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The structure of w,-like orderings
by

Vietor Harnik (Haifa), Mark E. Nadel* (Notre Dame, IN) and
Jonathan Stavi (Ramat Gan)

Abstract, We show that if [ is a structure having a binary relation < that is an w,like
ordering, then the Scott-height of [ is < w,. We obtain additional structural information for
the case of 3 which has, besides <, only unary relations.

To any structure one can attach its Scott-height, an ordinal described e.g. in
[2] or [1] (c.f. also § O of this paper). The Scott-height is a significant measure
of complexity of a structure and given a family K of structures it is natural
to ask what is its “Scott-spectrum” i.e. the class of ordinals which are Scott-heights
of elements of K. Very little is known about these spectra in general and we think
it worthwhile to find the spectra of certain concrete families XK. The initial aim of
the investigation described here was to study the Scott-spectrum of the family of
,~like orderings. While attempting to do this we gathered much additional in-
formation about the structure of w,-like orderings. Our conjecture was that the
Scott-height of these orderings is always <w;. In § 1 we show by a direct proof
that this conjecture holds true even for w,-like orderings with arbitrary extra-
predicates. The additional structural information — which ellucidates in various
ways thie reason for the Scott-height being <w, — concerns the w;-like orderings
with no extrapredicates (or, even, with unary extrapredicates); this is presented
in §§ 2-6.

Consider these two familiar examples or orderings: the well ordered w; and
the dense 5*w,. Both are w,-like but otherwise have quite different properties.
For example, w, is not L., ,-equivalent to any countable ordering while 7+, is
L,o~equivalent to the countable #. In fact, w; is not L.,-equivalent to any
ordering except (those isomorphic to) itself while 7+, can be seen t0 be Lee~
equivalent to 2%-many nonisomorphic w,-like orderings as well as to orderings
of arbitrary cofinality. Every element of w, is definable in L, (actually in Ly,q)
while no element of 1+, has such a definition, in fact, it has no nontrival Lyq-
definable subsets.
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In a sense, the two examples considered are not as special as one might think.
It turns out that there are just two types of wy-like orderings. Those of the first,
which we call of “bounded” type share many properties with ;, those of the
second, of “unbounded” type, behave just like - ;. A few examples might clarify
the meaning of the last two statements.

As in the case of wy, an ordering U of bounded type is not L ,-equivalent
to any countable ordering; unlike w;, it may be L,-equivalent to other (non-
isomorphic) orderings. However, % is not L,,-equivalent to any other w,-like
ordering. The elements of A are not necessarily L, -definable but each of them
is contained in a definable countable set; in fact, 2 is the union of a strictly in-
creasing continunous w;-chain of L,,,-definable proper initial segments. This last
property implies that all L ~equivalents of 2 have cofinality w;. As to the w,-like
orderings of unbounded type, they possess all the properties of 5+w; which we
mentioned (save for the possibility of the existence of countably many L, ,-definable
subsets); this follows from our Theorem 4.3 which describes very precisely the
structure of the w;-like orderings of unbounded type. )

The paper is organized as follows. § O contains preliminaries while § 1 contains
the theorem about the Scott-height of w,-like orderings with extra predicates. The
w;-like orderings with no (or only unary) extra predicates are shown in § 2 to have
a rich group of automorphisms; in the same section the orderings of bounded

. and unbounded type are defined. § 3 deals with the wy-like ordering of bounded
type, § 4 with those of unbounded and § 5 briefly sums up the results. In § 6 we
use the techniques developed in §§ 3-4 to find out which uncountable orderings
are L,,-equivalent to @;-like ones. In § 7 we describe when an ,-like ordering
has Scott height strictly less than ;.

§ 0. Preliminaries. We denote structures by capital gothic letters 9, 8, %, By, ...
and their universes by 4, B, 4o, By, ... Tesp. We write “2 € 4” or even “d € A’
to mean that @ is a finite sequence of elements in 4. If V(%) is a formula, we let
Y ={a: aeA&AEy[a]}.

‘We say that the structures Q[;and B are o -equivalent, a-equivalent or w,o-equi-
valent, in symbols U = B, A = B, A = B if they satisfy the same L, ,-sentences,

wy

the same L,-sentences of quantificr depth <o, the same L, o-scutences resp.
We will also speak of co-elementary substructurcs etc. with the symbols <, ele.
F 0

The Scott-height of a struéture A, SH() is the least ordinal o such that for

all 2, a’e A, (U, q) =, a’) implies that (%1, Ef)ﬁl (20, a’) (it then easily follows

that (21, 2) = (W, &) implies (¥, 2) =", a"). A Scott-sentence of 9 is a sentence @
st.BEg if B = . Scott- showed that every countable structure has an L,

w1
Scott-sentence and. the same argument shows that any structure has an L, Scott-
sentEn.ce. The' oo-type of a sequence a e U is the set of all L,~formulas satisfied
by a in U; the notions of a~type w,w-type are defined similarly. We say that the
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a-type of a € W is axiomatized by (%) if A & y[a] and ¥ (%) implies all formulag
in the a-type of a. The a-type of a is always axiomatized byan L,,-formula ¢,(%)
of quantifier depth o and when « and 9 are countable @, can be taken in Lz .
All the facts mentioned in this paragraph can be seen in, e.g., [2] or [6]. o

In this paper we are concerned with structures 9 having a distinguished binary
relation < which is a linear ordering. When saying that %’ is an initial segment
of A we will mean that (4’, <) is an initial segment of (4, <); for a € A we denote
by 2 }a the initial segment of 9 with universe 4 }a = {b: be 4 &b<a}. We
use the name “ordering” for structures of the form U = {4; <, Py, Py, ...> with
P, Py,... unary predic?.tes. The name “structure” will, of course, be used for 91 which,
besides <, may have predicates with more than one variable.

A structure (or an ordering) % is called w,-like if it is uncountable but A o

is countable for all ae 9.

§ L o -like structures. A useful characterization of co-equivalence says that
A = B iff theze is a back-and-forth relation between 9 and 8. A relation ~ between

finite sequences of % and B is called a back-and-forth relation if (Y~ ) (the
void sequences are related) and whenever @ ~5 we have Va'e A 3b' € B 2 Y@y~
~b"(b') and Vb'e BAa' e 4 a™{a’y~BB"y (see [1] for details).

In general it is known that SH(2) < |2/|*. For w;-like U, however, we can
do better.

TurorEM 1.1, If A is an wy~like structure then SH() < w;.
Proof. Assume that (2, 2) = a"). We want to show that (%, 7) = (2, a");
1 o«

as (%, 2) and (%, 3") are oy-like, this follows from a more general fact.

TrEORBM 1.2. If W and B are o,-like structures and % = B, then A = B.
g o0

Proof. Letting a ~b iff (%, a) = (8, b), we want to show that ~ is a back-
1

and-forth relation, Obviously, it suffices to show:

Lemma 1.3. If ¥ and B are o-like and % = B then for each a € A there is
a beB such that (N, d) = (3, b). o

wy
Proof. For all o <w, pick b,e B st. (U, a) = (B,b,). We claim that this
&

can be so done as to have {b,: « < @,> bounded in B. Since B is 2,-like, this means
that for some be B, b= b, for arbitrarily large o< @y, hence, (¥, a) = (3, b).

1

To complete the proof, assume that no bounded {b,: x <) as above can
be found. Then an inoreasing sequence {,: % < ;) of countable ordinals can be
found s.t,

) Bk Ix( A 0 () A VY < 2~8,,0)

6 — Fundamenta Mathematicae 126, 2
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where ¢.(x) is an L,-formula of quantifier depth « axiomatizing the o-type of a.
It follows that % satisfies (+) as well so we can find 4, € 4 for which:

WE A 0@ aVy<a,~, ).
i<x

As U F @ @) for all o, it easily follows that {a,: x < o) is an increasing sequence
bounded by @, a contradiction to the w;-likeness of 2L

" § 2. w;-like orderings. In general, (%, a) = (2, b) does not imply that (2, a)
o (9, b), ie. that U has an automorphism mapping a to b. However:
Tumorem 2.1 If 9 is an oy-like ordering and (%, a) = (N, B) then (%, @)
=~ (%, b).

Proof. Assume first that @ and b are singletons {a,), {a;) and wlo.g.,
dy <a;. Then we can define by induction aj,as, ... sit. for all #, (U, a,, Gyey)
= (U, @41, Gys2)- Thus, in particular, we have ag <ay <a; < ... Let %, = At a,.
@

Then (2, a,) = (U, a,) implies that ¥, = Uy and as we are dealing with countable

structures, this means that %, = 2, by an isomorphism fo: 4o — 4. Likewise,’

(U, ay, dysy) = (N, Ayrgs @pyz) means that W, —U, = Wy — W, g, hence

W,y —W, = Apyy—W,yy by an isomorphism £, Apyy— Ay~ Apyz—Aysq. But

then, as we are considering orderings (as opposed to arbitrary structures) we get

that f, = U £, is an automorphism of 2, = |J 2, mapping 4o to a;. We can
<

n<o n<o
extend it to an automorphism fof, of all of % by letting f(a) = ¢ whenever a
eA—A4,.
If @ = (dgs s @), b = (Bos -es by) With, say a, and b, the largest elements
in the two sequences then we already know that % has an automorphism ¢ mapping
a, to b, and as (U} ay, Go, s Tye1) = (B} by, boy «.v5 by—y), there is also an

isomorphism # of U} a, onto B} b, Mapping do, .., dy—1 ONtO Bo, vy Dy ye But
then defining f: 4 - 4 by f(x) = A(x) for x <a, and f(x) = g(x) for x = a,, we
get an automorphism of 9 mapping @ onto 5.

We now distinguish between two types of w;-like orderings: bounded and
unbounded. An o,-like ordering is said to-be of unbounded type if it has an un-
bounded family of initial segments isomorphic to each other. In other words, there
is a countable isomorphism type & such that every element of % belongs to an
initial segment of type ¢; the standard example is -, (in which case, ¢ = n).
The o,-like orderings which do not have this property are called of bounded type;
the standard example is o, itself.

We devote the next section to the study of w,-like orderings of bounded type
and §4 to those of unbounded type.
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§ 3. o,-like orderings of bounded type.

TueorReM 3.1. If U and B are w,w-equivalent w,-like orderings of bounded
type then they are isomorphic to each other.

Proof. With each @ € A we naturally associate the structure % (a) — the reduct
of U to the set 4(a) = {b: bed&Ta'>b Ald = A | a}. A being of bounded
type, A(a) is one of its countable initial segments. 4(a) is definable by an L, -
formula 0,(x) saying that for some y = x, the set of elements less than y satisfies
the Scott-sentence of 2 | a. 8,(x) enjoys a very special property: whenever a (not
necessarily o,-like) ordering B is w;w-equivalent to 2, we have: (a) 0,(B) is
a proper initial segment of B, and, (b) for all initial segments B’ of B, if 6,(B) = B,
then 0,4B") = 0,(B). Let’s call the L,,,-formulas with this property “nice”. It is
immediate that a countable disjunction of nice formulas is nice. So, we can easily
find a strictly increasing continuous chain (2,: & < ;) of initial segments of A
such that the universe of 2, is 4, = /,(2) for some nice Y, (x). Moreover, if B = A

w10

then the sets B, = y,(B) are the universes of a strictly increasing continuous
sequence (B,: a<w;y of initial segments of B; if B is w,-like —in particular
if B = A — then, of course, B = (J B,.
a<wy

We can now complete the proof of Theorem 3.1. If 2, B are both w,-like
and are w;w-equivalent then we decompose them as above and define by induction
a continuous chain {f,: a<w,) of isomorphisms f,: W, — B,. To begin with,
notice that U, & B, as the w,w-equivalence implies that B, = ,(B) satisfies the
Scott-sentence of U, = Y,(2). In particular, A, = B, by a map f,. For limit 6,
set f5 = U f,- Once f, is defined, pick an isomorphism g between 2, and B, ,

a<d

and define f,4.,(x) = f(x) for xe 4, and f,;,(x) = g(x) for xe 4,,,—4, (that
forq is an isomorphism follows since g(x) must take A, onto B,). We conclude
that 20 is isomorphic to B by the map f= |J f,.

a<wy
Using the information contained in the previous proof, we infer additional
results, In all statements throughout this section, 2 is assumed to be an wy-like
ordering of bounded type. )
The example of (w;, <) = (@, <) (cf. [3]) shows that Theorem 3.1 cannot
w0
be extended to B which is not wy-like. However:
THEOREM 3.2, Jf B = U, then B’ < B for some initial segment B’ which is
(23T 010
co~equivalent to U.
Proof. As in the proof of 3.1, set B, = /,(B) and take B' = ) B,. B, satis-

x <

fies the Scott-sentence of the countable structure 2U,, hence B, = 9A,; moreover,

since 1, defines 9, and B, in ., and B,,, respectively, we also have B, (~ B,
= Wy 1—%U,. As we are dealing with orderings (rather than arbitrary structures)

we can paste back-and-forth relations together to get B’ = A

[
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We have still to show that B’ < 8. To this end we use:

010

Lemma 3.3. For all e A, there is an Ly, ,-formula 6*(%) which axiomatizes
the oo-type of @ inside W (i.e. (A, a) = (W, &) iff WE O*a’)). Moreover, 0*(%) is
such that 0*(B) = 0*(B') whenever B, B’ w_—Tw‘lI and B' = B.

Proof. For some o, 4 € U, = ,(N). From the proof of Scott’s theorem (in,
e.g., [4]) we know that the oo -type of a is axiomatized inside %, by an L, ,,~formula
0(X). If 0'() is the relativization of 0 to 1, let 6*(X) be the formula stating that
0'(%) holds and all the elements of % satisfy ¥,. We let the reader check that this
formula satisfies the claims of the lemma (use the niceness of i, for the second
claim). _

Concluding the Proof of 3.2.1f 5 € ®’ and Bk Aye (b, y) for any L, -
formula @, we must show that B’k Aye(5,y) as well. Let 7 € A be such that
(U, 2) = (B, 5). If 6%(%) is as in 3.3 then B, B’k O[b]. As 0*(X) is consistent

o

with App(E,y) in B( = A) it must be so in A as well, hence A k VI (O*(X) —

@ -

- Ayo (%, »)). This last sentence is true also in B’, showing that B’ F Ay, ),
as required.

It is known that if SH(2) = o then A

we can say more:
THeOREM 3.4. If B = U then B = W.
o 00

141

Proof. The sentence saying that Vx \/ },(x)A A “the Scott-sentence of 2,

a<wy <oy

holds when relativized to ¥,” is a Scott-sentence for % and has tank < w;+1.

Remark. Again, the example of (w;, <) shows that the bound w, + 1 cannot
improved. While (w;, <) has Scott-height o, it should be remarked that there
are bounded w,-like orderings with Scott-height as low as w. E.g.: let {P,: a < @)
be a sequence of distinct subsets of w and let P = {w-a+n: a<w, &neP,}.
Then A = {w,; <, P) is a rigid structure in which every element is defined by an
L,,,-formula of quantifier depth . In the above we could substitute orderings
for the points and eliminate the colors.

In spite of the last mentioned fact, no w,-like ordering 2 of bounded type
has an L, ,-Scott sentences. Indeed, we have:

= B whenever B = U. In our case,
0 at o

ProrositioN 3.5, U is not oo -equivalent to any countable structure.
Proof. Suppose otherwise: % = B, B countable. Let L be a countable fragment

of L,,, containing the Scott-sentence of B, We can then represent U = (J A,
<y

with (%,: a < ;) a continuous increasing chain of proper initial segments which
are L-substructures of . As each 9, satisfies the Scott-sentence of 3, they are
all isomorphic to each other. This would mean that 2 is unbounded.

Natural questions to ask are the following. When is 2 co-equivalent to a non-
isomorphic B (by 3.1, B has to be non w;-like)? To a B of a given cardinality
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%> w, 7 Similar questions for countable 9 were settled by Landraitis in [5]. Using
his results we can show the following (remember that 9 is of bounded type).

TuEOREM 3.6. Precisely one of the following occurs: (i) B & U whenever B = A.
©

This holds iff all orbits of W are scattered; (ii) for every » 2R, there is a B of power x
oo -equivalent but nonisomorphic to . This happens iff % has a self additive interval;
(iii) there is a B of power % co-cquivalent but not isomorphic to Ny e 2™,
Remark. The orbit of e ¥ is the set of all 5 & 9 with (¥, ) = (U, 2). An
interval is self additive iff its isomorphism type & satisfies &+ & = £ (cL. [5]).
Proof, If B = A but B ¢ A then, by 3.1, B is not w,-like hence, some B, is

uncountable yet co-equivalent to the countable 9,; by [5], some orbit of A, (hence
of 2) is not scatiered. Notice also that if 8 has cardinality >2* 5o does some i)

(since their union is all of B) and, again by {5], the corresponding 9, has a 331;'
additive interval, The theorem follows now immediately from the results of [51
concerning possible cardinalities of the uncountable co-equivalents, of 9, and
the “pasting” method we have used before.,

§ 4. o, -like orderings of unbounded type. As we mentioned already, the simplest
example of such an ordering is (the one with order type) 5-w,. It is dense with no
first or last element; there are 2% many nonisomorphic oy-like orderings having
the same property (indeed, for all Scwy, let W= (J A, where Uy a<o,)is

<o
a strictly increasing chain of orderings of type 7 s.t. {"or‘ all «, U, endextends 9,
and 2, ,~, has a first element iff « & S; then Ay = W i S and § agree on
a closed and unbounded set; the idea of this construction is due to J. Conway;
see e.g. [7] for more details). All these 2™-many structures are co ~equivalent to
each other. (In fact, oo,~equivalent.)

Another example of an unbounded-type o,-like ordering is any “dense mixture
of colors” je. U ={d; <, Py, Py,...y where (4, <) is o,-like dense with no
endpoints and Py, Py, ... are (<N, many) mutually disjoint predicates whose union
is all of 4 and each of which is dense in 4. Again, there are 2%-many nonisomorphic
@y-like orderings co-equivalent to 2 and we can easily describe them all,

A more complicated example is any “dense mixture of countable orderings”.
By this we mean a structure U* gotten from a dense color mixture
W ={d; <, Py, Py, ) in the following way: choose distinet isomorphism types
€05 €1, v 0f countable (colored) orderings and replace every point « & A belonging
to P, by an ordering of type £; more formally, * = T {W,: ae Ay where the
disjoint orderings 9, are so chosen as to have U, = & whenever ¢ & P;. The
orderings 9, will be called the components of the dense mixture A*, Let us stress
that the colors of the various ¢, need not be distinct.

Finally, it 91 is any countable ordering and 9" any dense mixture of countable
orderings then 2 = '+ 2 is also an unbounded w,-like ordering.

Can'we find any other examples? The main result of this section is a negative
answer. to this question, ’
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TrroreM 4.1. Any o,-like ordering of unbounded type is W = W +A" where
A’ is a proper initial segment and W' a dense mixture of countable orderings.

Proof. We define by induction an increasing sequence of equivalence relations
R, until a point is reached where R, = R,4q= R*, The R*-classes of
sufficiently large elements will turn out to be the components of the dense mixture
of orderings.

The definitions of R, runs as follows:

(1) R, is the equality relation;

2) for a limit §, R; = U.sR“;

a<

(3) Rypr = R
where the operation ‘ attaching to an equivalence relation R a coarser one R’ will
be defined below. As we proceed with this inductive definition, we shall also prove
that all the R, have the property which we now define.

An equivalence relation R on A is called good if the following conditions
are met:

(a) each R-class is convex and bounded (hence, countable);

(b) whenever f: %, — A, is an isomorphism between the proper initial seg-
ments A, and A, f preserves R, i.e. for a, b e Wy, aRb iff f(&) Rf (D).

For the rest of this proof, let W, be a fixed proper initial segment of W such
that every element of W is in some initial segment isomorphic to W,

The isomorphism type of any R-class will be simply called an R-type. Con-
ditions (a) and (b) imply that any R-class is isomorphic to one included in 20, and
50, R has only <Nj;-many R-types. Indeed, given a & 2 take an initial segment 2/,
isomorphic to 2, and large enough to contain a and some b> @ with b non Ra. If
J: Uy — Uy is an isomorphism then we also have f(a) < f(b) € W, and f (&) non Rf(B).
It follows that the R-classes of a and f(4) are included in 9, and 2, respectively
and hence isomorphic to each other.

Obviously, R, (i.e. equality) is good and as soon as we define the operation ’ we
shall prove by induction that so are all R,.

An_R-type is called cofinal if it appears as the type of (the R-class of)
arbitrarily large elements. We now define aR'b to mean that (assuming e.g. a < b)
there are finitely many elements o = g, <a, < ... <@, = b such that for each i <k,
there is a cofinal R-type &; which does not occur as the type of any R-class con-
tained in the open interval (4, a;41); We shall call (ag, a1, «ov) Gyyy a witnessing
sequence for aR'b.

Lemma 4.2. If R is good, so is R'.

Proof of 4.2, Obviously, R’ is an equivalence relation with convex classes.
Each R’-class is bounded. Otherwise, we would have an a such that aR’b for all
b>a. Let k be the least number such that aR’> has a wittnessing sequence of
length <k for unboundedly many (hence for all) b> a. For each such b, let ' <b
be the last element of a witnessing sequence of length <k. Then ¢R'Y is wittnessed
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by a sequence of length <k, so — by the minimality of £—(b’: b> a) is bounded
by an element ¢. This means that for each b> ¢ the interval (¢, b) misses some
cofinal R-type and this is easily scen to be a contradiction since there are only
countably many R-types. ]

We leave the reader with the (simple) verification of the fact that R’ satisfies
condition (b) as well, thus completing the proof of 4.2.

From 4.2 and the obvious fact that the union of a countable increasing se-
quence of good relations is a good relation, we conclude by induction that R, is
good for all «. Next we claim that R, = R, for some countable ¢. Otherwise,
for each o we would have an a, with 4,/R, & a,/R,,; and by the goodness of R,
and R,.,; we could insure &,/R,., &%, This is impossible.

If R, = Ry4q, the cofinal R,-types are easily scen to be dense in the sense
that they must occur in each open interval (2, b) with @ nonR,b, Taking ' to be any
proper initial sequence which is a union of R,-classes and includes all occurrences
of noncofinal R,-types and letting " = A—A', we get a decomposition A
= W+A" as claimed except for the possibility that A has a first R,-class, in
which case we may transfer this class to %' and get the desired decomposition.
To see that there is no last R, class we use the fact that 4 is uncountable but of
cofinality w, while each R,-class is countable.

Remark. For a<bd, let £(a,b) be the isomorphism type of the structure
A (a, b) — the reduct of A the universe (2,5) = {¢: ced &a<c<b}; call &
a cofinal interval type of Wil & = &(a, b) for intervals (a, b) with arbitrarily large a.
With the help of this notion, the final equivalence relation R*(= R, = R,,,) can
be described directly as follows. For a < b, aR*b iff the interval («, b) misses some
cofinal interval type & (i.e. & # £(c, d) whenever a<c<d<b). We could use
this definition for an alternative, somewhat shorter, proof of 4.1. We think however,
that the ordinal analysis of the structure of U is of interest.

Theorem 4.1 has a number of immediate illuminating consequences. Through-
out the rest of this section, assume % to be an unbounded w,-like ordering.

TaeoreM 4.3. W has a decomposition W = ) U, with (A, & < w,) a continious
o<y

increasing sequence of proper initial segments such that 2, ;( A, —5 L whenever
a<f<w, (/t follows that the A, are isomorphic to each other).

Proof. Any continuous decomposition into proper initial segments confirms
the claim of the theorem provided that U, = ’--20; where 2 is a union of
a nonvoid collection of R,~classes with no last such class, The co-inclusion follows
by a standard (Cantor type) back-and-forth argument.

THEOREM 4.4, A has an L,,,-Scott-sentence, hence a countable Scott-height.
Also, the co~type of any finite sequence In U Is axiomatized by an Ly, q-formula.

Proof. The Scott-sentence of %, (of Theorem 4.3) is also a Scott-sentence
of A, The formulas axiomatizing the co-type of any finite sequence in 2, will do
the same in .
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TororeM 4.5. U is co-equivalent to 2%'-many nonisomorphic w,~like orderings
(and we have a full description of each of these). Also, U is co-equivalent to non
wy-like orderings of any cardinality % 2Ny,

Proof, Left to the reader.

§ 5. Summing up results on o;-like orderings. Call a formula ¢(x) bounded (in
the w;-like ) iff ¢(2) is bounded (i.e. countable). The various results of §§ 2-4
yield the following characterizations:

THEOREM 5.1. An o,-like ordering 2 is of the bounded type iff any of the follow-
ing holds:

(1) every element of U satisfies a bounded Sormula;

(2) every orbit of U is bounded;

(3) U has no L, ,~Scoti-sentence;

@) for any w,-like B, if B = A then B A.

The property of being of unbounded type is characterized by the negations
of each of (1)~(3) as well as by the following strong negation of (4):

(5) U is co-equivalent to 2™*-many nonisomorphic wy-like orderings.

From 3.3 and 4.4 we learn:

THEOREM 5.2. If U is an w,-like ordering then the co-type of any @ € W is
axiomatized inside ¥ by an Ly, formula.

§ 6. Orderings oo -equivalent to @;-like ones. Call an ordering (<w,)-like if
it is countable or w,-like. The methods of §§ 3-4 allow us to prove the following
result.

THEOREM 6.1. An uncountable ordering 9 is co-equivalent to an (< w,)~like one
iff for all ae W the initial segment N} a is co-equivalent to a countable ordering.
In fact, if N satisfies this last condition then there is an (Swy)-like A < A,

@«

Proof. We analyse 9 precisely as we analysed the w,-like orderings in §§ 3-4;
the only difference being that wherever we mentioned isomorphisms between count-
able orderings we must now use oo-equivalence of (not necessarily countable)
ordetings. We will stress the few modifications made in this spirit leaving the
details to the reader, Before doing this, let us mention that we may assume that N has
cofinality greater than o, Otherwise, A = ) (W} a,) where {a,: n< ) is an in-

n<g

creasing cofinal sequence. By replacing 2} gy and WP ¢y —A b, 1<, with
countable co~substructures we get a countable oo~substructure of 2 itself.

Turning now to the analysis of 2, we distinguish again between the bounded
and unbounded type. U is said to be of unbounded type if there is a countable
isomorphism type ¢ such that every element of a belongs to an initial scgment
oo-equivalent to an ordering of type &; otherwise, U is called of bounded
type,
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The bounded type case. If % is of bounded type then, as in the Proof
of 3.1 we attach to each ae U the structure

A@) = {b: beU &' 2b Uta' = A o},

Again, 2(a) is a proper initial segment definable by a nice formula. We can there-
fore define a sequence {i,(x): @ <@} of nice formulas s.t. U, = Y,A), x <o, is
a strictly increasing continuous chain of initial segments. If we had any
aeU— ) A, then A} 2 would not be co-equivalent to any countable ordering,

o<oM

a contradiction. Thus, A = ) A, and we get an w,-like co-substructure of A
a<wy

by replacing 2, and 2,4, — U, for all a<w,, by countable oo-substructures.

The unbounded type case. We define equivalence relations R, just as
in the Proof of 4.1 with the following two slight modifications. First, the notion
of good relation is now defined by:

(a) each R-class is convex, bounded and L,,,-definable with parameters
(hence, oco-equivalent to a countable ordering);

(b) whenever 2, U, are proper initial segments and ay, by € Ay, ay, by € A,
satisfy (Wy, ao, bo) = (%, ay, by) then ayRb, iff a,Rb,.

Second, an R-type will now be the co-equivalence type of an R-class.

The proof mow proceeds precisely as in 4.1. One point worth mentioning is
why do we have R, = R, for a countable «. If not, then either we would have
an ae Wy s.t. a/R, G alR,1 =W, for cofinally many o <, or we would have
an increasing sequence a;, i<, of ordinals and elements g,e Uy st afR,,
S ay/R,,,, =W, while for j> i it is not the case that a,/R,, & a)/R,,,,<¥U,. Both
these possibilities contradict the assumption that 2, is co-equivalent to a count-
able ordering. . .

Once we know that R, = R,,, for a countable « we conclude that % is
a mixture of countable many R,-types with all cofinal such types dense. For some
ae A no non cofinal R,-type occurs past a. Using the fact that U } a is co-equiv-
alent to a countable ordering and so are all R,-classes (as definable subsets of initial
segments) we get an 2% -5 A s.t. A* js a mixture of #he countable representatives

of the R,~types and ¥ = ¥+ A’ where A*’ is an initial segment and a count-
able union of (countable representatives of) R,-types and *’ a dense mixture
of cofinal R,-types, By further “cutting down” 9*”’ we can make it wy-like. This
finishes (the sketch of) the proof.

The proof of 6.1 yields the following.

COROLLARY 6.2, Let % be an ordering of uncountable cofinality, ¥ is co-equivalent
to an w;-like ordering iff for all a e N, A} a is co-equivalent to a countable ordering.
If this is the case then there is an o~like W < A

A natural question connected to 6.1 is: under what circumstances is an un-
countable ordering % equivalent to a countable one? Here is an answer involving
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the orbits of 9 (in the uncountable case, by the orbit of an element ¢ we mean the
set {b: (U, b) = @, )}

TueoreM 6.3. An ordering U is co-equivalent to a countuble one iff for all
a,be if a<b then each one of the structures Wt a, At (a,b) and A} (b, o)
has only countably many orbits.

Proof. “Only if” is trivial. The “if” part is proven as follows: let B<U be
countable and taken so as to have every orbit At a, A (@, b), A (b, ) meet
B} a, Bt (a,b), B} (b, o) respectively whenever ¢, be B and a<b. We claim
that B < 91. To show this, it is enough to show that whenever % k @ (a, b) with

bess and ¢ (x,¥) any Lq-formula, then %k ¢ (<, b) for some o' & B. Assume
that B = (by, ..., by-yp is increasing and that e.g. b, <a <byy. The orbit of a in
AN By bysy) meets B (b, byy) in some clement, say «’. This means that
AP (b, a) A (by,a") and A} (a, le) = W(¢, b;+,) which yields, by a standard

argument, {"[ a, b) = (U, o', b) showing that Ak o, b) as desired,

COROLLARY 6.4. An uncountable ordering N is co-equivalent to a (Swy)-like
one iff for all a,be ¥ if a<b then WUt a and W} (a, b) have only countably many
orbits.

Finally, to complete the picture, we must clucidate under what circumstances
a linear ordering of cofinality e is co-equivalent to an w,-like one. By our methods
we have:

THEOREM 6.5. Let N be an ordering of cofinality @ such that for each ac %,
AV} a is co-equivalent to a countable ordering. The following are equivalent:

(1) U is co-equivalent to an w-like ordering;

(2) some orbit of U contains a set B of order type n such that for by, b, € B,
if b, <b, then (by, by) meets all cofinal orbits of N;

(3) U has a proper initial segment Wy such that W, § A;

@) U has an unbounded orbit and if R, = Ry, With R, defined as in the proof
of 6.1 then R, has no last equivalence cluss;

(5) W = WA where W is an initial segment oo -equivalent to a countable
ordering and for a dense linear ordering (D, <) with no last clement, W' is a D-sum
A=Y {W,;: de D} of convex subsets Uy co-equivalent to countable orderings and
such that {d': U, = W} s dense in D for all de D,

Proof: By the proof of 6.1, 2 is co-equivalent to a countable ordering. Thus,
if condition (1) holds then 2 must be co-equivalent to an w-like ordering of
unbounded type. It follows, by 4.1, that (1) implies all other conditions.

Assume (2). By the proof of 6.1, we can find a countable 52(’ A with Bed's

obviously, U’ satisfies (2) as well, hence we may assume that 20 15 uountable, also,
it is easy to see that the orbit in which B lies in cofinal, Define equivalence relations
R, on U as in the proof of 4.1. An induction on « shows that b non R, b, whenever
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by, b, are distinct clements of B; it follows that the equivalence classes of R, are
bounded in . As A is countable, R, = R, for some o< ; and we get that
U = W+A” where A’ is an initial segment and A" a dense mixture of cofinal
R, ~types. Condition (1) follows at once.

For any countable fragment 4 of L,,,, condition (3) implies the existence of
a countable A; = A with a proper initial segment U} -5 ; ; remember that 9 has

a countable Scott-sentence and thus, if we take 4 large enough, we conclude that
we have even 95 < Ay = A, We can then construct a continuous chain {Ura<w,}
0

with (W1, W) = (911, Ao); the union of this chain is the desired o,-like ordering
oo-equivalent to 2.

Finally, assume (4). There must be an a e U such that no noncofinal R,type
occurs past a; otherwise, % would have no unbounded orbit, If so, then condi-
tion (5) follows immediately and this condition obviously implies (1).

§ 7. w;-like orderings with countable Scott height. We have already seen that
an w;-like ordering has a Scott-sentence in L,,, if and only if it is of unbounded
type. We now ask and answer a related question: When does an w,-like ordering
have countable Scott height?

THEOREM 7.1. Let W be an w,-like ordering. The following are equivalent:

@) SHE) <w,.
(i) There is some fixed o <w, such that for each ae ¥, SHY } d) < 0.

(iii) There is some fixed o <wy and sequence {a,: o<,y cofinal in W such
that for each a<w;, SH(Y }a) <o,

That (i) implies (ii) follows from the more general lemma.

LEMMA 7.2. Let S be an interval of W which is L,,-definable from parameters
@ & ANS. Then

SH(S) < SH(W).

Proof. This is basically a Feferman-Vaught argument, but it seems simpler

to give a direct proof. Suppose SH() = ¢ and (8, 5) = (S, ). Then there is some
g

sequence of partial isomorphisms witnessing this, say (I,: &« < ¢). For each a<o

let J, consist of all finite functions f from 2 to % so that £ } S € I, and fis the identity

on domA\S. {J,: « < o is easily seen to witness the fact that (2, b, @) = o, ¢, a).

Since SH(Q) = o, we have (U,5,2) = (%, ¢,a), from which (S, 5) = (S,c)

follows by relativization since § is L ~definable in (2, @).

Remark 7.3. Lemma 7.2 clearly covers open intervals. To deal with closed
intervals simply do an extra Feferman-Vaught argument for adding the endpoints.
The next result, despite its short proof, seemed quite surprising to us.

Lemma 7.4. Let ¥ be an ordering and I an interval in . Suppose SSU* is

L o~definable on U with parameters. Then S v I* is L, ,-definable with parameters in I.

Proof. Suppose S = {a: Ak ¢(d, ¢, d)} where ¢ eI and d € UL Notice
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Grst that if 7, 7 € I and (I, 7, &) =, n,¢), then (O, m,¢,d) = @, 7,8, d)
This follows as above from another Feferman~Vaught style argument. Given a back
and forth set witnessing the former equivalence, extend its functions by adding
finite pieces of the identity on A\J to get a back and forth set for the latier
equivalence. . . L o ) )

Tn view of the above, for m, n € 1, if (I, m, ¢) = U,n,e), thenmeSiffnes.
For each me S let 05(%, ¢) be the canonical Scott formula characterizing (7, m, c)
up to com-equivalence. Then it is clear that

SnI={iel: 1F\ 0z(a, &)}
meS

Remark 7.5. It follows from the above proof that if I is countable then § ~ I
i8 Ly,,-definable with parameters.

We now return to the proof that (iif) implies (). We will have to consider the
cases of bounded and unbounded orderings separately.

Tirst assume 2 is of unbounded type. Fix any point « in the dense mixture
component of % and choose g, > a. Recall the final cquivalence relation R* of § 4.
Then we know that if S = {b<a: bnon R*a}, then § = A, (S is obtained by

taking a principal initial segment of 2 including some of the dense mixture and
discarding the remnants of the final R*-block in the segment). It can be checked
by induction that R* is Ly,-definable in . Thus, by Lemma 7.4 8 is definable
in A b a,. Finally, since SH } a,) <0, by Lemma 7.2 SH(S) < 0.

Now we assume that 2 is of bounded type and, for the sake of contradiction,
that SH() = p > . First note that there is a sentence 0% of L,,, such that for
any order B, B k 0" iff SH(B) > f. (Note: this is a purely general fact not specific
to orderings). Suppose 0° is in some countable fragment L. By building a continu-
ous unbounded chain of initial segments that are Ly-elementary submodels of o,
we obtain a continuous unbounded sequence of initial segments cach of whose
Scott-height is > f. Since we are in the bounded case there is also a continuous
unbounded sequence of Lq,,-definable initial scgments and therefore we can find
some proper initial segment I which is both L,,,-definable and has Scott height =8,
Now, choose some a, € U\ Then, by Lomma 7.4 1 is Ly,~delinable in 9 } a,.
Thus by Lemma 7.2, SH(I) < 0. This is the desired contradiction,

Remark 7.6. The above proof for the bounded case ouly depends upon the
fact that % has uncountable cofinality and does not use the full force of w,~likeness.
Of course, we use the stronger notion of boundedness in terms of co-type rather
than isomorphism type. We can even eliminate the requirement that 20 have un-
countable cofinality, but then our proof, which we give below, gives only o+w+2
instead of o, and we have no counterexample to the better bound.

Now for the proof. Suppose (2, ﬁv)“f“(i!t, #1). Choose «, above all members

of i and . Define I= ) {% } a: % } « = A } a,}. By our boundedness hypothesis,
«
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Iis a proper initial segment _f’f . Choose a,>a, with a, ¢ I. Let 8(¢) be the canonical,
Scott-sentence of (U } a,, m) and g the canonical Scott-sentence of U } a,. Then 0
and g each have quantifier rank at most o+ w. Using /* to denote the relativization
of 1 to elements less than u, we define ¢(%) as

Az [y <@>FA)AFE) AV (0" — v<2)].

Clearly qz*has quantifier rank at most c+w+2, and Uk ¢(m). Since (2, 7)
_jﬂ(ﬂl, n), Wk o(r). Thus, there is a b such that (U | b, 7) = (WA|a,, m). Then
o «©

sinti? I is L‘&m-deﬁnable in both A } b and U } ¢, by the same definition in L,
i n) = m). Now, pasting back UN\I we have (2, 7) = (U, m).

If we drop the assumption of boundedness without insisting that 9 is w,-like
then there are two cases to consider. The first case is that in which 2 has an un-
bounded oo-orbit. In this sitnation we get the analogue of a dense mixture and
the result is as above, In the second case, every orbit is bounded but the ordering
is still unbounded with respect to the oco-type of its principal initial segments.
Examples of this case include x* for » a cardinal. We have not investigated this
case. It may be that the result we showed abgve for w;-like orderings may hold
for orderings in general, and perhaps even for a simpler, more uniform reason.
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