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Real closed rings
I. Residue rings of rings of continuous functions

by

Gregory L. Cherlin (New Brunswick, N. 1) * and Max A. Dickmann (Paris)

Abstract, We study the class of prime ideals P of the ring C(X) of real-valued continuous
functions on the space X determined by the condition: C(X)/P is a real closed ring.

Introduction

This is the first of two articles dealing with real closed rings, which are ordered
commutative domains satisfying either of the following equivalent conditions:

(1) R satisfies the “Intermediate Value Theorem™ for polynomials in one
variable.

(2) R is a convex subring of a real closed field.

Our point of departure consists of two well-known results:

Facrt 1. The theory of real closed fields is complete, model-complete and admits
primitive recursive elimination of quantifiers in the language for ordered rings.

Fact IL. If M is a maximal ideal in a ring of continuous functions C(X), then
C(X)/M is a real closed field.

In the sequel [2] to the present article, we give a satisfactory generalization
of Fact 1. However Fact II does not generalize naively. There are accordingly two
major problems:

PrOBLEM A. Classify the real closed ideals of C(X), that is the prime ideals P
satisfying: : '
C(X)[P is a real closed ring.

PrOBLEM B. Investigate the structure of those rings of the form C (X)/P which
are not real closed.

We confine ourselves to Problem A. Our results include an explicit topological
characterization of the real closed ideals in general, and a complete analysis .of

* Supported by NSF Grant MCS 76-06484 A0l and Alexander-von-Humboldt Foundation
(1978/1979).
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the situation when X is the one-point compactification of a discrete space, which
is already nontrivial. We also analyse certain features of the case X = [0, 1], but
the prime ideal structure is exceedingly rich in this example and there is much that
we do not know.

The organization of the paper is as follows. Preliminaries are presented in §1
and the general theory in § 2. The abstract topological solution to Problem A is given
in § 2.1, together with its immediate consequences. In § 2.2 we study the relationship
between real closed ideals in metrizable spaces and P-point ultrafilters on a count-
able set. § 2.3 introduces a “transfer principle” based on an idea of Kohls which
facilitates the consideration of various examples, notably the prime z-ideals im-
mediately preceding a maximal ideal in the tree of prime z-ideals. In § 2.4 we
study certain conditions under which the (unique) prime z-ideal immediately below
a maximal ideal must be real closed.

In § 3 we analyse some concrete examples. We study the case in which X = N*
is the one-point compactification of a countable discrete set in § 3.1. This auto-
matically yields results in any space containing a copy of N*, as discussed in §3.2.
The one-point compactification of an uncountable discrete set is analysed in § 3.3;
here a partial, rather weak, “transfer principle” allows us to apply the results of
§ 3.1. In § 3.4 we want to consider the case X = [0, 1]; using the transfer principle
of § 2.3 and the homeomorphism [0, 1)~ R*, we work in X = R*. Our idea is
to construct certain filters of closed sets of infinite Lebesgue measure (“fat” zero-
=sets) as opposed to the filters of discrete sets arising in § 3.2. The work accomplished
in this section barely scratches the surface as far as knowing the prime ideal structure
of C([0, 1]) is concerned.

Even in the simplest nontrivial case, X = N*, there are many open questions
connected with Problem B. For example:

Prosrem C. If P, Q are minimal prime ideals of C(N*) and neither is real
closed, does it follow that C(N*)[P = C(N*)/Q? (%)

This appears to be a rather delicate question.

We wish to thank A. Louveau for calling our attention to the notion of P-point
ultrafilter; he shall be credited for part of the authorship of Proposition 3.2.2,

§ 1. Preliminaries
A. Real closed rings.

DEFINITION 1. A real closed ring A is a commutative ordered ring with unit
which is not a field, satisfying the intermediate value property for polynomials:

if QeA[Y], a,bed, a<b and O changes sign from a to b
(.e., G(a)-Q(b) <0), then Q has a zero ¢ such that a<e<bh.

) We shall denote by RCVR the first order theory of real closed rings formulated
in the language of ordered rings with unit. (The “V” jn RCVR stands for “valuation” ;

(*) Problem C has now been answered (in the affrmative, oddly enough) by J. Moloney.
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the reasons for this name are made explicit in [2], but see also Definition 26, ff.,
p. 7, below.

The first order theory consisting of the axioms of RCVR except that which
asserts the existence of a noninvertible element will be denoted by RCR; thus,
the models of RCR are all real closed rings and fields.

In this paper we carry out an analysis of real closed rings among residue class
rings of rings of continuous functions. The following is a brief review of the main
notions, results and notation systematically used in this paper; these will frequently
be used without explicit mention. Other results not appearing here will explicitly
be referred to when they are used.

We denote by C(X) the ring of all real-valued continuous functions defined
on a topological space X. Our basic reference for the general theory of such rings
is the classical book of Gillman and Jerison [3], particularly Chapters 13 and 14,
which deal with the residue rings of C(X) modulo maximal and prime ideals, re-
spectively. Our notation and terminology follows theirs, .

By [3; 3.9] in the study of rings of continuous functions it suffices to consider
completely regular spaces. Accordingly, throughout this paper we make the blanket
assumption that all spaces are completely regular.

B. The Stone-Cech compactification. For the definition and basic properties
of the Stone-Cech compactification X of a space X, see [3; Chapter 6]. We shall
only recall that there is a bijective correspondence between the points of fX and
the maximal ideals of C(X); the maximal ideal corresponding to a point pe fX
will be denoted by MP?; when pe X it is customary to write M, instead.

The subring of C(X) consisting of all bounded functions will be denoted
by C*(X).

' Theorem 6.5 of [3] gives several characterizations of the space SX; we shall
need the following: )

(2) Every fe C*(X) has a unique extension, f° ? to a function in C(8X).

(3) Every continuous function f: X — ¥, where Y is a compact space, has
a unique continuous extension f: fX — Y.

In particular, since every fe C(X) can be considered as a continuous funcj:ion
with values in the one-point compactification R* = R U {co} of R, it has a unique
extension f*: BX — R* given by (3). If f is bounded, then f* = f f, [3; 7.6]. The
value of f* at p e BX is determined by (cf. [3; 7.6]):

@ (a) f*(p) = oo iff [f/M?>n for all neN;

(b) f4(p) = r iff |fIM?P—r|<1/n for all neN (re R).
In particular,

(5) fe M? implies f*(p) = 0.

DEFINITION 6, A subspace ¥ of X is said to be C-embedded (resp. C ‘j‘-embed-
ded) if every function in C(¥) (resp. C*(Y)) can be extended to a function in C(X).

For more details, see [3; 1.16].
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C. Z-ideals. The zero-set f~*[0] of a function fe C(X) is denoted by Z(f);
Zc X is a zero-set if Z = Z(f) for some f'e C(X). Z(X) denotes the lattice (under
usual set-theoretic operations) of zero-sets of X. If I= C(X) is an ideal, Z @) de-
notes the filter of Z(X) consisting of zero-sets of members of I ([3; Chapter 2]).
By a z-filter of X we mean a filter of the lattice Z(X). A cozero-set is just the com-
plement of a zero-set,

Dermvrion 7. An ideal I< C(X) is a z-ideal iff for all fe C(X), Z(f) eZ(I)
implies fe I

Every maximal ideal of C(X) is a z-ideal ([3; 2.7]). Another important example
is the ideal 07 of germs of continuous functions at a point p e fX (cf. [3; 7.12]);
this z-ideal is neither maximal nor prime, except in special cases. Further examples:
of prime z-ideals will be considered later.

D. Prime ideals.

(8) Every prime ideal of C(X) lies between 07 and M?, for a unique p e fX
([3; 7.15]).

(9) The'prime ideals of C(X) containing a given prime ideal form a chain
unc%er inclusion ([3; 14.8]). In other words, the prime ideals contained in M? for
a given p € fX form a tree under the order of reverse inclusion (in the sense that
the predecessors of & given element are totally ordered, but not necessarily well
ordered).

‘ (1'0) Every prime ideal contains a minimal prime ideal (under the order of
inclusion), which is a z-ideal ([3; 14.7]).

Furthermore:

(1D {&ny two maximal chains of the tree of prime ideals contained in M?
(p'i ﬁi{)( [mtersect, and their intersection has a minimal element ‘which is a prime
z-ideal ([3; 14.9 and p. 199]). In special cases this minimal i Pi
O oy, minimal element is M? itself

. (12) .0" i§ the i.ntersection of all minimal prime ideals ([3; p. 199]). In particular,
07 is a prime ideal iff the prime ideals contained in M? form a chain under inclusion.

However, there can be prime z-ideals other than i
) s those mentioned above (the
ideal M, of § 2.4 below is an example). (

.(13) T‘l{ere are pri}ne ideals which are not z-ideals; in fact, above every non-
ma?umal prime there is a chain of type #, of pairs of consecutive prime ideals
([3; 14.19]), none of which is a z-ideal ([3; 14.10 and 14.D.4]).

Further e‘xamples of prime z-ideals will be introduced as we need them. For
a comprehensive study of this subject, see [3; pp. 197-200 and 205 ff.] and Kohls
[4], [5], [6], [7], where numerous examples are given.

ringSEbgc);%rtiesh of residue class rings. The following simple properties of the
, where P is a prime ideal of ¢ i ; -
later arguments. (X), will be assumed in many of the

e ©
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(14) C(X)/P is a totally ordered integral domain coataining the field R of
real numbers ([3; 5.5]).

(15) Every prime ideal of C(X)/P is convex ([3; 14.3(a))).

(16) The prime ideals of C(X)/P form a chain under inclusion; in particular,
C(X)/P is a local ring, i.e., it has only one maximal ideal ([3; 14.3(e)].

(17) Every nonnegative element of C/P has nth-roots, for n= 2, 3, ... ([3; 14.5)),

(18) If a e C/P is noninvertible and b e C/P is invertible, then [ax| <|b] for
every x € C[P ([3; 14.5(a)].

(19) Bvery monic polynomial of odd degree with coefficients in C/P has a zero.
Together with (17) this shows that C/M is a real closed field whenever M is a maximal
ideal ([3; 13.4]).

F. The divisibility property. We define now a simple but fundamental notion
used throughout the rest of this paper:

DERINITION 20. Let A be a commutative (totally) ordered ring with unit. 4 is
said to have the divisibility property, abbreviated DP, if

AFVYab O<a<b —bla).

The following basic result is proved in [2; Thm. 1]:
(21) For any commutative (totally) ordered ring with unit the following are
equivalent:
(@) 4k RCR.
(b) (i) A= DP;
(ii) 4 F every nonnegative element has a square root;
(iii) 4 k every monic polynomial of odd degree has a root.
In particular, together with (17) and (19), this proves:
(22) Let P be a prime ideal of C(X). Then C(X)/P is a model of RCR iff
C(X)/P E DP. Another simple but important fact is the following:
(23) The divisibility property DP is preserved under homomorphic images;
in other words, if 4, B are ordered commutative rings with unit and f: 4 -+ B
a surjective ring homomorphism which preserves order, then A4k DP implies
BE DP. We leave the proof of this as an exercise for the reader.

G. Redl closed rings vs. valuation rings. The following results are proved in
[2; Lemma 4 and Lemma 5]:

(24) Let K carry a valued field structure (X, G, v) and an ordered field struc-
ture (K, <. Then the following are equivalent:

1. K satisfies the compatibility condition

Vab(a<b - v(a) = v(b)).
2. The valuation ring R of v is convex in K.
3. The maximal ideal M of R is convex in K.
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4. The maximal ideal M of R is convex in R.
5. The maximal ideal M of R is bounded by +1.

(25) Let K be a real closed field carrying a valued field structure (K,G,v)
and let (X, <} be its unique ordered field structure. Then the five conditions above
are equivalent also to:

6. The valuation ring R of v is a real closed ring.

7. —1 is not a square in the residue class field K of X,

8. K is a real closed field.

DEFINITION 26. A ring 4 is called a valuation ring if
AE Yab(albvbla).

A totally ordered ring satisfying the divisibility property DP obviously is
a valuation ring; in particular, so is any RCR.

It is well-known that a valuation ring gives rise to a canonical valuation struc-
ture, denoted (4, S, val) with values on an ordered semigroup S. We shall only
consider here valuation integral domains. In this case the canonical valuation
structure of 4 extends uniquely, in an obvious way, to the field of fractions of A,
K = Quot(4); let us denote <K, G, v) the resulting valued field structure. If, in
addition, 4 carries an order structure, so does X, in the obvious way. .

Let us now assume that the conditions above are met when 4 is a ring of the
form C(X)/P. We obtain:

ProrosiTION 27. Let P < C(X) be a prime ideal. Then C(X)/P is a valuation
ring iff it is a real closed ring.

Proof. The remark following Definition 26 proves the implication from right
to left. (=) In Part II, § 1, Lemma 5, we prove that if 4 is a totally ordered integral
domain satisfying properties (17) and (19) above, then the field of fractions X of 4
also satisfies them, i.e. X is a real closed field. :

Let now A = C(X)/P be a valuation ring. By the very definition of the canonical
value structures in A and X, A is the valvation ring of (K, G, v). By (24) and (25)
it suffices to check that the maximal ideal M of 4 is bounded by +1, ie.

SeC(X) and fIP=1=> f|P invertible in C/P.

Since f/P>1 we can assume, by changing f if necessary, that =1 on X. Then
F71#0 on X, whence f™' e C(X) and flP-f"1/P=1. B

H. Martin’s Axiom. In order to establish the existence of certain types of prime
ideals of continuous functions we will need, in addition to the axioms of set theory
(ZFC), the set-theoretic assumption known as Martin’s Axiom. We now review
the background connected with this axiom; for further details and applications,
see [10].

DEFINITION 28. Let P be partially ordered set, let 4, D, G € P, and let @ be
a family of subsets of P.
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(a) Elements p, g € P are compatible iff there is re P such that r<p, q.

(b) A is an antichain of P iff any two elements of 4 are incompatible,

(c) P satisfles the countable antichain condition (c.a.c.) iff every antichain in
P is countable.

(d) D is dense in P iff every element of P lies above some element of D.

(&) G is D-generic (where 9 is a family of dense subsets of P) iff any two
elements of G are compatible and G meets each of the members of 2.

Martin’s axiom is the following combinatorial principle:

(MA) Suppose that P is a partially ordered set satisfying the c.a.c. and that 9 is
a family of (strictly) fewer than 2%° dense subsets of P. Then P contains

a 9 -generic subset G.

When @ is countable it is easy to prove this assertion in ZFC; thus (MA) is
a consequence of the continuum hypothesis. However, (MA) does not imply the
continuum hypothesis; cf. [10].

1. P-points. The notion of P-point in various spaces of ultrafilters will play
a central role in §§ 2,3 below.

DEFINITION 29. A point x of a topological space X is a P-point iff every G;
containing x is a neighborhood of x.

The P-points of the nonprincipal ultrafilter space SN — N have been extensively
investigated (cf. [12]).

We will need the following characterizations of P-points % of fD— D, where
D is an infinite discrete space.

(30) For every sequence {U,| n€ w} of members of %, there is Ue % such
that U~ U, is finite for all ne .

(31) For every partition {P,) ke w} of N such that P, ¢ %, there is Ue¥
such that U n P, is finite for all ke w.

For the proof see [1; 4.7] and [3; 6.S].

In the case D = N (i.e. D =¥,) the following is also known:

(32) % e PN~N is a P-point iff for each sequence {x,| n € ) in 2N (endowed
with the product topology) there is 4 e % such that {x,| n € 4> converges ([1; 4.7]).

(33) % € BN~N is a P-point iff for each bounded sequence f: N — R there
is A e such that lim f(n) exists.

oo
neAd

The last statement can be derived from (32); an alternative proof will be giv?n
in § 3 (Corollary 3.1.2). This characterization will be of fundamental importance in
our later work. .

Using (30) above it is easily checked: )

(34) ie(t ‘?)JsﬁD——D and As:_—“%. Then % is a P-point of D —D iff % } 4 is
a P-point of f4—A. )

The existence of a P-point in SN —N is not provable in ZFC. Indeed, we cite
the following result due to Shelah (cf. [11; Part VI, §§ 4-5, pp. 213-232]):

-
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(35) If ZF is consistent, then so is ZFC+“2% =R,”+“SN—~N does not contain
P-points”,

On the other hand, the existence of P-points in fN—N —indeed, of a dense
set of such points —can be proved in ZFC4Martin’s Axiom (cf. [1; 4.13]).

J. X-neighborhoods.

DernNrTIoN 36.) Let pe X and U X. U is called an X-neighborhood of p
iff U has the form ¥ n X for some neighborhood ¥ of p in fX.

In particular, when p € X the X-neighborhoods of p coincide with the neighbor-
hoods of p in X. '

We shall need the following characterization of X-neighborhoods:

LevMA 37. Let pe X and U<X. U is an X-neighborhood of p iff there is
Z e Z(X)—Z(M?) such that X—Z < U.

Proof. Routine, using:

(%) The sets Uz = {gefX| Z¢Z(M"M} for ZeZ(X) form a base of open
sets for the topology of fX. Furthermore, Uz n X = X—Z. ([3; p. 87]). &

From this lemma and [3; 5.4(b)] it easily follows:

(38) Let Fe C(X), pe X and re R; then:

JIM®?>r iff f>r on an X-neighborhood of p.

§ 2. General theory
2.1. Topological characterizations of real closed ideals,

A. Global version. We begin by giving (Theorem 1) a necessary and sufficient
topological condition for a residue ring of the form C(X)/P to be a real closed
ring, whenever P is a prime z-ideal of C(X). Combined with later results, this
condition makes possible to detect in a quite efficient way the presence of prime
ideals P such that C(X)/P is a real closed ring. It is the main tool for the investigation
carried out in the present paper.

‘We shall call an ideal P real closed iff C(X)/P is a model of RCR. Real closed
ideals are always prime, and P is real closed iff P is maximal or C(X)/P k RCVR.

THEOREM 1. Let P be a prime z-ideal of C(X) and let M?, p & fX, be the unique
maximal ideal of C(X) containing P. The following are equivalent: ]

(1) P is real closed.

(2) For every ZeZ(M?)—Z(P) and every le C(X—2Z), 0<I<]1, there are
WeZ(P) and he C(X), 0<h<1, such that h WW—Z) = INW-2Z),

Proof. (2) = (1). By 1.22 only the divisibility property (DP) needs to be
verified. Let 0<f/P <g/P. Since (DP) holds automatically whenever the largest
element in the inequality is invertible, we can assume g/P noninvertible. The ring
C(X)/P is a local ring whose maximal ideal is {#/P| he M"}; hence g e M?. We
can also assume without loss of generality that 0 << g; in particular Z(g) = Z, .
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Since P is a z-ideal, f]P, g/P >0 imply Z(f), Z(g) ¢ Z(P). Now apply (2) with
Z = Z(g) and I = f|g (which is defined on X—Z) to get We Z(P) and he C*X),
0<h<1, such that A} (W—2Z) =1} (W—Z). For xe W—Z we have g(x)h(x)
= f(x), and for xeZ, f(x) = g(x) = 0 and hence g(x)a(x) = f(x). This shows
that gh = f on W; since WeZ(P) and P is a z-ideal, we conclude g/P h/P = f|P,
ie., g/P divides fIP.
() = (2). Let Z = Z(g9) e Z(M?)—Z(P) and l e C(X-2Z), 0/ 1. Put:

0 if xeZ, .
f) = {g(x)l(x) if xe X-2Z.

Since / is bounded and g e C(X), we have fe C(X). Also 0<f<g (since 0K 1);
hence 0<f/P < g/P. Now apply (1) to get he C(X) such that g/P-h/P = f/P. Put
W = Z(gh—f); then WeZ(P). For xe W—2Z we have g(x) # 0 and g(x)h(x)
= g(x)I(x), whence h(x) = I(x). By considering (hv0)A1l instead of %, since
0<I<1, the map h can be taken to be bounded between 0 and 1, W

Remark. Under the assumptions of the theorem, condition (2) is equivalent to:

(3) For every ZeZ(X)—Z(P) and every le C(X—Z), 0<I<1, there are
WeZ(P) and he C(X), 0<h<]1, such that A} (W—2Z) =1} (W-2).

Proof. Let ZeZ(X)—~Z(M?) and le C(X-2Z), 0<I<], be given.

We prove first that there is We Z(P) such that W n Z = @. If this is not true,
then Z(P) u {Z} has the finite intersection property, and hence there is a z-ultra-
filter containing it; let M be a maximal ideal on C(X) such that Z(P) u {Z} = Z(M)
([3; 2.5]). It follows that P < M, and since P is contained in a unique maximal ideal,

" then M = MP; therefore Z e Z(M) = Z(M?), contradicting our assumption.

Thus, Wand Z are disjoint zero-sets, and hence com pletely separated ([3; 1.15]),
i.e. there is fe C(X) such that f} W= 1, f} Z = 0 and 0<< 1. Setting

1) = {.g(x)l(x)

we conclude that e C(X) (because !/ is bounded), 0<h<]1, and A} (W-Z)
=[ (W-2Z) by the choice of fand W = W-Z.

As a corollary we obtain an extensive class of spaces where all prime z-ideals
(indeed, all prime ideals; cf. Corollary 9 below) are real closed. An F-space is
a space X in which the ideals 07 are prime for all p e BX ([3; 14.25(1)].

PROPOSITION 2. If X is an F-space, every prime z~ideal of C(X) is real closed.

Proof. By [3; 14.25(6)] every cozero-set in X is C*-embedded. Thus con-
dition (2) of the preceding theorem is verified with W = X (independently of the
zero-set Z and the function 7). M

Remark. In the case of the ideals 07 this result was proved by Kohls [4; 5.7]
and [5; p. 529]. The restriction to z-ideals will be removed later (cf. Corollary 9).
4 — Fundamenta Mathematicae 126, 2

for xe X-Z,
for xeZ,
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A P-space is a space X' such that 0F is a maximal ideql for all pe X [3;
14.29(1)], or, equivalently, every prime ideal is maximal. Proposition 2 is a source
of models for the theory RCVR only in the case of F-spaces which are not P-spaces,

3. ExAMPLES of F-spaces which are not P-spaces. () fX— X, whenever X is
a locally compact, ¢-compact space which is not compact (cf. [3; 14.27)); this
space is also compact. In particular, BN—N and SR~R are F-spaces but not
P-spaces. .

(b) BX, whenever X is an infinite P-space ([3; p. 212]). Thus BN is another
example.

(©) XxpX, whenever X is an infinite P-space ([12; 8.38]).

(d) Every infinite zero-set Z of fX such that Z n X = @ ([3; 14,0.1]).

(e) BE—E, whenever E is a cozero-set in a compact space and BE~E is in-
finite ([3; 14.0.2]).

(f) BX- X, whenever X is a locally compact F-space which is not compact
([3; 14.0.3]).

(®) If X is a P-space, every subspace of fX containing X but not contained
in vX (the real compactification of X) is an F-space but not a P-space ([3; 1.P.2]). B

On the other side of the picture, most familiar spaces are not F-spaces. For
example: no metrizable space is an F-space, unless it is discrete; furthermore: no
nonisolated point of an F-space has a countable base of neighborhoods ([3; 14.N.2]).

B. Local version, We shall now show that a “local” version of the topological
condition (2) of Theorem 1 is still sufficient to characterize real closed ideals. Ac-
cordingly, we will be able to sharpen Proposition 2 into a corresponding “local”
version.

Lemma 4. Let pe BX and let U be an X-neighborhood of p. Then Jor every
g€ C(X) there is g' € C(X) such that g|0? = g'|0? and Z(g') < U.

Proof. Case 1. g*(p) # 0. By 1.4 and 1.38 this assumption implies that there
is an X-neighborhood of p on which g >0 (if g/M?>0) or g <0 Gf g/M? <0).
Considering —g instead of g we reduce to the first of these alternatives.
Replacing, if necessary, g by max{g, 0} and U by a smaller X-neighborhood of P
we can assume ¢ >0 on X. Furthermore, by considering 2/rg instead of g whenever
g%(p) = r <2, we can assume that g*(p) > 2; in particular, p ¢ Z(g).

Setting f = 1—min{g, 1}, we have fe C(X), 0<f<1, f=1 on Z(g) and
(x) = 0 whenever g(x)3 1. In particular, Z(f) 2 g7 [(1, 00)], which proves that
Z(f) is an X-neighborhood of p (because g*(p) > 2). Since g and g+f coincide on
Z(f), we conclude that g0 = g+f/0%. Next, observe that Z(g+f) = Z(g) N VAl))
because g, f> 0; since g and f are never simultaneously zero (by the definition of )
we have Z(g+f) = B U. Set g’ = g+f.

Case 2. g*(p) = 0. Under this assumption, the set {xeX||g(x)|<1} is an
X-neighborhood of p on which g coincides with min {9, 1}. Replacing, if necessary,

icm

Real closed rings I 157

g by the latter and U by a smaller X-neighborhood of p, we can assume that lgl<1
on X, and (by Lemma 1.37) that U = X—Z for some zero-set Z of X.

Complete regularity implies the existence of a zero-set ¥ of X which is an
X-neighborhood of p with V= U (cf. [3; 3.2(b)]). Therefore V and Z are disjoint
zero-sets, and hence completely separated [3; 1.15]; let feC(X) be such that

-0<f<2,f=00n Vand f=2on Z Set g’ = g+f. Then g and g’ coincide on

the X-neighborhood ¥ of p, whence g/0® = ¢’/0%; if xe X—U (=2Z), then f(x) = 2
and |g(x)| <1, so that g'(x) 0. This proves that Z(g") = U, and hence also the
lemma. B

PROPOSITION 5. Let P be a prime z-ideal of C(X) and let M, p € BX, be the
unique maximal ideal containing P. Let U be an X-neighborhood of p. Then the
Jfollowing are equivalent:

(1) P is real closed.

(2) For every ZeZ(M?)—Z(P) such that Z< U and every le C(X-2),
0<I<1, there are he C(X), 0<h<1, and WeZ(P) such that h} (W—-2) =
=M (W-2).

Proof. (1) = (2) holds by the corresponding implication in Theorem 1. 'Fo
prove the converse, if C(X)/PkO0<fiP<g/P, we can assume Z(g)< U, upon
replacing, if necessary, the function g by the function g’ given by the preceding
lemma, and taking into account that 0° < P. The proof proceeds, then, as in
Theorem 1. B

PROPOSITION 6. Let pe BX and assume p has an X-neighborhood which is
an F-space. Then for every nonmaximal prime z-ideal P < M?®, C(X)[P is a real
closed ring.

Proof. Let U be an X-neighborhood of p which is an F-space. By Lemma 1.37,
there is Z' e Z(X)—Z(M?) such that X—Z'c U; X—Z' is also an X-neighbor-
hood of p, and since a cozero-set in an F-space is again an F-space ([3; 14.26]),
we can assume without loss of generality that U = X—2Z.

Let now Z= U and /e C*(X—2Z). Since U is an F-space, the map [} U-z)
bas an extension I'e C*(U), [3; 14.25(6)]; put

_Jlx) forxeU= X-2Z'
h(x)_{l(x) for xe X—Z.

Since / coincides with I” on U—Z, it follows that 2 € C*(X). Hence condition (2)
of Proposition 5 holds with W= X. &

Remark. When p is a BF-point (with an X-neighborhood which is an F-space)
and P = 07, this result was proved by Kohls [5; 4.1(1)].

C. Preservation under extensions. We prove now that the family of real closed
prime ideals is closed under extensions (supersets). This applies to all prime ideals,
not just z-ideals, and therefore extends considerably the scope of the preceding
results.

4% 7
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This result shows that it should be considerably more difficult to find real
closed ideals low in the tree of prime z-ideals — as is the case in the preceding
results — than higher up in that tree, “near” the maximal ideal; the latter, at the
top of the tree, is always real closed.

ProroSITION 7 (extension property). Let Q<SP be prime ideals of C(X).
If Q is real closed, then so is P.

Proof. This follows at once from 1.23 because the natural map ¢(f/Q)
= fIP, fe C(X), from C(X)/Q to C(X)/P is a sutjective ordered ring homomor-
phism. H .

COROLLARY 8. Let X be any space.

(1) Let P be a prime ideal of C(X). If there is a minimal prime ideal J < P which
is real closed, then C(X)/P is a model of RCR.

(2) C(X)/P is a real closed ring for every nonmaximal prime ideal P of C(X)
(resp. included in M?, pe BX) iff C(X)|J is a real closed ring for every minimal
prime ideal J of C(X) (resp. included in MF). H

COROLLARY 9. If X is an F-space, then every prime ideal is real closed. Similarly,
under the hypothesis of Proposition 6, every prime ideal contained in M? is real closed,

Proof. Immediate from Corollary 8 and Proposition 2 (resp. Proposition 6),
taking into account that minimal prime ideals of C(X) are z-ideals (1.10). &

ExameLe 10. A space X where all prime ideals. are real closed but which is
not an F-space.

Let Xy, X, be F-spaces containing points py, p, such that 0,, is not maximal.
Let X be the space obtained by “wedging” X;, X, together through p, and p,;
i.e., Xis the (disjoint) union of X; and X, with identification of p, and p, (into p,
say); the neighborhoods of p are the unions of a neighborhood of p, in X; and
a neighborhood of p, in X, while the open sets of X not containing p are those
of Xy and of X,, not containing p, and p,.

(a) X isnotan F-space. For i = 1, 2, let ¢,: C(X) —» C(X;) be the map ¢,(f)
= f } X;. Obviously ¢, is a surjective ring homomorphism, and if 0, cPcM,,
@7 1[PI] and ¢35 *[P,] are < -incomparable prime ideals contained in M,. Indeed,
if g,€ M,,—P;, then g, U 0 93 '[P,]— 07 *[Py] and 0 U g, € o] '[P,]— 03 [P,];
here, if f;: X; ~ R are functions such that £,(p;) = f2(p,), then fivufar X— Ris
the function defined by:

fuOfuln) = {?f("j)

Let J; = ¢ 1[01,,]. The definition of the topology of X implies at once that
0, = J; nJ,. It follows that:

ifxeX,—{p} (i=1,2)
ifx=p.

*) every prime ideal P < M, contains J; or J;.

(Otherwise, let f;eJ,—P; then f,fre; nJ, = 0,< P, implying that P is not
prime). Thus, J;, J, are the minimal prime ideals contained in M,.
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(b) In order to show that every prime ideal of C(X) is real closed, it suffices
to show that J; and J, are (Corollary 8(2)). Now, if

ey 3 ey e

where m; denotes the canonical projection, we have Ker(n; o ¢) = o 1[01,‘] =J.
Hence C(X)/J;~ C(X)/0,, and J, is real closed. B

Pi?

In this example, the maximal chain of prime ideals of C(X) joining J; to M, is
isomorphic to that joining 0,, to M, This is due to the fact that the map @, induces
in the obvious way an order-preserving bijection between these chains (easy verifi-
cation).

D. Rings of bounded contimious functions. We shall examine briefly the case of
the ring C*(X) of bounded continuous functions on ¥. Since C*X) = C(BX),
the preceding theory does automatically apply but, as we shall see, it is simpler
to consider directly the ring C*(X) rather than taking a detour via the space X.

The isomorphism relation above implies that the results of § L.E apply also
to the ring C*(X); cf. [3; 6.6(c)]. To each p e pX there corresponds a unique
maximal ideal of C*(X): M*? = {fe C* f¥(p) = 0}. We have that M? A C*
& MP, and p is the unique g X for which the relation M? A C* < M** holds.
Also, if P= C(X) is a prime z-ideal, then so is P A C* and for pPeEBX, Pc M?
if and only if P A C* ¢ M*?, For further details sce Mandelker [9].

PRrOPOSITION 11. Let Q be a prime z-ideal of C*(X) and let M*® (repXx)
be the unique maximal ideal of C*(X) containing Q. The following are equivalent:

(1) Q is real closed.

(2) For every ZeZ(MP)~Z(Q) and every le C(X—-2), 01, there are
WeZ(Q) and he C(X), 0<h <1, such that h } (W-2) =1}(W-Z).

Proof. First notice that the proof of Theorem 1 carries over literally to the
bounded case (that is, with C* and M*® replacing C and M?, respectively); ie.,
condition (1) is equivalent to:

2) for every Ze Z(M*?)-Z (Q) and every le C(X—2Z), 0<I< 1, there are
WeZ(Q) and he C(X), 0<h<1, such that A VW=2)=1MNW-2Z).
Next we remark that

Z(M*) = {ggf;{)")

(by [9; Theorem 1] the second case occurs iff M*? contains a unit of C(X)). In
the first case (2) and (2') are obviously equivalent. Tn the second case this equivalence
follows from the condition:

(3) for every ZeZ(X)~Z(M?) and every le C(X—2Z), 0<I<]1, there are
WeZ(Q) and he C(X), 0<h <1, such that h } (W—2Z) = I } (W—2).

if M* = MP? A C*,
if M* £ M?C*
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This, in turn, is a consequence of:

(4) for every Z e Z(X)—Z(MP?) there is WeZ(Q) n Z(M?) such that Wn
nZ=0.

Proof of (4). Let F = Z(Q) n Z(MP); then F =Z(M?) if M~ C*g Q,
and &F = Z(Q) if 0 € M? n C* (Q is comparable with M? n C*, [9; Theorem 1]);
in particular, & is a proper prime z-filter. If (4) is false, let Z e Z(X)~Z(M")
be such that W Z s @ for all We . Then & U {Z} generates a z-ultrafilter,
ie., there is ge X such that & U {Z} = Z(M?. Since ZeZ(M?), the prime
z-filter & is contained in the distinct z-ultrafilters Z(M?), Z(M™), contradicting
[3; 2.13].

Proof of (4) = (3). Given Z and [ as in (3), let WeZ(Q) n Z(MP") be so
that Wn Z = @. By [3; Theorem 1.15] W and Z are completely separated, i.e.
there is fe C(X)such that f} W= 1,f} Z = 0and 0<f< 1. Set h= fI on X—Z,
h =0 on Z. Since / is bounded and f} Z = 0, we have he C(X): also 0<h<1.
Futthermore, W—~Z = W, and then h | (W—2Z) =1} (W~-2Z). B

A corresponding “local” result is obtained by using Proposition 5 instead of
Theorem 1. .

COROLLARY 12. Let P be a prime z-ideal of C(X). Then:

(1) P is real closed iff P n C* is real closed.
In particular,

(2) M? n C* is a real closed ideal of C*.

(3) Any prime ideal Q of C* containing M® n C* is real closed.

Proof. (2) follows from (1) and the fact that MP? is real closed. (3) is a con-
sequence of (2) and the analogue of Proposition 7 for prim¢ ideals of C*. Remark
that this analogue holds, as the fact (noted eatlier) that the results of § 1.E carry
over to the ring C* entails at once that 1.22 is also true for ideals in C*.

Statement (1) follows at once from Theorem 1 and Proposition 11, since the
equality Z(P) = Z(P n C*) holds for any prime z-ideal P of C, as is readily
verified. B

The above and [3; 7.9(c)] imply that whenever X is a realcompact space (see the
definition in [3; 5.9]), M” n C* is 2 nonmaximal real closed ideal of C*, for every
p€pX~X; this remark is due to the referee, improving an earlier observation by
the authors, This contrasts with the results of the next section where we will prove
that the existence of real closed ideals properly contained in M?* is not provable
in ZFC, whenever X is metrizable and p e X.

2.2, Real closed ideals and P-points. We shall now discuss the relationship
between these two notions. Our analysis will be based on the characterization of
P-points of BN—N given in 1.33 and the following intermediate concept.

DEFINITION 1, Let X be a topological space, pe X, and & a filter of subsets
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of X. & is called a P(p)-filter iff for every function fe C(X—-{p}, 0<f<1, there
is Ye & such that lim f(x) exists.

x—+p
xeY

| Clearly any filter containing a P(p)-filter is also a P(p)-filter.

We will prove first that the z-filter corresponding to any minimal prime ideal
below a real closed ideal is a P(p)-filter for suitable p € X. Next we show that in
the case of a metrizable space X the existence of a nonmaximal real closed ideal
contained in M, for p € X, implies the existence of a P-point in SN—N.

THEOREM 2. Letpe X, let P ¢ M. » be a prime ideal, and let O < P be a minimal
prime ideal. If P is real closed, then Z(Q) is a P(p)-filter. B

Proof. Suppose fe C(X—{p}), 0 <f<1, is such that lim Jf(x) does not exist for

X=p
xeZ

any Z e Z(Q). We shall show that P = M,. Let g € M,. Replacing, if necessary,
g by g% we can assume 0 < g, so that 0 < fg < g. Since £ is bounded and g(p) =0,
the map fg (defined on X—{p}) extends in the obvious way to a map C(X) also
denoted by fg. Since P is real closed, there is he C(X) such that

fg/P = hlP-g/P.

Let r = h(p),f' = |f~rl, B’ = |h—r|. Clearly K'(p) = 0, I’ e C(X) and defining f'g
on X as above, a routine computation shows that f'g/P = K'[P-g|P. Let

Y = {xe X—{p}l ()<g@+H®} U {5},
Y, = {xe X~ {p}| /(M Zg@)+ (@)} U {p}.
Clearly lim f* = 0, whence lim f = r. By assumption it follows that Y, ¢Z(0), and

x—p x-p
xe¥y xeYy

therefore Y, € Z(Q) (since Y;, Y, are zero-sets and Z (Q) is a prime z-filter), But
on Y,—{p} we have f'—h’ > g, whence (f'—h)g > g* on Y,; since Q is a z-ideal
(1.10) and P2Q, it follows ([3; 5.4(a)]) that (f'—h)g/P=g*/P>0; since
{(f'=H)g e P, we conclude that g* € P; hence g ¢ P.

THEOREM 3. If X is a metrizable space, p € X, and there is a prime P (p)-filter #
of zero-sets such that F & Z(M,), then there is a P-point in PN—N.

Proof. Let d denote a metric defining the topology of X. Fix r; >r,>...—0
and let

4o = {xe X| d(x,p)>r},

An =:{xe Xl d(x:P) € [rn+h f',,]}

These are zero-sets of X ([3; 1.11]), and since p is nonisolated (because & is proper)
Wwe can assume without loss of generality that the 4,’s are all nonempty. Set

Yy = U4, v i{p},

Y, =U A v {pn}.

for nz1.
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Cleatly Y, U ¥, = Xe & and we can assume Y; € & without loss of generality,
For SN define
¥(s) = U 43, v {p},
neS

and let
% ={ScN| Y(S)e F}.

It is easily checked that % is an ultrafilter on N (@ ¢ % follows from {p} ¢ & which,
in turn, is a consequence of & # Z(M,)). Moreover, 4 is nonprincipal, for {k}ew
would imply 4, v {p} e #, and (since & is a P(p)-filter) also {p} € &, a con-
tradiction. '

Now we use the characterization (1.33) to show that % is a P-point. Let
fe C*QN) be given. It is easy to construct a function f’e C*((0, c0)) such that

)= 1)

FHe) = £ (dx, p)
Thus, f* € C*(X—{p}). Fix Z € & so that lim f*(x) exists; we may suppose Z < Y.

X=p
xeZ

for re[rapss r2al nEN,
Then define

Set
S={neN| Zndy, + 2.

Then Z < Y(S), implying that Se % and

lim f = lim f*;
n-»0 x->p
nesS xeZ

this shows that lim f exists. B
n->om
neS

COROLLARY 4. Let X be a metrizable space, pe X, and assume M, contains
a nonmaximal real closed ideal; then there is @ P-point in BN —N. In particular, the
existence of such ideals is not provable in ZFC.

2.3. Th‘e operation y. In [6; § 2] Kohls introduced a one-to-one correspondence y
between prime z-ideals of C(X) contained properly in M*? — where p is a nonisolated
Gs-point of the space X —and certain prime z-ideals of C(X'— {7}.

Our main result in this section (Theorem 2) gives an exact characterization of
feal closed ideals of the form y(Q), in terms of the ideal Q. This characterization
is essential for later work in § 3.

L. Definition and basic properties. Let X be an arbitrary (completely
?egu]a.r) space and p e X be a nonisolated G,-point. Let i: X—{p} - X be the
inclusion, let X, be the largest subspace of f(X— {p}) on which 7 admits a continu-
ous .X-valued extension (for its existence, see [3; 10.13]), and let ¢ be the (unique)
continuous extension of i to X;. Then ¢ is a closed map and ¢~(p) = X;—(X—{p})
i3 nonempty (cf. [3; 10.13]).
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The closure operator cly maps Z(X—{p}) into Z(X) ([6; 2.1]) and therefore
it induces a map y with the following properties:

(1) y is a bijection of the family 2 of all prime z-ideals @ of C(X—{p}) such
that Z(Q) converges to a point of ¢~ (p), onto the family £ of all nonmaximal
prime z-ideals of C(X) contained in M”.

(2) For @4, y(Q) is defined to be the (unique) prime z-ideal such that

Z(y(Q) = {ck(N)} YeZ(Q)}.
(3) The inverse map y~* of y is determined by the condition:
ZO~YP)) = {Z—{p}| ZeZ(P)}, for Pe®.
(4 For Qe 2,
Q is maximal <> y(Q) is an immediate prime z-ideal predecessor of M.
For the proof of these properties and some examples of the effect of the map ¥,
see [6; §2].
‘We now turn to the proof of:
THEOREM 2. Let p be a nonisolated G5-point of X, and Q e 8. The following are
equivalent: ’
(1) The ideal y(Q) is real closed.
@) () Q is real closed, and
(b) for every fe C(X—{p}), 0<f<1, there are YeZ(Q) and he C(X),
0<h<, such that h} Y =f }Y.
Remark. We give two rather different proofs. They illustrate dual aspects —
set-theoretical and algebraic — of the same subject.
First proof. The following two facts [6; p. 451] will be needed in the proof;
they can be easily verified by the reader:
(@) If F is a closed subset of X, then y(F—{p}) is either F—{p} or F.
(ii) If F is a closed subset of X—{p}, then y(F)—{p} = F.
From (i) and (ii) it follows:
' (ili) If FeZ(X), then FeZ(y(Q)) < F—{p} € Z(Q)-
Since {p} is a zero-set iff it is G, (cf. [3; 3.11(b)]), the assumption gives:
(i) {p} € Z(M?) and every member of Z(M?”) contains p.
(1) = (2). Assume y(Q) is real closed. By Theorem 2.1.1 the following holds:
(*) for every ZeZ(M")—Z(y(Q)) and every le C(X—Z), 0<I<1, there are
WeZ(y(Q) and he C(X), 0<h<], such that A} (W—Z) = [} (W-2).
Let g be the unique point of f(X—{p}) such that Q c M*; necessarily g ¢~ (p).
Proof of (2.a). By Theorem 2.1.1 again, O is real closed iff:
(%) for every YeZ(M%—2Z(Q) and every me C((X—{p))—7¥), 0<m<],
there are VeZ(Q) and ge C(X—{p}), 0<g<1, such that g} (V- Y)
=mp(V-Y).
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To prove (+#), let such ¥, m be given. From 1.(1) and (iii) we get at once:

) y(N e Z(MP)~Z(y(2);
hence by (iv),

(vi) pey(Y).
Now, setting Z = y(Y) and I = m in (%), get We Z(y(Q))and he C(X), 0<h < 1,
such that A} (W—2Z) = m} (W-Z). Further, we set V = W— {r} and prove:

i) V=Y = W—Z.
Cleatlly V=Y = (W—{p)—Y = W—(Y U {p}), and by (i), y(¥)~{p} = 7:
hence Yu {p} = y(¥) = Z.

Put g = h} (X—{p}), and (»«) follows at once from (iii) and (vii).

Proof of (2.b). By (iv) and Z(y(Q)) & Z(M?) we get {p} € Z(M")—-Z(y(Q)).

Setting Z = {p} and I = fin (x) gives WeZ(y(Q) and he C(X), 0<h<],
such that i} (W—~{p}) = f NW—{p}). Putting ¥ = W—{p}, (2.b) follows at once
from (iii).

(2) = (1). We assume (+) and (2.b) and prove ().

By the remark following Theorem 2.1.1, (%) is equivalent to:

(xxx)  for every Y'e Z(X—{p})~Z(Q) and every m e C(X—{ph~¥), 0<m<],

there are VeZ(Q) and g C(X—{p}), 0<g <1, such that gr(V-yv)
=m) (V=)

Let ZeZ(M”)-Z(y(Q)) and /e C(X-Z), 0<I< 1, be given. Set Yo =Z~
~{p}. Then Y, eZ(X-{p)-2Z(Q) (by (iii)), and / is defined on (X—{pP)— ¥,
(= X~2). Using (s+*) with ¥ = Y, and m = [ we get Ve Z(Q)and g e C(X—{p}),
0<g <1, such that

(+) gt (V=Yo) =1} (V-1,).
Setting W, = y(¥), we have W, €Z(y(@), V = Wo—{p} (by (ii)), and
(++) V—Y, = Wo—={rh-Y, = Wy—-Z.

Now, using the assumption (2.b) with f=g, get Y,€Z(Q) and he C(X),
0<h<1, such that g} ¥, = h} ¥,. If W, = y(Y)), then as above we conclude
that Wy eZ(y(Q)) and ¥, = W, —{p}. Hence:

(+++) gt (Wi={p}) = bt (W ~{p}).

Let W= W, n W,; then WeZ(y(Q)). Since peZ, we obtain:

ht (W=2) =g} (W-2) (by (+++)),
and

gt (W=Z) = It (W=2Z) ~(by (+) and (++)).
Thus (%) is verified. B
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Second proof. Set R = C(X)[y(Q), R' = C(X—{p})/Q. The restriction
map ¢: C(X)—> C(X—{p}) induces a monomorphism g*: R - R’, because
ely(Q)] < Q and ¢7*[Q] =9(Q) as is readily verified.

Condition (2.b) is equivalent to: )

(2b) If 0<a<1 in R, then a e Range (¢%).

Now, since R, R’ both satisfy the condition:

(*) If 1<, then b is invertible (cf. 1.18),
it follows that the divisibility property (DP) for R, R’ is equivalent to:
(x%) If 0 <a<b<1, then b divides a.

Hence, if (2.b") holds, then the divisibility property for R is equivalent to the
divisibility property for R’, or in other words:

1) = (1)« (2a).
Hence to prove the theorem it suffices to show:
(D = 2.b). Fix 0<a<1in R Since y(0) # M, we can choose fe M,~
—7(Q). Let f’ = g*(f/y(Q)). ‘We can find a function g e CX() satisfying:
D 0<g<f;
(i) g’ = af’, where g' = ¢*(g/7(0))-
Indeed, let a € C(X—{p}) be so that 0<a<1 and «/Q = 4, and set

o= {7 o x0

at p.
Now apply the divisibility property in R = C(X)/y(Q) to conclude that there is
a function s e C(X) satisfying:

S1(@) -~y (Q) = g (D).
Set &' = g*(h/y(Q)) and compute:
I =g =af';

since f # 0 we obtain a = &', as desired. B

Applying Theorem 2 to the case where  is maximal, gives:

COROLLARY 3. Let X and p be as in Theorem 2, and let M* be a maximal ideal
of C(X—{p}) such that g e ¢~*(p). Then the following are equivalent:

) y(M9) is real closed;

(2) for every fe C(X—~{p}), 0<f<, there are YeZ(M?Y and he C(X),
0<h<, such that f bY = h} Y.

Condition (2) implies:

(3) every bounded real-valued function on X—{p} has a limit at p over a set
of Z(M9); i.e., Z(M9) is a P(p)-filter. i

If X is normal or p has a compact neighborhood, then (2) and (3) are equivalent.
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Proof. Since 2 maximal ideal is real closed, the equivalence between (1) and (2)
follows at once from Theorem 2. Likewise, (2) = (3) is obvious since lim Jx) = ey,
XxX=p

xeY
() = (2. Let f': YU {p} > R be defined by f'} ¥ = f} Yand f'(p) = lim f(x).
wet

Obviously /" e C(Y U {p}) and we can assume, without loss of generality, that
0<f'< 1. Also Y u {p} is a closed subset of X. If X is a normal space, Y'u {p}
is C*-embedded in X ([3; 3.D]). i.e. there is ke C*(X) such that i (YU {rh
= f’, whence A} ¥ = f} 7.

If p has a compact neighborhood, ¥, then by [3; 3.2(b)] we can choose ¥ to
be, in addition, a zero-set neighborhood of p. By [3; 1.15], VeZ (M ), so that
V—{p} e Z(M* and ¥ n Y& Z(M?. The set (¥ A Y) U {p} is compact too, and
therefore .C-embedded ([3; 3.11(c)]). Defining as before the map f’ on this set,
we have f'e C*(V n Yy u {p}) and the proof proceeds as in the preceding case. B

In the next section we will meet situations where X— {p} is C*-embedded
in X; under this assumption Theorem 2 gives:

COROLLARY 4. Let X, p and Q be as in Theorem 2, and assume that X— {p} is
C*-embedded in X. Then y(Q) is real closed i Q is real closed. In particular, if
g€ ¢~ (p), then y(MY) is an immediate prime z-ideal predecessor of M? which is
real closed.

Proof. Immediate from Theorem 2 and 1.(4) above. B

24. [F-points, The notion of a BF-point of BX was introduced by Xohls
in [4]. The simplest way of defining this notion is the following:

DrrINITION 1. A point p e BX is a fF-point iff the ideal 07 is prime.

In this section we study the behaviour of prime ideals contained in M”, when
P is a (nonisolated) fF-point. The key to this study is Lemma 2. Using a refinement
of a technique already employed by Kohls (cf. [4, p. 46] and [5, pp. 530-531]),
we prove that if the space X is normal or the point p has compact X: -neighborhood,
then the immediate prime z-ideal predecessor of M? (whenever it exists) is real
closed. '

As an application of the results of § 2.3 we consider next the case where pis,
in addition, a G;-point belonging to X; no extra assumptions on the space X are
made here. We reprove a result of Kohl’s (4, Theorem 5.7] and [6, p. 453]), which
says that in this case M, does have an immediate prime z-ideal predecessor which
is real closed, and give an explicit characterization of it.

Recall that each of the following conditions on a point p & X is equivalent
to it being a BF-point:

(1) the set of prime ideals below M? is totally ordered by inclusion (1.12).

(2) for every f, g & C(X) such that S*(p) = g*(p) = 0, there is an X- ~neighbor-
hood U of p such that Z(NnUsZ(g) A Uor ZPNUsSZ(NHNU ([5; Theo~
Tem 2.20 (6)], [4; Theorem 5.3]);
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(3) for every f, g € MP, either g {07, f) or fe07, g) (where {4} denotes
the z-ideal generated by A< C(X)); [5; Theorem 2.20 (6)];

(4) for evety fe C(X) such that f*(p) = 0, there is an X-neighborhood of P
on which one of the relations />0 or f<0 holds; [4; Theorem 5.2].

We begin by proving the following fundamental:

Lemma 2. Let p e fX be a BF-point. Then for every zero-set Z of X, X—Z is
C*-embedded in the space (X—Z) w {p} endowed with the topology induced by BX.

Remark. The open subsets of the space (X—Z) u {p} contained in ¥—Z
those induced by X; the open subsets containing p are of the form (U n (X—2)) u
U {p}, where U is an open X-neighborhood of p.

Proof. Let Z = Z(g), g € C(X), and /e C¥(X—2Z). We can assume without
loss of generality that 0 </<1 and g=0. Set

0 for xeZ
J6) = {g(x)l(x) for x& X—Z.

Clearly 0<f<g and fe C(X) (since / is bounded).
For re R*, let u, = f—rg. Then g, e C(X) and
@ r<s=p<p,.
(® o =f20o0n X
©) p;<0on X.
Set
ro = Sup{re [0, 1]} 4,/0°>0}
and

P(py=re, I'MNX-2Z)=1.

We show that [’ is continuous at p. This amounts to the following: for every s> 0
there is an X-neighborhood U of p such that |/(x)—r,| <& for x & U—-‘Z.

Since ro—e <ry, there is r so that ro—e<r<r, and /0?20, ie., #,=0
on some X-neighborhood Uy of p [3; 5.4(a) and 7.12(a)]; for xe U; we have:
0 (%) = f(x) —rg () < f()—(ro—e)g ();

dividing by g(x)>0 this gives:
O] —tgI(x)—ry forxelU,—-Z.

In order to prove the other inequality we consider two cases:
Case L. ro = 1. Then 4,/0” = 0 and g, € 07. Hence there is an X-neighbor-
hood U, of p such that g, = 0 on U,, i.e., f(x) = g(x) for x € U,. It follows that

(%) I(X)—ry=0<¢ for xeU,—-Z.

,CasE 2. ro < 1. This implies that g,,4, cannot be >0 on an X-neighborhood
of p. Then, property (4) above implies the existence of an X-neighborhood U,
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of p such that g,,.,<0 on U,. As before we conclude that
(CD) ) [(x)~ro<e for xelU,~Z.

By () and (s#), |[(x)—ry| <& for xe (U, n U,)—-Z. HA
Lemva 3. Let Q @ P be z-ideals of C(X). Then the following are equivalent:
(1) Q is an immediate z-ideal predecessor of P;
(2) for every f,geP—Q there is he Q such that

ZNHNZI)=ZG)nZH).

Proof. Routine, using that the z-ideal of C(X) generated by a z-ideal I and
a function f is given by: (I,/) = {ge C(x)| there is el so that Z(HnzZp
SZ(@nZH} B

Our main result is the following:

THEOREM 4. Let pe BX be a BF-point. Assume that either,

(a) the space X is normal and MP is a real ideal, or

(b) p has a compact X-neighborhood.
If P M7 is an immediate prime z-ideal predecessor of MP, then P is real closed.

Proof. We want to prove that in the case (a), condition (2) of Theorem 2.1.1.
is satisfied; in the case (b) we will verify the corresponding local condition (2) of
Proposition 2.1.5.

We shall first prove:

Cram 1. Assumption (b) implies that the ideal M? is real.

Proof of claim 1. By [3; Theorem 5.14] it suffices to show that the inter-
section of countably many members of Z (M?) i3 nonempty.
Let {f,},»1 be a countable set of functions in M?. Considering, if necessary,
inf{f?, 1} instead of f, we can assume that 0<f,<1 without altering the corre-
n

sponding zero-sets. Furthermore, replacing 1. by Y fie MP) we can assume that
i=1

the zero-sets Z(f,) are decreasing (that is, Z(f,) = Z( /) for m 2z 1) without changing
the set () Z(f,).
nz1

Now fix a compact X-neighborhood C of B; by 1.37 there is WeZ(X)~
—Z(M?) such that X— W< C.
In this situation, the proof will be finished if we show that Z (fnCz0@
for all 21, for the compactness of C implies NZ(;) n C % &, and hence
nz1

le(/},) #* 9.

Thus, we have to show:

feEMP=2Z(NnC#0G.
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But notice that, in fact, we have:
feMP=2Z(NHn(X-W) £ g.

Otherwise, we would have Z(f)< W which, together with Z(f) eZ(M?) and
WeZ(X) imply at once WeZ(MP), a contradiction. B

Let ZeZ(M?)—Z(P) and le CH(X—2Z); for the case (b) fix a compact
X-neighborhood C of p and assume (using [3; 3.2(b)] if necessary) that Z< C.

Henceforth we assume that M7 is real. We shall establish the next result under
this assumption but no other assumption on the space X or on the point p:

CLaM 2. There are WeZ(P) and lye C*(W) such that I, MW-2Z)
=1} (W-2). '

Proof of claim 2. Using Lemma 2 extend / to a continuous function I’ on
(X—Z) v {p}; then extend I’ further to a (not necessarily continuous) function 1’
on X v {p} by setting I"(x) = I'(p) for xeZ.

Recall that the oscillation of a real-valued function F at a point p is defined as:

osc(F, p) = lim sup F(x)—lim infF(x) .
x=p x—p

Since I is continuous at p, for every n>1 we can find an x-neighborhood U,
of p such that osc(l”, x) < 1/n for every xe U,. '

By Lemma 2.14 we can find functions k,e C(X), 0<k, <1, such that
Z(k,) s U, and kf(p) = 0 for all n>1. Since M? is real, by [3; 7.2 and 7.9(c)]
we conclude that k, € M¥; furthermore, by [3; Theorem 5.14], there is a function
se M? such that:

O] n U,o QZ(k,,) =Z(s).

Now we show:

() there is k & P such that () U,2Z n Z(k) .

Indeed, if se P, then (+x) follows from (+) by taking k=s. If s¢ P, let
g € M?—P be such that Z(g) = Z; since P is an immediate prime z-ideal prede-
cessor of M?, by Lemma 3 there is ke P so that Z(s) n Z(k) = Z(g) n Z(k);
(x+) follows at once from this and (x).

Condition (xx) says that at each point of Z n Z (k) the oscillation of I is zero.
Since /" (= 1) is continuous on X—Z, at each point of Z(k)—Z its oscillation is
also zero. Therefore /" is continuous on Z(k).

The claim follows by setting W = Z(k) and I, = I/ | w: M

Returning to the proof of Theorem 4, when X is normal, W is C*-embedded
(13; 3.D]). Under assumption (b) notice that we can choose W< C; hence W is
compact and by [3; 3.11(c)] W is C*-embedded.
Hence in both cases there is '€ C*(X) such that & } W = . Clearly 4 and [ co-
incide on W—Z. Therefore the ideal P is real closed. M
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The proof of Theorem 4 also yields:
COROLLARY § (Kohls). Let p € BX be a BI-point such that M* i a real ideal,
If 07 is an immediate prime z-ideal predecessor of M”, then OF is real closed,

Proof. Apply Claim 2 in the proof of Theorem 4 with P = 07; then W con-
tairis an open X-neighborhood U of p. By complete regularity there is fe C(X)
such that

0<f<2, fMX-U)=0 and [Up)=2.

Let f' = min{f,1}. Then 0<f'<1, /=0 on X-U, and f'=1 on some
X-neighborhood of p. Setting W' = Z{f'—1) we thus have W' eZ(0%). Let

for xe X-U
for xe U.

0
he) = {f’(x) ()

Since I, is bounded and f* = 0 on X—U, it follows that 1 & C(X); also A (x) = I;(x)
for xe W’. We conclude then:

BN aW)=2Z) = I, NI AW =Z) = [} (W o W)-Z).

Since W n W’ € Z(0), this proves that 07 satisfies condition (2) of Theorem 2.1.1,
and therefore that it is real closed. M

Remarks. (1) Theorem 4 is inspired by Kohl's proof of Corollary 5 (see
[5; Theorem 4.1]) and uses some of the same technique. Kohl’s original statement
of Corollary 5 makes no explicit assumption about M7, but the fact that it is real
is actually used in the proof. Corollary 8 below is an application of Theorem 4.

(2) Note that the assumption “M7 is real” is automatically verified when
peX.

(3) The space Z,, considered in § 3.1 below is an example where the assumptions
of Corollary 5 are verified (for p = 0); cf. [3; 4.M.9]. More generally, assume
that the point p e BX is such that M? is real, and in addition satisfies:

for every f e C(X) such that f*(p) = 0, there is a (deleted) X-neighborhood
of p where one of the relations f>0, f<0 or f = 0 holds.

Then 07 is an immediate prime z-ideal predecessor of M7 (this point is checked
using Lemma 3 above and Lemma 2.1.4; we leave it as an exercise). This condition
is fulfilled, for example, when p is a BF-point and a P-point of X, For more details,
see [4; § 5] and [5; §4].

‘We shall now impose further restrictions on the fF-point p (but none on the
space X); namely, we shall require that p € X and that p be a nonisolated G;-point.
As remarked in [5; p. 529], the class of points p satisfying all these requirements
is rather restricted, but by no means empty.

Note that {p} is G, iff it is a zero-set (cf. [3, 3.11(b)]). Then from Lemma 2
we obtain:

COROLLARY 6. Let p€ X be a Gy~ and BF-point. Then X—{p} is C*-embedded
in X. :

icm°®
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Remark. Using Urysohn’s theorem, [3; 1.17],
this result which does not use Lemma 2.

From Corollary 6 we infer the following:

CoRrOLLARY 7. Let p & X be ¢ nonisolated, Gy, PF-point, and let ¢ be the map
defined in 2.3.1, Then ¢~(p) has cardinality 1.

Proof. If ¢4, g, € ¢ ™*(p) and g; # g, then by 2.3.1(1) we would have p(M2)
# (M*™); by 2.3.1(4) both would be immediate prime z-ideal predecessors of M.,
and hence incomparable under inclusion, which contradicts (1) above. ’

COROLLARY 8. Let p e X be a nonisolated, Gy dand BF-point. Then M, has an
immediate prime z-ideal predecessor, My, which is real closed,

Proof. Let ge fX be the unique member of ¢~ *(p), and set M} = y(M9).
The result follows at once from 2.3.4. M

Now we give a more precise characterization of the prime z-ideal 44,

ProrositioN 9. Let pe X be a nonisolated, Gy and PF-point. Then

My = {fe C(X)| p is a limit point of Z(f)}.

Proof. Call I the right hand side of the equality.

(a) I'is a prime z-ideal.

The fmly nontrivial point to check is that I is closed under addition. Let
f,g€el Since I s M, by condition (2), p. 027, there is an X-neighborhood of p
(and hence a neighborhood of p, since peX), U, such that Z(f)n UsZ(g n U
or Z(g) n USZ(f) n U. Assume, for instance, that the first inclusion holds.
Let ¥ be an arbitrary neighborhood of p, and V' = V—{p}. Since feI, then
ZUNUNV' #&; whence B # Z(f) N Z(g) N UnX sZ(f-g) A V'. This
proves that f—g e I,

Note that the assumption that {} is G, is not used in (a).

) IcmMm,.

Since {p} is G, it is a zero-set; clearly {p} ¢ Z(1). Hence {p} e Z(M)—~Z(I),
and thus 7 ¢ M,.

, ]E[mce M, is the (unique) immediate prime z-ideal predecessor of M,, then
o r
s M,.

© M,

Let fe A, and let ¥ be a neighborhood of p. Using Lemma 2.1.4 choose
9 €0, such that Z(g) < V. Since I'is a prime ideal, by considering /2 instead of f
we can,assume J 920 without loss of generality, Now we have f+g & M} (since
0,,1.C.M,,), and therefore Z( f+g) = Z(f) n Z(g) e Z(M}). Since My & M,, then
{r}¢Z(a}), and we conclude:

8 # (Z(/) n Z(@)~{p} = Z() 0 (Zte)~ (P} S Z() n (7~ {5},
which shows that fe7, B

“ -T9 Chaize (unpublished) has considerably extended Corollary 8 and Proposi-
on 9, i .

one can easily give a proof of

§ — Fundamenta Mathematicae 126, 2
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§ 3. Concrete cases

Tn this section we will apply the general results proved in § 2 to give precise
characterizations of the real closed members of certain families of prime ideals
of continuous functions in some specific spaces.

In § 3.1 we study the case of N*, the one-point compactification of the count-
able discrete space IV; we obtain an elegant algebraic characterization of P-points
of BN~ N in terms of residue rings of C(/N*): % € fN—N is a P-point iff C(N*)/P,,
is a real closed ring (iff C(IN*)[Pq is a valuation ring, by Proposition 1.27). Here
P, is the minimal prime ideal of C(N*) canonically determined by % (see below).

This result makes it possible to identify the real closed members of a certain
family of prime ideals in C(R) — called ideals “of type E” — introduced by Kohls
in [6]. This is the subject of § 3.2.

In § 3.3 we carry out a detailed analysis of prime ideals in C(D*) contained
in M,; D* denotes the one-point compactification of an uncountable discrete
space D and oo its “point at infinity”. :

We show that the class of these ideals is similar in some important respects
to the corresponding one in the ring C(IN*). We obtain a complete classification
of the minimal prime ideals, and a characterization of the P-points of fD—D
analogous to that of the countable case.

In § 3.4 we introduce a class of prime ideals in C((R*)*) (22 C([0, 1])) naturally
defined in terms of the map y (cf. § 2.3) and the Lebesgue measure on R*. We
characterize exactly the real closed members of this class, and using Martin’s axiom
we prove that they form a nonempty subclass.

3.1. P-points of SN~ N and real closed ideals in C(IN*). We shall denote by N *
the one-point compactification of the countable discrete space N and by oo its
“point at infinity”. To each nonprincipal ultrafilter # on N we associate the set

Py = {fe CIN¥)| Z(f)—{w} e %}

It is easily seen [3; 14.G] that Py, is a minimal prime ideal contained in M,
and that the correspondence % +» P, establishes bijection between SN—N and
the minimal prime ideals contained in M.

Recall that X, denotes the set N'U {co} with the topology for which the points
of N are isolated and the neighborhoods of co are the sets UL {0}, Ue ¥. Iy is
an F-space; the ideal 0,, is prime but not maximal; for more details, cf. [3; 4.M].

‘We shall prove something more precise than the equivalence announced above.

THEEOREM 1. The following are equivalent:

(1) % is a P-paint of BN~N.

@ CZ)0, = C(N*)[Py.

(3) C(N*)/Py is a real closed ring.

" Proof. (2) = (3) follows immediately from Proposition 2.1.2 (Z, is an
F-space).
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(1) = (2). We show first that (1) implies:
) for every fe C(Z,) there is ge C(N*) such that f/0,, = g/0,,.

Let r = f(o0). Since fe C(Z,), for every n>1 we have U, = £~ 1[(» ’
N ? = n= -1 n,r4-1
N Ne%. By 1.30 there is Ue % such that U— U, is finite for all nzl{ Let g-/rll\){]:;
U {0} — R be defined by '
gt U=f U,
gt (N*=U) =r.

To see that ge C(N*) it suffices to prove that W, =g (r~1/n, r+1/5)] is
cofinite for all n> 1. Indeed, it is easily verified that N*— W,=U~U,, a finite set.
Since f=g on Uu {w} and Uea, it follows that Z(f—g)eZ(0,,) and
S0 = g/0,. By (%) the canonical map f|- fl0, from C(N*) into C(Z. °)Q/O is
surjective, and it is easily checked that it induces the desired isomorphi‘zm.w
(3) = (1). We use here the characterization of P-points given in 1.31. Since
Py is a prime z-ideal, Theorem 2.1.1 gives:

(#+)  for every ZeZ(M,)~Z(Py) and every I e C(N*-Z), 0<I<]1, there are
WeZ(Py) and he C(N*), 0<h<], such that ht (W-Z) = I} (W-2).

Consider any such Z and a partition {Pd k>1} of N such that P, ¢ % for
k>1; let I;: N> R be defined by

1
Lhn) = ]—cénePk.

Since oo € Z, then I, € C(N*—~Z), and obviously 0</, < 1. Notice that imJ, = 0
o

because Py ¢ % for all k. Let Wy, & be obtained by applying (x*) to Z and I,, and
!et w = Wo—Z. Then h(c0) = 0 and since % is continuous at oo, £~ 2[(~1/k, 1/k)]
is. cofinite. Hence

Wa (N=h""[(~1/k, 1/K)]) = W—{neN| I <1/k}
={neW| l>1/k}= Wn CJP,,
=1

is finite. Thus, we have We % and W n P, finite for all k, showing that % is
a P-point of SN—N. B

In Kohls [6; 3.4] it is proved that in this case (i.e., when X = N*, p = c0)
one has ¢ "!(c0) = fN—N. Since N (=X—{p)}) is discrete, the only prime z-filter
('Jf N converging to the point % & ¢~(c0) = BN —N is the nonprincipal ultrafilter %
Itself. It is easily verified that y({fe C(N)| Z(f) € U}) = Py; by (23.1(4) there
are no prime z-ideals strictly between P, and M,,. The preceding theorem and
the equivalence between (1) and (3) of Corollary 2.3.3 imply at once:

COROLLARY 2. Let % € BN~N. Then % is a P-point of BN—N if for every
bounded sequence f of real numbers there is Ye ¥ such that lim S VY exists. B

b od ]
5%
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Conversely, it is quite easy to derive the equivalence (1) < (3) of Theorem 1
from Corollary 2 and Corollary 2.3.3, .

The next two statements summarize the situation concerning the distribution
and existence of nonmaximal real closed ideals of C(N*) contained in M,,.

PROPOSITION 3, Let P be a prime ideal of C(N*), Py, €SP S M, for % e fN—N.
Then P is real closed iff U is a P-point or P = M,,.

Proof. (<«=). By Theorem 1 and Proposition 2.1.7.

(=). By Theorem 2.2.1 and Corollary 2. &

ProposiTION 4 (1) The existence of nommaximal real closed ldeals in C(N*)
is not provable in ZFC.

(2) Martin’s axiom implies the existence of (infinitely many) nonmaximal real
closed z-ideals in C(N*).

Proof. An immediate consequence of the above and the results mentioned in
§11

3.2. Tdeals of type E. In [6] Kohls introduced a special type of prime z-ideal
on C(X), for a wide class of spaces X including, among many others, the metric
spaces.

DerNiTION 1. Let p be a fixed nonisolated point of a space X, S a sequence
of distinct points of X—{p} having p as its only limit point and % a non-principal
ultrafilter on S. The ideal I, ,, o(Iy or I5,q for short), called the ideal of type K us-
sociated with S, p and U, is defined by:

Iy = {fe C(X)| peZ(f) and Z(f) n Seu}.

These ideals enjoy the following properties: .

(1) I is a prime z-ideal contained in M,, [6; 3.2], and if {p} is G, then I, is
properly contained in M,.

(2) If p is a nonisolated G,-point of X, and either X—{p} is normal ot § con-
verges to p, then any ideal of type E associated with § and p is the image by th‘e
map y of a maximal ideal belonging to the family 2 of 2.3.1(1), and therefore is
maximal among prime z-ideals properly contained in M,; [6; 3.5].

(3) Let S converge to the Gy-point p and let

J={feC(X)| Z(f) n 8 is cofinite in §}.

If X is normal, orp has a compact neighborhood, or each point of S is Gy, then
the ideals of type E associated with § constitute the class of minimal prime ideals
of C(X) containing J; [6; 3.6].

Ideals of type E (and therefore also the quotient rings modulo such ideals)
are obviously determined by the ultrafilter % and the behaviour of continuous
functions on the subspace S U {p}. Whenever § converges to p this subspace is
homeomorphic to N*. Calling ¢ this homeomorphism (canonically defined by
¢(s) =n and @(p) = oo, where § = {s,| new}), we have:
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PROPOSITION 2 Let the scquence S converge to p, and let U be o nonprincipal
ultrafilier on S. Then C(X)/I%'zC(N*)/P,W. In particular, under this assumptions
Iy s real closed iff % is a P-point of BS—S(~ BN ~N).

Proof. Put $' = Su {p} and

Pu={/eCSN peZ(f) and Z(f) " Seu}.

Obviously, it suffices to show that C(X)/J, is isomorphic to C(S')/Py,. The map
Y (flly) = f }S'[Pq is a well defined ring monomorphism between the preceding
quotient rings. In order to verify that it is surjective, recall that S’ is a compact —
and therefore C-embedded — subspace of X (I3; 3.11(c)]). Then, given fe C(S")
there is g € C(X) such that g p §' = f; hence V(g/ly) = flPy. &

3.3. The onc-point compactification of uncountable discrete spaces. In this
section D shall denote an uncountable discrete space of arbitrary cardinality, and
D* its one-point compactification; the “point at infinity” of D* will be denoted oo.

We carry out a study of the structure of prime ideals of C(D*) contained
in M. We shall see that there are significant analogies to the case of C(N*). For
example, we obtain results similar to Theorem 3.1.1 and Proposition 3.1.3, and
show that also in C(D*) nonmaximal prime z-ideals coincide with the minimal
prime ideals. We classify these and show that there are 269 of them D= %).

The first four statements in the following list of preliminary results can be
easily proved by the reader.

(1) ZeZ(D*) <+ Z< D is finite, or wweZ and D~Z is countable,

(2) Let 4 = D* owoed; then

A4 is open < 4 is cofinite,

4 is G; < A is co-denumerable.

3 feM, < 0eZ(f) and D—Z(f) is countable;
F€0, < weZ(f) and D-Z(y) is finite.

(® If P is a nonmaximal prime ideal of C(D*), then Pc M, (and hence
0, < P).

(5) If P is a prime z-ideal of C(D*) such that 0p =P < M,, then there is
a nonprincipal ultrafilter ¥* on D* such that Z(P) = Z(D*) n ¥ ([3; 14.F]). An
ultrafilter ¥* with these properties will be called associated with P.

In the theorems below P will be a fixed nonmaximal prime ideal of C(D*)
and b a fixed function in M,,~P. Let Z = Z(b). By (3), 0 €Z and D~Z is count-
ably infinite, Let ¢: N— D—Z be a bijection,

(6) We associate to each map fe C(D*) a function fit N*— R defined as
follows:

Saln) = fo®m)
S0} = f(e0).
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Since the topology induced by D* on (D—Z) U {0} makes it the one-point com-
pactification of the countable discrete space, it follows that fy & C(N¥).
(7) Conversely, given g € C(N*), let g*: D*— R be the map

(@) if de D-Z
g*<d>={§ﬁf;> : if de Z.

Again, it is seen without difficulty that g* e C(D*) and (¢)x = g.

Now we. define:

®) Py = {ful feP}.

Lemma 1. (1) Py is a prime ideal of C(N*) contained in M.

() If P is a z-ideal, 50 is Py.

() Py = {fe CNY)| f*eP}.

4) fe C(D*) and fi € Py imply feP.

Proof. (1) This is obvious since the ring operations in C(N*) and C(D¥) are
defined pointwise, and P is prime.

(2) Let hePy and ge C(N*) be such that Z(h) = Z(g). Hence & = f for
some feP. One checks without difficulty the cquality Z(f) v Z = Z(g*) v Z,
i.e., Z(fb) = Z(g*b). Since fbeP and P is a z-ideal, g*b e P, and then (since
b¢P), gteP, Hence (g*)y = g € Py.

(3) If fe C(N*) and f* e P, then (f*)y = fePy. Conversely, if f& Py, then
= gy for some g € P. Since gbh(d) = 0 for d e Z, this equality implies f*b = gb;
hence f*b e P, and since b ¢ P, f* P,

(4) We have f, = g, for some g & P. Then ghe P and (fb)y = (gb)s. Since
/b = gb = 0 on Z, the preceding equality gives fb = gbe P; hence feP.

PROPOSITION 2. Let P be a nonmaximal prime ideal in C(D*). Then C(D¥)P
=~ C(N®)/Py.

Proof. Let y: C(D¥) - C(N*)/P, be defined by

WY = fulPy .

Clearly  is a ring homomorphism. Moreover, ¥ is surjective: i (g*) = (g*)u/Py
= g/Py for g € C(N*). Finally, Ker(}) = P. Let /& Ker()); then fy € Py, and by
Lemma 1.(4), fe P. Thus, Ker(}) < P, and the reverse inclusion is clear. M

Remark. The construction of the prime ideal Py is not independent of the
choice of the function b & M —P. Thus, the map P |- P, becomes unambiguously
defined only after a choice of maps bp € M, —P for P g M, has been fixed., In
Proposition 3.(1) below we fix a nonmaximal prime ideal Q, a functionbe My~ @,
and assume that the ideals. P, are uniformly constructed from the same map b,
for all P Q. .

PROPOSITION 3, (1) Let Q be a fixed nonmaximal prime ideal. The map P |- Py,

is an order monomorphism of the family of prime ideals contained in Q into that of

prime ideals contained in Q..
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(2) (a) Every nonmaximal prime z-ideal P of C(D*) is minimal, and Py =P,

Sor some % & pN~N (cf. § 3.1 above). *
(b) Conversely, for every Py there is a minimal prime ideal J<M,, of
C(D¥) such that Jo = Py ' ®

(3) With the notation of (2.2), if ¥ is an ultrafilter associated with P, then %
and V" are related as follows: oW = ¥ F(D~Z).

Proof. (1) We prove that P< P’ iff P, <P}, (where P,P’'< Q). This shows
that the map P |- P, is injective and order preserving. Lemma 1.(4) proves at
once the implication from right to left; the other implication follows from the
definition (8) of P,.

(2.2) follows from the corresponding fact about C(N*) by (1) and Lemma 1.(2)

(3) Since Z(b) = Z¢Z(P) and Z(P) = Z(D¥) ¥, we have Z¢ ¥ also
w & lf gves D¥~Z = D-Ze¥". Hence ¥ | (D—Z) is a nonprincipal ultrafilter
on D~Z,

Let now Xe, so that p(X) e p% and o(X) < D—Z. Setting f(n) = 0 for
ne XU {co} and f(n) = 1/n for ne N— X, we obtain fe C(N*) and Z(f)—{oo}
= X; hence fe Py = P,. By Lemma 1.(3), /* € P, and we have Z(f*) = Z(fo p)u
VZeZ(P). Since Z¢Z(P), we conclude that Z(fo @) = p(X) e Z(P); whence
@(x)e¥ }(D—Z). This proves the inclusion o% <y }D~2Z); since both
members are ultrafilters on D—Z, the equality follows.

(2.b) Let A<D, A=, and let ¢p: N— A be a bijection. By (1), p. 37,
D¥—A e Z(D*), i.e., there is a € C(D*) such that Z(a) = D*~A. Cleatly a e M,
and since 4 is infinite, a ¢ 0,,. As 0,, is the intersection of all minimal prime ideals
(cf. 1.12), there is one such ideal, J, such that o gJ. Since V" N Z(D¥) = Z({J) it
follows that 4 ¢ ¥". By (3), o = ¥ } 4.

Let now J,, be constructed as above from the ideal J and the fanction a. By
Lemma 1.(4), ay ¢ J, and hence (Lemma 1.(1)) J is a nonmaximal prime z-ideal
of C(N*); it follows that the inclusion P, < J, automatically implies the equality
Pp;l = J-*.

Let fe Py, ie., coeZ(f) and Z(f) nNe%. By (3), e(Z(f)nN)e¥ A
Using (7) one easily checks that Z(f*) = o(Z(f) 0 N) L D*~4; this obviously
implies Z(f*)e ¥, and then Z(f*)eZ(J); since J is a z-ideal, f* eJ; hence
F=0"el. A

Proposition 3, (1) and (2), shows — in analogy to the case of C(N*) — that
each nonmaximal prime ideal of C(D*) contains exactly one minimal prime ideal,
and that distinct maximal chains of prime ideals included in M, meet only at M,
(cf. 1.11). Our next result is the analog for C(D¥) of Proposition 3.1.1.

THEOREM 4, Let P be a nonmaximal prime ideal of C(D®), J be the unique minimal
prime ideal contained in P, and ¥ be an ultrafilter on D* assoclated with J. Then
the following are equivalent:

(1) P is real closed:

(2 ¥ VD is a P-point of fD—D.
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Proof. By Proposition 3.(2.a), Jy = Py &Py for some % € fN~N. Since P, is
a nonmaximal prime ideal in C(N*), Proposition 2, Proposition 3.1.3, Proposition
3.(3) and 1.34 applied in order prove the following equivalences:

P is real closed <«

C(D¥)/PERCR >

C(N*)/P, k RCR. <>

Py is real closed <>

9 is a P-point of fN—N <«

¥ }Dis a P-point of pD~D, &

COROLLARY 5. The existence of nonmaximal real closed ideals in C(D¥) is
independent from ZFC.,

Proof. Immediate from the proof of Theorem 4 and the results mentioned
in§ LI &

6. Classifying minimal prime ideals in C(D*). The preceding results
show some similarities between the order structure of the tree of prime ideals of
C(D*) contained in M,,, and that of the corresponding tree in C(N¥*),

There are some important differences too. For example, while the classifying
object of minimal prime ideals of C(N*) contained in M, is AN—N (cf. § 3.0),
the corresponding classifying object in C(D¥) is not fD~ D but a suitable quotient
of it.

For ¥y, ¥, € BD, let:

¥y =¥, ¥ and ¥, contain the same countable subsets of D,

This is an equivalence relation; each principal ultrafilter is equivalent only to itself,
while all ultrafilters which do not contain countable subsets of D form a single
equivalence class, ¥. Setting §,D = D/ =, D is then embedded in g, D.

Lemva 7. The map J|— ¥y } D] =, where ¥y is any ultrafilter associated
with J, is a bijection of the family of minimal prime ideals of C(D*) contdained in M,
onto B,D—(D u ).

Proof. To begin with, note that if ¥°, ¥ are nonprincipal ultrafilters on D*:

O] YVIDe¥'\D MV nZDY) =¥ nZ(DY).

This is easily derived from the equality:
VA Z(D¥) = {D*~d| A D, AN, 4¢7};

in turn, this in an easy consequence of (1), (p. 37), because %", ¥ are nonprincipal.
If #°, %" are ultrafilters on D* associated with J, they are monprincipal (since
JeMy) and ¥ NZ(DY) = Z(J) = ¥ ~ Z(D*). It follows from (+) that the
map of the statement is well defined. Using (x) from left to right we obtain that
it is injective. Since Z(J) contains no finite set, its range is included in 8,.D— D,
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and since J G M, it cannot take on the value ¥; hence, its range is contained in
BoD—(D UR).

Finally, in order to show that this map is surjective, let ¥ be a nonprincipal
ultrafilter on D containing at least one countable set (i.e., ¥/ = € f,D—(D UR)),
and let us construct a prime z-ideal J & M, such that ¥, } D = ¥, It is easily
scen that the set

V(D] AS D, ANy, A¢ V)

has the finite intersection property; let ¥ be an ultrafilter on D* containing it,
and let J be the unique prime z-ideal of C(D*) such that Z(J) = ¥ n Z(D*)
(cf. [3; 14.F]); clearly Z(J) = {D*~d| A= D, A<N,, A¢ ¥}, Now (3) of p. 37
implies at once J & M, and since ¥ contains at least one countable set, it follows
that J s M. Finally, in order to check that #°)|.D = ¥, notice that "' n Z(D*)
=Z({) =7, nZDY), ¥v' D=7, and apply (+) B .

Dualizing, the map
J|=» {AcD| A<, and 4 ¢ 775}

establishes a classification of the minimal prime ideals of C(D*) contained in M,
by the sct of nonprincipal maximal ideals of the lattice (without 1) of countably
subsets of .D, which will be denoted by L,(D). This shows at once that the cardinality
of the set of minimal prime ideals of C(D*) contained in M, is at most 26",
where D = %, We shall now show:

PROPOSITION 8. There are exactly 2% minimal prime ideals of C(D¥) con-
tained in M, (Where D = %).

Proof. Put D = %. Let us call a set & SL,(x) independent iff whenever
Ays vy Ay By, vy By are pairwise distinet members of &, () 4;n o((n~Bj) # 3.
i

Each subset & of an independent set &, €L, () gives rise to an ultrafilter %,
on x because the set & U {x—B| Be ¥,— &} has the finite intersection property.
Furthermore, for distinct &’s the ultrafilters obtained in whis way are pairwise
nonequivalent modulo = (the countable members of %, are those of & and,
possibly, some members of L(x)—~5).

In view of Lemma 7, in order to prove the theorem it suffices to show that
there is an independent set &, of cardinality %™, We shall prove this by a variant
of a technique due to Xetonen (cf. Kunen [8]).

Let o (%,%0) = {fe& Ny w-—_f“i(O) <N} A set F < H (4,) is independent
iff given diStinct fi, w.,f, € & and arbiteary iy, .., f, = 1, NS [1] # ©. Observe

that an independent set % < 4 (%,N,) gives rise to an independent subset &
of L,(%). Indeed, it suffices to put &, = {f*[I]| fe F}, where I is any set such
that © % I g8y~ {0}. Moreover, the correspondence f |- f~*[I] is injective; for
considering iy €1, Jo¢ I, j, # 0, and distinct fy,f> € F we have & # il o

”


GUEST


180 G. L. Cherlin and M. A. Dickmann

AfE Tl o I1~f5 7). The theorem follows, then, from the existence of an
independent F < J (x,%,) of cardinality %™, which we now prove.
Let {{s,, r,p| &<} enumerate the set {5, D1 5€P,(0), 1’8y~ {0}, For
AeLy(%) let fy: % ~N, be defined by:
Sat—4) =0
Ja(@) = rfd n sy
Set F = {f,] A &Ly} If 4y, .., 4, & L, (%) ave pairwise distinet and iy, ., i, 1,
for 1k <I<n let ay e {dy—4,) U (d;—4,); put s = {oy| 1<k <I<n}. Clearly
d,ns# Ay s for k<l The correspondence r(4; N ) = iy is then well defined

and it can be extended to a map in *No~{0}). If s, =5, r,=r, we have «
ve g\ foi. m

for aed.

3.4. Measure ulirafiliers. In the present section we will discuss some prime
z-ideals in C(R™*), where R™* is the one-point compactification of R™, the non-
negative reals; R** is, of course, homeomorphic to [0, 1].

It is clear that S(R**) contains many ideals of type E; there are, in fact, P
such ideals associated with each convergent sequence in R**,

We now want to consider ideals which are in some sense at the opposite
extreme. A filter of zero-sets (= losed sets) in R™ will be called a measure filter
iff all of its elements are of infinite Lebesgue measure. In particular, a measure
z-ultrgfilter on R* contains all closed sets whose complements are of finite measure
(and conversely). By abuse of notation we shall identify here z-ultrafilters % of R*
with the corresponding maximal ideals M of C(R™) such that Z(M) = %.

Applying Corollary 2.3.3 we obtain a characterization of those z-ultrafilters %
on R* such that the corresponding prime z-ideal y(%) of C(R**) is real closed.

PROPOSITION 1. Let % be a z-ultrafilter on R*. Then y (%) is defined and the
Sfollowing are equivalent:

1) y(%) is a real closed ideal of C(R**).

) % is a P(w0)-filter.

Proof. That y(%) is defined follows from the fact that the map ¢ is defined
on BR*, [3; 6.5()]. The rest follows from the equivalence between (1) and (3) of
Corollary 2.3.3. W ‘

Our goal in the rest of this section is to prove in a suitable extension of ZFC
that measure P(co0)-filters do exist. As in the theorem of existence of P-points
in fN—N, this can be done under the additional assumption of Martin’s axiom,

THEOREM 2. Assuming MA, then measure P(o0)-filters exist.

Proof. We will show that it is possible to associate to each continuous function
S R* - [0, 1] a pait p(f) = {f’, r;) consisting of:

(a) a strictly increasing function f': N ~ N,

(b): 2 real number 7,
and satisfying a further condition (¢) which we now describe.
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For x & R, set (%) = Sup{n & N| |f(x)~r/| < /n}. Theni(x) e N u {co). Let
X(f) = {xe R*| i,(x) e N Ax <[ (i,(x)+ 1D} U f~1r,].

Since f is continuous, the set X(f) is measurable.
The condition on p(f) is then:
(c) for all k1 and all continuous fj, ..., fy: R¥ = [0, 1], the set

X = X(f) e n X ()
has infinite measure,
Notice that we will then have:

limf L XC/) = ry.

Indeed, for given n2 1, if x & X(f), x>/"(1), then n< i,(x), and hence [f(x)~r|
< ln.

If € is a closed set such that m(R"* ~C) <co (where m denotes the Lebesgue
measure), then from m(X(JF)) = m(X(J)~C)+m(X(F) n C) and (¢) we conclude
that X(f) n C has infinite measure. It follows that the family:

{X(N f: R*— [0, 1] continuous} u {C| |C closed, m(R* —C) <00}

has the finite intersection property, and any z-filter containing it is a measure
P(o0)-filter,

It remains then to construct a suitable map p. This is done inductively, using
some list {f] & <2%} of all continuous functions from R* to [0, 1]. In order to
carry out this induction we need only prove the following:

LvMA 3. Let F be a fumily of fewer than 2%° continuous functions from R* to
[0, 11, and let f: R™ - [0, 1] be another continuous function. Assume that a map
P F - N¥% [0, 1] has been defined satisfying conditions (a)~(c) above for fy, ..., freF.
Then there is a pair {f'y gy such that the extension of p by 1~ {f', ry) defines a map
P FU{f} = NV%[0, 1] satisfying conditions (2)~(c) for fis v, fu€ F VU {f}

Proof. Let F, p be as specified. We will define a partially ordered set P whose
elements are, intuitively speaking, finite approximations to the desired pair {f', ).
Let P be the set of all pairs (s, §) such that s = § = @ or there is n> 1 such that:

(@) st {1,..,n} = N is a strictly increasing function;

(i) 81 {L,vin} = {0, 1};

" .

(iii) if ry miz §¢)/2, then for all k=1 and all fi, .., fi& F, the set X(F)an

a1

A S [[ry; #y+1/2"7] has infinite measure. We call n the length of (s, 8); (@, ¥) has
length 0; note setting rg = 0, n = 0, condition (iii) is verified by (&, 2). The
ordering of P is that of restriction on both coordinates: (f,¢) < (s, d) iff length
(s, 8) = n<length (¢, &) and
thn=y9, s8tn=24.

Since P is countable, it satisfies the c.a.c.
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Let D, be the set of clements of P of length at least n. We claim:
(1) D, is dense in P,
This is obvious for n = 0, and if (s, 8) & P is of length 7 &  we obtain un extension
8% of (s, 8) of length n+1 by defining s'(n+1) arbitrarily and checking at once
that one of the two possible values of &'(n-+ 1) makes condition (iii) hoid. The result
follows by induction on .
Now associate to each (5, §) e P a set X (s, 8) as follows. For xe R" define:

. 1 1
i(x, 8, 6) = sup {lc eN u {w}| sup {]j'(x)mrﬂ IS e rgt 5;,} % 7&}
Set:
X(s, 6) = {x <s(i(x, 8, O+ DliCx, 5, 8) <} v {x s ilx, 5,8) = n},

where n = length (s, 8).
For gy, ..., g € Fand le N, define

Dy = {(s,8) m(X@) n X(s,0)=1}.
We now claim:

(2) D;,, is dense in P.

Fix (5, 8) € P. Fix an extension 8 of & of length n--1 so that condition (iii)
above is satisfied; in particular, X(g) nf~*[[rs, Fp-+1/2""1]] has infinite measure,
Choose an integer j so that

m(X@) 0 f Iy, ra+ 127 0 10,1) 21
Let now ' be an extension of s of length n+1 so that s'(n+1) Tj. We claim that
(s', 8" € D5,;. This clearly follows from:
S g, 1+ 1/21] 0 [0, /1 € X(s', 0).
In order to prove this, fix x </ satisfying f(x) & [rge, rp+1/2""1] Then i(x, ¥, &)
22" ot 1 and x<j<s'(r+1); so xe X(¢, §'), as desired,
Now apply Martin’s Axiom to obtain a - generic subset Gt of £ with respect Lo
= {D,| neN}u {D;,| leN, g F finite % O}.
Since the elements of G are compatible and & meets each D,, there are unique
functions f, ¢ such that

={(f'tmobtml nz1}.
We now extend the function p: F - N¥x [0, 1] by setting:
L]
PUY =Sy with = 3o02"

Tt remains to be seen that condition (c) is satisfied by p’, or in other words that
for gy, ..., gy € F, I € N arbitrary, we have: m(X(g) n X(f))= 1.
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Consider accordingly an integer n such that (f“} n, 0} 1) & D;. Lets =f'} n,
= g} nn. It suffices to prove that X(s, 6) € X(f). Fix xe X(s, §); then there are
two cases to consider:
Case 1. i(x,s,8) <n, x~<~s([(x, 8, 8)+1). Since

Sul’{lf(x)“”] frysr<rs+t ,,}-’If(\) ~rgl,

we have 1(x, 5, 6) €7,(x); since f' is increasing,

8(iGx, 5, 8)-+ 1) S +1);
hence x e X(f).

Casce 2. i(x,s, 8) = n, x<s(n). Since i(x, s, 6) < (%), it follows that
s(n) < s(1,09) < (L () +1) = f(i,(x) +1),

50 x <f'(i(x)-+1); hence again x e X(f).
This completes the proof of the lemma, and hence of Theorem 2. M
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