Normality and hereditary countable paracompactness of Pixley–Roy hyperspaces

by

Hidenori Tanaka (Ibaraki)

Abstract. In this paper, for the Pixley–Roy hyperspace \(\mathcal{F}(M) \) of a metric space \(M \), it will be shown that \(\mathcal{F}(M) \) is normal if and only if \(\mathcal{F}(M) \) is hereditarily countably paracompact.

Introduction. Throughout this paper, all spaces are assumed to be \(T_1 \)-spaces and \(M \) always denotes a metric space. Pixley–Roy hyperspace of the real line was defined by C. Pixley and P. Roy in [5] and later generalized by B. K. van Douwen in [1]. The Pixley–Roy hyperspace \(\mathcal{F}(X) \) of a space \(X \) has as its underlying set the collection of all nonempty finite subsets of \(X \). If \(F \in \mathcal{F}(X) \), then the basic open neighborhoods of \(F \) are of the form \(\{G \in \mathcal{F}(X) : F \subset G \subset U\} \), where \(U \) is an open subset of \(X \) containing \(F \). Therefore \(\{F \in \mathcal{F}(X) : F \subset U\} \) is closed if and only if \(F \subset V \) and \(H \subset U \). It was pointed out in [1] that every Pixley–Roy hyperspace is a zero-dimensional hereditarily metacompact space and \(\mathcal{F}(X) \) is a Moore space if and only if \(X \) is first countable.

\(M \) is said to be a \(q \)-set if every subset of \(M \) is an \(F_{\sigma} \)-set in \(M \) and a strong \(q \)-set if every finite power of \(M \) is a \(q \)-set. If, in addition, \(M \) is separable, then \(M \) is said to be a \(Q \)-set and a strong \(Q \)-set respectively. It is well known that the existence of an uncountable \(Q \)-set is indecomposable in ZFC and is equivalent to the existence of a separable normal nonmetrizable Moore space. T. Przymusinski [7] showed that the existence of an uncountable \(Q \)-set is equivalent to the existence of an uncountable strong \(Q \)-set.

Studying countable paracompactness in separable Moore spaces led to the notion of \(\mathcal{A} \)-sets. \(M \) is said to be a \(\mathcal{A} \)-set if \(M \) is separable and for any decreasing sequence \(\{A_n : n \in \mathbb{N}\} \) of subsets of \(M \) having \(\bigcap \{A_n : n \in \mathbb{N}\} = \emptyset \), there is a sequence \(\{U_n : n \in \mathbb{N}\} \) of open subsets of \(M \) having \(A_n \subset U_n \) for each \(n \in \mathbb{N} \) and \(\bigcap \{U_n : n \in \mathbb{N}\} = \emptyset \) and a strong \(\mathcal{A} \)-set if every finite power of \(M \) is a \(\mathcal{A} \)-set. It is clear that any \(Q \)-set (strong \(Q \)-set) is a \(\mathcal{A} \)-set (strong \(\mathcal{A} \)-set). The argument given by T. Przymusinski in [6] shows that any \(\mathcal{A} \)-set must have cardinality less than \(c \), where \(c \) is the cardinality of continuum. Thus any \(\mathcal{A} \)-set is strongly zero-dimensional.

E. K. van Douwen, T. Przymusinski and G. M. Reed showed that the existence...
of a separable countably paracompact nonmetrizable Moore space is equivalent to the existence of an uncountable \mathcal{A}-set (see [6]).

For normality and countable paracompactness of Pixley-Roy hyperspaces of metric spaces, M. E. Rudin [10], T. Przymusiński [8] and D. J. Lutzer [4] obtained the following elegant results (see also T. Przymusiński and F. D. Tall [9]): (1) if M is separable then $\mathcal{F}[M]$ is normal if and only if M is a strong \mathcal{A}-set; (2) if M is strongly zero-dimensional then $\mathcal{F}[M]$ is normal if and only if M is a strong \mathcal{A}-set; and (3) if M is a strong \mathcal{A}-set then $\mathcal{F}[M]$ is countably paracompact.

Our purpose of this paper is to show the equivalence of normality and hereditary countable paracompactness of Pixley-Roy hyperspaces of metric spaces. To do so we introduce a notion of an almost strong \mathcal{A}-set, which is intermediate between the notions of a \mathcal{A}-set and a strong \mathcal{A}-set. Our result may be of interest in connection with the following D. J. Lutzer’s problem in [4]: Is every strong \mathcal{A}-set a strong \mathcal{A}-set?

Let N denote the set of natural numbers. For \mathcal{A}-sets and \mathcal{A}-sets, see W. G. Fleissner [2].

§ 1. Preliminaries. Let $n \in N$ and let π be a permutation of $(1, ..., n)$. For a point $x = (x_1, ..., x_n) \in X^n$, let $(x) = (x_{\pi(1)}, ..., x_{\pi(n)})$. A subset A of X^n, $n \in N$, is symmetric if for any permutation $(1, ..., n)$, $(x) \in A$. Let M be said to be an almost strong \mathcal{A}-set if for any $n \in N$, every symmetric subset of M^n is an F_{σ}-set in \mathcal{A}.

Clearly every strong \mathcal{A}-set is an almost strong \mathcal{A}-set and every almost strong \mathcal{A}-set is a \mathcal{A}-set. Some results concerning almost strong \mathcal{A}-sets are given.

Lemma 1.1. If M is strongly zero-dimensional, then M is a strong \mathcal{A}-set if and only if M is an almost strong \mathcal{A}-set.

Proof. It suffices to prove the “if” part. Let M be a strongly zero-dimensional almost strong \mathcal{A}-set. Then M is linearly orderable (see H. Herrlich [3]). Let π be a linear order on M generating the topology of M. Take $n \in N$ and assume that we have already proved that M^n is a \mathcal{A}-set. Then $Z = \{(x_1, ..., x_n) : x_1 < x_2 < ... < x_{n+1}\}$.

Then M^{n+1} is a finite union of F_{σ}-sets which are either homeomorphic to Z or to some $M^n(k \leq n)$. In order to prove that M^{n+1} is a \mathcal{A}-set, it is enough to prove that Z is a \mathcal{A}-set. Let \mathbb{A} be an arbitrary subset of Z and let $\mathbb{A} = \bigcup \{\mathcal{A}(\pi) : \pi \text{ is a permutation of } \{1, ..., n+1\}\}$. Then \mathbb{A} is a symmetric subset of M^{n+1}. Since M is an almost strong \mathcal{A}-set, \mathbb{A} is an F_{σ}-set in M^{n+1}. Thus $\mathbb{A} = \mathbb{A} \cap Z$ is an F_{σ}-set in Z. Hence Z is a \mathcal{A}-set. It follows that M is a strong \mathcal{A}-set.

Proposition 1.2. For every non-\(\sigma\)-discrete almost strong \mathcal{A}-set M, there are non-\(\sigma\)-discrete strong \mathcal{A}-set M' and a one-to-one continuous mapping from M' onto M.

Proof. By Lemma 1.1, it is essentially proved by T. Przymusiński (see [3], Lemma 5.10).

The following lemma is the key to our theorem. For a point $x = (x_1, ..., x_n) \in X^n$ and $n \in N$, let $F_x = \{x_1, ..., x_n\}$. Let $|M|$ denote the cardinality of a set A.

Lemma 1.3. Let X and Y be subsets of a metric space M such that $M = X \cup Y$ and $X \cap Y = \emptyset$. If X is an almost strong \mathcal{A}-set and Y is a closed subset of M with $|Y| \leq n_0$, then M is an almost strong \mathcal{A}-set.

Proof. Let A be a subset of M. Then $A \cap X$ is an F_{σ}-set in X. Since X is an F_{σ}-set in M, $A \cap X$ is an F_{σ}-set in M. Since $|Y| \leq n_0$, it follows that $A = (A \cap X) \cup (A \cap Y)$ is an F_{σ}-set in M. Hence M is a \mathcal{A}-set. Take $n \in N$ and assume that we have already proved that every symmetric subset of M^n is an F_{σ}-set in M^n. Let $Z = \{(x_1, ..., x_{n+1}) : x_i \neq x_j \text{ for } i, j \leq n+1 \text{ and } i \neq j\}$.

Then Z is an open subset of M^{n+1}. We shall show that every symmetric subset of Z is an F_{σ}-set in Z. Let A be a symmetric subset of Z. Since X is an almost strong \mathcal{A}-set and Y is a closed subset of M with $|Y| \leq n_0$, we may assume that for each point $z = (z_1, ..., z_{n+1}) \in A$, $1 \leq |F_z \cap Y| \leq n$. Let $S = \{z = (y_1, ..., y_n) : A \text{ is a

ordered pair of distinct elements of } Y \text{ and } 1 \leq k \leq n\}$. Then we have $|S| \leq n_0$. Fix $z = (y_1, ..., y_n) \in S$. Define A_z as follows: $z = (z_1, ..., z_{n+1}) \in A_z$ if and only if $z \in A$, $F_z \cap Y = F_z$ and $y_i = y_j$ for some $(y_1, ..., y_n) = (y_1, ..., y_n)$ such that $i < j$ and $i, j \leq k$ or $i < j < k$. Let $x = (z_1, ..., z_{n+1}) \in A_z$ and let $\{z_1, ..., z_{n+1}\}$ be a symmetric subset of $(1, ..., n+1)$ such that $z_i = y_j$ for $j \leq k$. Let $m_1, ..., m_{n+1}$ be the following sequence: $m_{n+k} = (1, ..., n+1) - \{z_1, ..., z_{n+1}\}$ such that if $p, q \leq n+k-1$ and $p \neq q$, then $m_p \neq m_q$. Define $x_n = (a_{n+1}, ..., a_{n+k})$. Then x_n is a point of M^{n-k+1}. Let $B_n = \{x_n : x \in A_z\}$. Then B_n is a symmetric subset of M^{n-k+1}. Thus there is a sequence $\{B_n : p \in N\}$ of closed subsets of M^{n-k+1} such that $B_n = \bigcup \{B_n : p \in N\}$. Without loss of generality, we can assume that each B_n is symmetric. For each $p \in N$, let $H_n = \{z \in A : F_z = F_z \text{ for some } w \in E_n\}$. It is easy to check that each H_n is closed in M^{n-k+1} since $A = \bigcup \{B_n : p \in N\}$ is an F_{σ}-set in M^{n-k+1}. Thus M^{n-k+1} is a finite union of Z and F_{σ}-sets which are homeomorphic to some M^{n-k+1}, it follows that every symmetric subset of M^{n+1} is an F_{σ}-set in M^{n+1}. Thus M is an almost strong \mathcal{A}-set.

Lemma 1.4. Let $f : M \to M'$ be a perfect mapping from a metric space M onto a metric space M'. If M is an almost strong \mathcal{A}-set, then M' is also an almost strong \mathcal{A}-set.

Proof. For each $n \in N$, let $f^n : M^n \to M''$ be a perfect mapping from M^n onto M'' induced by f. Let A be a symmetric subset of M^n and $n \in N$. Then $(f^n)^{-1}(A)$ is a symmetric subset of M^n. Since M is an almost strong \mathcal{A}-set, $(f^n)^{-1}(A)$ is an F_{σ}-set in M^n. Thus A is an F_{σ}-set in M^n. Hence M' is an almost strong \mathcal{A}-set.

§ 2. Normality and hereditary countable paracompactness. For each $n \in N$, let $\mathcal{F}[X] = \{F \subseteq \mathcal{F}[X] : |F| \leq n\}$. Notice every $\mathcal{F}[X]$ is a closed subspace of $\mathcal{F}[X]$ and in particular, $\mathcal{F}[X]$ is a discrete closed subspace of $\mathcal{F}[X]$.

Let d be a compatible metric on M. For each $F \in \mathcal{F}[M]$, let $B(F, 1/n) = \bigcup \{B(x, 1/n) : x \in F\}$, where $B(x, 1/n) = \{y \in M : d(x, y) < 1/n\}$.

We give the main theorem in this paper.

Theorem 2.1. The following are equivalent.

(a) $\mathcal{F}[M]$ is normal.
(b) $\mathcal{F}[M]$ is hereditarily countably paracompact.
(c) M is an almost strong g-set.

Proof. (a) \Rightarrow (b). Since $\mathcal{F}[M]$ is a perfectly normal space, this implication is obvious.

(b) \Rightarrow (c). We may assume that M is not discrete. Let x be a nonisolated point of M and let $\{x_n : n \in \mathbb{N}\}$ be a sequence of distinct points of $M - \{x\}$ converging to x. Let $Z = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ and let $Y = M - Z$. Then Z is a compact subset of M. In order to prove this implication, from Lemma 1.3, it suffices to prove that Y is an almost strong g-set. To see this, let Y' be a space considering the following new topology on Y: for each $y \in Y'$, the basic open neighborhoods of y are of the form $B(y, 1/n) \cup B(z, 1/n) \cap Y'$ and $n \in \mathbb{N}$. Then Y' is first countable and consequently, $\mathcal{F}[Y']$ is a Moore space. It is clear that if O is an open neighborhood of $F \cup \{x, x_n\}$ in M, where $F \in \mathcal{F}[Y']$ and $n \in \mathbb{N}$ then $O \cap Y'$ is an open neighborhood of F in Y', we need the following claim.

Claim. $\mathcal{F}[Y']$ is normal for each $n \in \mathbb{N}$.

Proof of Claim. We shall show that every $\mathcal{F}[Y']$ is perfectly normal. If $n = 1$, then $\mathcal{F}[Y']$ is a discrete space. Thus $\mathcal{F}[Y']$ is normal. Let $n \geq 2$ and assume that \mathcal{F} is a closed subset of $\mathcal{F}[Y']$. It is enough to prove that there is a sequence $\{\mathcal{F}_m : m \in \mathbb{N}\}$ of open subsets of $\mathcal{F}[Y']$ satisfying $\mathcal{F} = \bigcap \{\mathcal{F}_m : m \in \mathbb{N}\}$ (see P. Zarnor). (11) [For each $m \in \mathbb{N}$, let

$$\mathcal{F}_m = \{F \cup \{x, x_n\} : F \in \mathcal{F}\}.$$

Define $\mathcal{F}_m = \{F \cup \{x, x_n\} : F \in \mathcal{F}\}$, if and only if $F \in \mathcal{F}_m$ or $F = G \cup \{x, x_n\}$, where $G \in \mathcal{F}[Y'] - \mathcal{F}$ and there is an open subset O in M containing F such that $[G, O \cap Y'] \cap \mathcal{F} = \emptyset$. Let $\mathcal{F} = \{F \cup \{x, x_n\} : F \in \mathcal{F}\}$ and let

$$\mathcal{F} = \bigcup \{\mathcal{F}_m : m \in \mathbb{N}\}.$$

We consider \mathcal{F} with the subspace topology of $\mathcal{F}[M]$. Then each \mathcal{F}_m is an open-and-closed subset of \mathcal{F}. Let $\mathcal{F}_m = \{F \cup \{x, x_n\} : m \in \mathbb{N}\}$ be the decreasing sequence of closed subsets of \mathcal{F} having $\bigcap \{\mathcal{F}_m : m \in \mathbb{N}\} = \emptyset$. To see this, assume that $F \not\in \mathcal{F}_m$ and $m \in \mathbb{N}$. In case of $F \in \mathcal{F}$ and $m \in \mathbb{N}$, then \mathcal{F}_m is an open neighborhood of F in \mathcal{F} such that $\mathcal{F}_m \cap \mathcal{F} = \emptyset$. In case of $F \in \mathcal{F}$ and $m \not\in \mathbb{N}$, then $F = G \cup \{x, x_n\}$ for some $G \in \mathcal{F}[Y']$. Then we have $G \not\in \mathcal{F}$. Thus there is an open neighborhood O of F in M such that $[G, O \cap Y'] \cap \mathcal{F} = \emptyset$. Assume that $K \in [F, O] \cap \mathcal{F} = \emptyset$. Then $K = J \cup \{x, x_n\}$ for some $J \in \mathcal{F}$ and $p \not\in m$. From the construction of \mathcal{F}, we have $p = r$. Thus we have $K = J \cup \{x, x_n\}$ and consequently, $J \not\in [G, O \cap Y'] \cap \mathcal{F} = \emptyset$. This is a contradiction. Thus it follows that $[F, O \cap Y'] \cap \mathcal{F} = \emptyset$.

Therefore $\mathcal{F}[Y']$ is perfectly normal for each $n \in \mathbb{N}$.
Now we show that Y is an almost strong q-set. Let A be a subset of Y. Let \(\mathcal{A} = \{ (x, y) : x \in A \} \) and \(\mathcal{B} = \{ (y, x) : y \in Y \setminus A \} \). Then \(\mathcal{A} \) and \(\mathcal{B} \) are disjoint closed subsets of \(\mathcal{S}_Y[Y] \). Since \(\mathcal{S}_Y[Y] \) is normal, there are disjoint open subsets \(U \) and \(\nu' \) of \(\mathcal{S}_Y[Y] \) such that \(U \in \mathcal{A} \) and \(\nu' \in \mathcal{B} \). For each \(n \in \mathbb{N} \), let

\[
A_n = \{ (y, x) : (y, x) \in \mathcal{B} \} \cap Y \cap \mathcal{S}_Y[Y] \subset U \cap \nu'.
\]

Since \(A = \bigcup \{ A_n : n \in \mathbb{N} \} \), in order to prove that \(A \) is an \(F_\nu \)-set in \(Y \), it suffices to prove that \(c_1A_n \in A \) for each \(n \in \mathbb{N} \). Suppose that \((y, x) \in Y \setminus A \). Then there is a natural number \(m \) such that \((y, x) \in B(y, 1/m) \cap \mathcal{S}_Y[Y] \). Since \(y \in A_m \), there is an \((y, x) \in A_n \) such that \(y \in B(y, 1/m) \cap Y \). Then

\[
(y, y') \in \mathcal{B}(y', 1/m) \cap B(x, 1/m) \cap Y \cap \mathcal{S}_Y[Y] \setminus \mathcal{S}_Y[Y] = \emptyset.
\]

This is a contradiction. Thus it follows that \(c_1A_n \in A \) for each \(n \in \mathbb{N} \). Hence \(A \) is an \(F_\nu \)-set in \(Y \). Thus \(Y \) is a \(q \)-set. Take \(n \in \mathbb{N} \) and assume that we have already proved that every symmetric subset of \(Y \) is an \(F_\nu \)-set in \(Y \). Let

\[
O = \{(x_1, ..., x_n) : i \neq j \text{ for } i, j \leq n+1 \text{ and } i \neq j \}
\]

Since \(Y^{n+1} \) is a finite union of \(O \) and \(F_\nu \)-sets which are homeomorphic to some \(Y^k \) (\(k \leq n \)), it is enough to prove that every symmetric subset of \(O \) is an \(F_\nu \)-set in \(O \). Let \(A \) be a symmetric subset of \(O \). Let \(\mathcal{A} = \{ (y, x) : y \in A \} \) and \(\mathcal{B} = \{ (x, y) : x \in A \} \). Then \(\mathcal{A} \) and \(\mathcal{B} \) are disjoint closed subsets of \(\mathcal{S}_{n+1}[Y] \). By the Claim, \(\mathcal{S}_{n+1}[Y] \) is perfectly normal and consequently, \(\mathcal{S}_{n+1}[Y] \) is hereditarily normal. Thus \(\mathcal{S}_{n+1}[Y] \setminus \mathcal{S}_Y[Y] \) is normal. Hence there are disjoint open subsets \(U \) and \(\nu' \) of \(\mathcal{S}_{n+1}[Y] \setminus \mathcal{S}_Y[Y] \) such that \(U \in \mathcal{A} \) and \(\nu' \in \mathcal{B} \). For each \(m \in \mathbb{N} \), let \(A_m = \{ (y, x) : (y, x) \in \mathcal{B} \} \cap \mathcal{S}_Y[Y] \setminus \mathcal{S}_Y[Y] \subset U \cap \nu'. \) Clearly \(A = \bigcup \{ A_n : m \in \mathbb{N} \} \). We shall show that \(c_1A_m \in A \) for each \(m \in \mathbb{N} \). Assume that \(y = (y_1, ..., y_n) \in O \setminus A \cap c_1A_m \) for some \(m \in \mathbb{N} \). Then we have \(F_y \in \mathcal{B} \setminus \nu' \). Then there is a \(k \in \mathbb{N} \) such that \((y_1, 1/k) \mid 1 = 1, ..., n+1 \) is pairwise disjoint in \(M \) and

\[
F_y \cap F_0 \cap B(y, 1/k) \cap B(x, 1/k) \cap \mathcal{B}(x, 1/m) < \mathcal{S}_{n+1}[Y] \setminus \mathcal{S}_Y[Y] \subset U \cap \nu'.
\]

Since \(y \in c_1A_m \), there is a \(y' = (y_1', ..., y_n') \in y \cap B(y, 1/k) \cap A_n \). Thus we have \(y' \in B(y, 1/k) \) for each \(i = 1, ..., n+1 \). Hence we have \(F_y \subset B(F_0, 1/k) \). Since \(k \geq m \), we have \(F_0 \subset B(F_0, 1/m) \). Hence

\[
F_y \cap F_0 \cap B(F_0, 1/m) \cap B(x, 1/m) \subset \mathcal{B}(x, 1/m) \cap \mathcal{S}_Y[Y] \setminus \mathcal{S}_Y[Y] \subset U \cap \nu',
\]

which is a contradiction. Thus it follows that \(c_1A_m \in A \) for each \(m \in \mathbb{N} \). Hence \(A \) is an \(F_\nu \)-set in \(O \). Therefore it follows that \(Y \) is an almost strong \(q \)-set.
Increasing strengthenings of cardinal function inequalities

by

I. Juhasz and Z. Szentmiklochy (Budapest)

Abstract. We prove that the following increasing strengthenings of two cardinal function inequalities given in [2] and [1] respectively are valid.

THEOREM 1. If $X = T_4$ and $X = \bigcup X_n$ (i.e. X is the union of an increasing chain of its subspaces X_n) and $c(X_n) \cdot c(X) \leq \kappa$ for all n then $|X| \leq 2^\kappa$.

THEOREM 2. If $X = T_4$ and $X = \bigcup X_n$, where $X_n = T_4$ and $nL(X_n) \cdot c(X) \leq \kappa$ for all n then $|X| \leq 2^\kappa$.

In [3] the first author has initiated the study of strengthening certain cardinal function inequalities in the following manner. A general form of a cardinal function inequality may be given as follows: If ϕ is some given cardinal function and X is a space having some property P then $\phi(X) \leq \kappa$. We call an increasing strengthening of this inequality any statement of the following form: If $X = \bigcup X_n$ is the increasing union of its subspaces X_n, where every X_n has property P and X has property Q then $\phi(X) \leq \kappa$.

A number of such increasing strengthenings of inequalities were proven in [3], as a major problem, however, it remained open whether the inequality $|X| \leq 2^{|X_n|}$, for any T_2 space X, admits such an increasing strengthening.

Theorem 1 of the present paper gives the affirmative answer to this question. The ideas needed in the proof of Theorem 1, with appropriate modifications, also allowed us to show that the inequality $|X| \leq 2^{nL(X) \cdot c(X)}$ for any T_4 space X proved in [1] also admits an increasing strengthening.

Notation and terminology, unless otherwise explained, is identical with that used in [3].

THEOREM 1. If $X = \bigcup X_n$ is T_2 and $c(X_n) \cdot c(X) \leq \kappa$

holds for each n then $|X| \leq 2^\kappa$.