) \cap f^{-1}(x)$. Notice that $\sup_{G^*} S(q) = q$. Put $\hat{f}(q) = x$.

Analogously, if $q \in G^+$, then there exists a closed subset S(q) of G which is homeomorphic to a stationary set (by an order-reversing homeomorphism) and such that $\inf_{G^*} S(q) = q$, and a point $x \in X$ such that $f(S(q)) = \{x\}$. Define f(q) = x.

Let us observe that $f^{-1}(U) = f^{-1}(U)$ for each open subset U of X.

In fact, $\tilde{f}^{-1}(U) \cap G = f^{-1}(U) = f^{-1}(U) \cap G$. If $q \in \tilde{f}^{-1}(U) \cap G^-$, then $S(q) \subset f^{-1}(U)$. Thus, by Lemma 5, there is a point r < q such that $(r, q) \cap G \subset f^{-1}(U)$. But this implies that $q \in f^{-1}(U)$. Conversely, if $q \in f^{-1}(U) \cap G^-$, then there is a point r < q such that $(r, q) \cap G \subset f^{-1}(U)$. Notice that the set $S' = S(q) \cap (r, q)$ is nonempty, and so $f(\{q\}) = f(S(q)) = f(S') \subset U$. Thus, $q \in \tilde{f}^{-1}(U)$, and so $f^{-1}(U) \subset \tilde{f}^{-1}(U)$.

Hence, in view of Lemma 7, the map \tilde{f} is continuous. We will show that it is closed as well.

Fix a point $x \in X$ and an open set $U \subset G^*$ which contains $\tilde{f}^{-1}(x)$. By Lemma 10, there is an open set $V \subset G^*$ such that $\tilde{f}^{-1}(x) \subset V \subset U$ and $V \cap G = V$. The map $f \colon G \to X$ is closed, and so there is an open set $W \subset X$ such that $f^{-1}(x) \subset f^{-1}(W) \subset V \cap G$. Thus, $\tilde{f}^{-1}(x) \subset \tilde{f}^{-1}(W) = f^{-1}(W) \subset V \cap G = V \subset U$, and so f is a closed map from G^* onto X.

Finally let us note that, by Lemma 3, the space G^* is paracompact, an so X is paracompact as well, in view of E. Michael's Theorem [8] (see also [1], Theorem 5.1.33).

COROLLARY 1. If a paracompact space is an image of a GO-space under a closed continuous map, then it is an image of some paracompact GO-space under a closed continuous map as well.

In view of E. Michael's Theorem [9] (see also [1], Problem 5.5.11 (e)), every closed continuous map from a paracompact space is compact-covering. Thus, we have the following.

COROLLARY 2. If a compact space is an image of a GO-space under a closed continuous map, then it is a continuous image of some compact ordered space as well.

In the following corollary we formulate the announced characterization of paracompactness.

COROLLARY 3. Let a space X be an image of a GO-space under a closed continuous map. The X is not paracompact if and only if it contains a closed subset which is homeomorphic to a stationary subset of a regular uncountable cardinal.

COROLLARY 4. Let a space X be an image of a GO-space under a closed continuous map. Then X is not hereditarily paracompact if and only if it contains a subset which is homeomorphic to a stationary subset of a regular uncountable cardinal.

References

- [1] R. Engelking, General Topology, Warszawa 1977.
- [2] R. Engelking and D. Lutzer, Paracompactness in ordered spaces, Fund. Math. 44 (1977), 49-58.
- [3] V. V. Fedorčuk, (В. В. Федорчук), Некопорые вопросы теории упорядоченных пространств, Спбирский Мат. Журн. 10 (1969), 172–187. (Some questions in the theory of ordered spaces; English transl.: Siberian Math. J. 10 (1969), 124–132).
- [4] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362.
- [5] R. Kaufman, Ordered sets and compact spaces, Colloq. Math. 17 (1967), 35-39.
- [6] K. Kuratowski and A. Mostowski, Set Theory, Warszawa 1976.
- [7] D. Lutzer, Ordinals and paracompactness in ordered spaces; in: TOPO 72, Proc. of the Second Pittsburgy Topology Conference, Lecture Notes in Math. 378, 258-266.
- [8] E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828.
- [9] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.

INSTYTUT MATEMATYCZNY PAN INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Akademicka 2 15-267 Bialystok

Received 29 November 1984