Real closed rings

I. Residue rings of rings of continuous functions

by

Gregory L. Cherlin (New Brunswick, N. J.) and Max A. Dickmann (Paris)

Abstract. We study the class of prime ideals \(P \) of the ring \(C(\mathcal{X}) \) of real-valued continuous functions on the space \(\mathcal{X} \) determined by the condition: \(C(\mathcal{X})/P \) is a real closed ring.

Introduction

This is the first of two articles dealing with real closed rings, which are ordered commutative domains satisfying either of the following equivalent conditions:

1. \(R \) satisfies the "Intermediate Value Theorem" for polynomials in one variable.
2. \(R \) is a convex subring of a real closed field.

Our point of departure consists of two well-known results:

Fact I. The theory of real closed fields is complete, model-complete and admits primitive recursive elimination of quantifiers in the language for ordered rings.

Fact II. If \(M \) is a maximal ideal in a ring of continuous functions \(C(\mathcal{X}) \), then \(C(\mathcal{X})/M \) is a real closed field.

In the sequel [2] to the present article, we give a satisfactory generalization of Fact I. However Fact II does not generalize naively. There are accordingly two major problems:

Problem A. Classify the real closed ideals of \(C(\mathcal{X}) \), that is the prime ideals \(P \) satisfying:

\[C(\mathcal{X})/P \text{ is a real closed ring.} \]

Problem B. Investigate the structure of those rings of the form \(C(\mathcal{X})/P \) which are not real closed.

We confine ourselves to Problem A. Our results include an explicit topological characterization of the real closed ideals in general, and a complete analysis of

the situation when \(X \) is the one-point compactification of a discrete space, which is already nontrivial. We also analyze certain features of the case \(X = \{0, 1\} \), but the prime ideal structure is exceedingly rich in this example and there is much that we do not know.

The organization of the paper is as follows. Preliminaries are presented in §1 and the general theory in §2. The abstract topological solution to Problem A is given in §2.1, together with its immediate consequences. In §2.2 we study the relationship between real closed ideals in metrizable spaces and \(P \)-point ultrafilters on a countable set. §2.3 introduces a "transfer principle" based on an idea of Kohls which facilitates the consideration of various examples, notably the prime \(z \)-ideals immediately preceding a maximal ideal in the tree of prime \(z \)-ideals. In §2.4 we study certain conditions under which the (unique) prime \(z \)-ideal immediately below a maximal ideal must be real closed.

In §3 we analyze some concrete examples. We study the case in which \(X = \mathbb{N}^* \) is the one-point compactification of a countable discrete set in §3.1. This automatically yields results in any space containing a copy of \(\mathbb{N}^* \), as discussed in §3.2. The one-point compactification of an uncountable discrete set is analyzed in §3.3; here a partial, rather weak, "transfer principle" allows us to apply the results of §3.1. In §3.4 we want to consider the case \(X = \{0, 1\} \); using the transfer principle of §2.3 and the homeomorphism \(\{0, 1\} \to \mathbb{N}^* \), we work in \(X = \mathbb{N}^* \). Our idea is to construct certain filters of closed sets of infinite Lebesgue measure ("fat" zero-sets) as opposed to the filters of discrete sets arising in §3.2. The work accomplished in this section barely scratches the surface as far as knowing the prime ideal structure of \(C(\{0, 1\}) \) is concerned.

Even in the simplest nontrivial case, \(X = \mathbb{N}^* \), there are many open questions connected with Problem B. For example:

PROBLEM C. If \(P, Q \) are minimal prime ideals of \(C(\mathbb{N}^*) \) and neither is real closed, does it follow that \(C(\mathbb{N}^*)/P \cong C(\mathbb{N}^*)/Q \)?

This appears to be a rather delicate question.

We wish to thank A. Louveau for calling our attention to the notion of \(P \)-point ultrafilter; he shall be credited for part of the authorship of Proposition 3.2.2.

§1. Preliminaries

A. Real closed rings.

DEFINITION 1. A real closed ring \(A \) is a commutative ordered ring with unit which is not a field, satisfying the intermediate value property for polynomials:

if \(a, b \in A, a < b \) and \(Q \) changes sign from \(a \) to \(b \)

(i.e., \(Q(a) \cdot Q(b) < 0 \)), then \(Q \) has a zero \(c \) such that \(a < c < b \).

We shall denote by RCVR the first order theory of real closed rings formulated in the language of ordered rings with unit. (The "V" in RCVR stands for "valuation;

(1) Problem C has now been answered (in the affirmative, oddly enough) by J. Moloney.

the reasons for this name are made explicit in [2], but see also Definition 26, if., p. 7, below.

The first order theory consisting of the axioms of RCVR except that which asserts the existence of a noninvertible element will be denoted by RCR; thus, the models of RCR are all real closed rings and fields.

In this paper we carry out an analysis of real closed rings among residue class rings of rings of continuous functions. The following is a brief review of the main notions, results and notation systematically used in this paper; these will frequently be used without explicit mention. Other results not appearing here will explicitly be referred to when they are used.

We denote by \(C(X) \) the ring of all real-valued continuous functions defined on a topological space \(X \). Our basic reference for the general theory of such rings is the classical book of Gillman and Jerison [3], particularly Chapters 13 and 14, which deal with the residue rings of \(C(X) \) modulo maximal and prime ideals, respectively. Our notation and terminology follows theirs.

By [3; 9] in the study of rings of continuous functions it suffices to consider completely regular spaces. Accordingly, throughout this paper we make the blanket assumption that all spaces are completely regular.

B. The Stone-Čech compactification. For the definition and basic properties of the Stone-Čech compactification \(
\beta X \) of a space \(X \), see [3; Chapter 6]. We shall only recall that there is a bijective correspondence between the points of \(
\beta X \) and the maximal ideals of \(C(X) \); the maximal ideal corresponding to a point \(\rho \in \beta X \) will be denoted by \(M_\rho \); when \(\rho \in X \) it is customary to write \(M_\rho \) instead.

The subring of \(C(X) \) consisting of all bounded functions will be denoted by \(C^0(X) \).

Theorem 6.5 of [3] gives several characterizations of the space \(\beta X \); we shall need the following:

(2) Every \(f \in C^0(X) \) has a unique extension, \(f^* \), to a function in \(C(\beta X) \).

(3) Every continuous function \(f : X \to Y \), where \(Y \) is a compact space, has a unique continuous extension \(f : \beta X \to Y \).

In particular, since every \(f \in C(X) \) can be considered as a continuous function with values in the one-point compactification \(\beta X = \beta X \cup \{\infty\} \) of \(X \), it has a unique extension \(f^* : \beta X \to Y \) given by (3). If \(f \) is bounded, then \(f^* = f^\# \). The value of \(f^\# \) at \(p \in \beta X \) is determined by (cf. [3; 7.6]):

(4) (a) \(f^\#(p) = \infty \) if \(\|f/M\rho\| > 0 \) for all \(\rho \in \mathbb{N} \);

(b) \(f^\#(p) = r \) if \(\|f/M_r\| = 0 \) for all \(r < n \in \mathbb{N} \).

In particular,

(5) \(f \in M_\rho \) implies \(f^\#(p) = 0 \).

DEFINITION 6. A subspace \(Y \) of \(X \) is said to be \(C^* \)-embedded (resp. \(C^* \)-embedded) if every function in \(C(Y) \) (resp. \(C^0(Y) \)) can be extended to a function in \(C(X) \).

For more details, see [3; 11.6].
C. Z-ideals. The zero-set $f^{-1}(0)$ of a function $f \in C(X)$ is denoted by $Z(f)$; $Z \subseteq X$ is a zero-set if $Z = Z(f)$ for some $f \in C(X)$. $Z(X)$ denotes the lattice (under usual set-theoretic operations) of zero-sets of X. If $I \subseteq C(X)$ is an ideal, $Z(I)$ denotes the filter of $Z(X)$ consisting of zero-sets of members of I (3; Chapter 2).

By a z-filter of X we mean a filter of the lattice $Z(X)$. A cozero-set is just the complement of a zero-set.

Definition 7. An ideal $I \subseteq C(X)$ is a z-ideal iff for all $f \in C(X)$, $Z(f) \subseteq Z(I)$ implies $f \in I$.

Every maximal ideal of $C(X)$ is a z-ideal (3; 2.7). Another important example is the ideal 0^+ of germs of continuous functions at a point $p \in \beta X$ (cf. (3; 7.12)); this z-ideal is neither maximal nor prime, except in special cases. Further examples of prime z-ideals will be considered later.

D. Prime ideals.

(8) Every prime ideal of $C(X)$ lies between 0^+ and M^+, for any $p \in \beta X$ (3; 7.15).

(9) The prime ideals of $C(X)$ containing a given prime ideal form a chain under inclusion (3; 14.3). In other words, the prime ideals contained in M^+ for a given $p \in \beta X$ form a tree under the order of reverse inclusion (in the sense that the predecessors of a given element are totally ordered, but not necessarily well ordered).

(10) Every prime ideal contains a minimal prime ideal (under the order of inclusion), which is a z-ideal (3; 14.7).

Furthermore:

(11) Any two maximal chains of the tree of prime ideals contained in M^+ ($p \in \beta X$) intersect, and their intersection has a minimal element which is a z-ideal (3; 14.9 and p. 199). In special cases this minimal element is M^+ itself (3; 14.G.5.).

(12) 0^+ is the intersection of all minimal prime ideals (3; p. 199). In particular, 0^+ is a prime ideal iff the prime ideals contained in M^+ form a chain under inclusion.

However, there can be prime z-ideals other than those mentioned above (the ideal M^p, of § 2.4 below is an example). (13) There are prime ideals which are not z-ideals; in fact, above every nonmaximal prime there is a chain of type η, of pairs of consecutive prime ideals (3; 14.19), none of which is a z-ideal (3; 14.10 and 14.D.4).

Further examples of prime z-ideals will be introduced as we need them. For a comprehensive study of this subject, see (3; pp. 197-200 and 205 ff.) and Kohls [4], [5], [6], [7], where numerous examples are given.

E. Properties of residue class rings. The following simple properties of the rings $C(X)/P$, where P is a prime ideal of $C(X)$, will be assumed in many of the later arguments.

1. $(C(X)/P)$ is a totally ordered integral domain containing the field R of real numbers (3; 5.5).

2. Every prime ideal of $C(X)/P$ is convex (3; 14.3(a)).

3. The prime ideals of $C(X)/P$ form a chain under inclusion; in particular, $C(X)/P$ is a local ring, i.e., it has only one maximal ideal (3; 14.3(b)).

4. Every nonnegative element of $C(X)/P$ has n-th roots, for $n = 2, 3, \ldots$ (3; 14.5).

5. If $a \in C(X)$ is noninvertible and $b \in C(P)$ is invertible, then $|ax| < |b|$ for every $x \in C(P)$ (3; 14.5(a)).

6. Every monic polynomial of odd degree with coefficients in $C(P)$ has a zero. Together with (7) this shows that $C(P)$ is a real closed field whenever M is a maximal ideal (3; 13.4).

7. The divisibility property. We define now a simple but fundamental notion used throughout the rest of this paper:

Definition 20. Let A be a commutative (totally) ordered ring with unit. A is said to have the divisibility property, abbreviated DP, if

$$A \models \forall a \in a < b \rightarrow b(a).$$

The following basic result is proved in [2; Thm. 1]:

(21) For any commutative (totally) ordered ring with unit the following are equivalent:

(a) $A \models \text{R.C.R.}

(b) $A \models \text{DP}$;

(ii) $A \models$ every nonnegative element has a square root;

(iii) $A \models$ every monic polynomial of odd degree has a root.

In particular, together with (17) and (19), this proves:

(22) Let P be a prime ideal of $C(X)$. Then $C(X)/P$ is a model of R.C.R if $C(X)/P \models \text{DP}$. Another simple but important fact is the following:

(23) The divisibility property DP is preserved under homomorphic images; in other words, if A, B are ordered commutative rings with unit and $f: A \rightarrow B$ a surjective ring homomorphism which preserves order, then $A \models \text{DP}$ implies $B \models \text{DP}$. We leave the proof of this as an exercise for the reader.

G. Real closed rings vs. valuation rings. The following results are proved in [2; Lemma 4 and Lemma 5]:

(24) Let K carry a valued field structure (K, G, ν) and an ordered field structure $(K, <)$. Then the following are equivalent:

1. K satisfies the compatibility condition

$$\forall a \in a < b \rightarrow a(0) \geq \nu(b, 0).$$

2. The valuation ring R of ν is convex in K.

3. The maximal ideal M of R is convex in K.
4. The maximal ideal M of R is convex in R.
5. The maximal ideal M of R is bounded by ± 1.

(25) Let K be a real closed field carrying a valued field structure $\langle K, G, v \rangle$ and let $\langle K, < \rangle$ be its unique ordered field structure. Then the five conditions above are equivalent also to:
6. The valuation ring R of v is a real closed ring.
7. -1 is not a square in the residue class field K of K.
8. K is a real closed field.

Definition 26. A ring A is called a valuation ring if

$$A \ni \text{Val}(q) \ni \text{Val}(p).$$

A totally ordered ring satisfying the divisibility property DP obviously is a valuation ring; in particular, so is any RCR.

It is well-known that a valuation ring gives rise to a canonical valuation structure, denoted $\langle A, S, v \rangle$, with values on an ordered semifield S. We shall only consider here valuation integral domains. In this case the canonical valuation structure of A extends uniquely, in an obvious way, to the field of fractions of A, $K = \text{Quot}(A)$; let us denote $\langle K, G, v \rangle$ the resulting valued field structure. If, in addition, A carries an order structure, so does K, in the obvious way.

Let us now assume that the conditions above are met when A is a ring of the form $C(X)/P$. We obtain:

Proposition 27. Let $P \subseteq C(X)$ be a prime ideal. Then $C(X)/P$ is a valuation ring if P is a real closed ring.

Proof. The remark following Definition 26 proves the implication from right to left. (⇒) In Part II, § 1, Lemma 5, we prove that if A is a totally ordered integral domain satisfying properties (17) and (19) above, then the field of fractions K of A also satisfies them, i.e. K is a real closed field.

Let now $A = C(X)/P$ be a valuation ring. By the very definition of the canonical valuation structure in A and K, A is the valuation ring of $\langle K, G, v \rangle$. By (24) and (25) it suffices to check that the maximal ideal M of A is bounded by ± 1, i.e.

$$f \in C(X) \text{ and } f/P \geq 1 \Rightarrow f/P \text{ invertible in } C/P.$$

Since $f/P \geq 1$ we can assume, by changing f if necessary, that $f \geq 1$ on X. Then $f^{-1} \neq 0$ on X, whence $f^{-1} \in C(X)$ and $f/Pf^{-1}P = 1$. \[\blacksquare\]

H. Martin's Axiom. In order to establish the existence of certain types of prime ideals of continuous functions we will need, in addition to the axioms of set theory (ZFC), the set-theoretic assumption known as Martin’s Axiom. We now review the background connected with this axiom; for further details and applications, see [10].

Definition 28. Let P be partially ordered set, let $A, D, G \subseteq P$, and let \mathcal{B} be a family of subsets of P. (a) Elements $p, q \in P$ are compatible iff there is $r \in P$ such that $r \leq p, q$. (b) A is an antichain of P iff any two elements of A are incompatible.

(c) P satisfies the countable antichain condition (c.a.c.) iff every antichain in P is countable.

(d) D is dense in P iff every element of P lies above some element of D.

(e) G is \mathcal{B}-generic (where \mathcal{B} is a family of dense subsets of P) iff any two elements of G are compatible and G meets each of the members of \mathcal{B}.

Martin's Axiom is the following combinatorial principle:

(MA) Suppose that P is a partially ordered set satisfying the c.a.c. and that \mathcal{B} is a family of (strictly) fewer than 2^\aleph_0 dense subsets of P. Then P contains a \mathcal{B}-generic subset.

When \mathcal{B} is countable it is easy to prove this assertion in ZF; thus (MA) is a consequence of the continuum hypothesis. However, (MA) does not imply the continuum hypothesis; cf. [10].

I. P-points. The notion of P-point in various spaces of ultrafilters will play a central role in §§ 2, 3 below.

Definition 29. A point x of a topological space X is a P-point iff every G_x containing x is a neighborhood of x.

The P-points of the nonprincipal ultrafilter space $\beta N \setminus N$ have been extensively investigated (cf. [12]).

We will need the following characterizations of P-points \mathfrak{p} of $\beta D - D$, where D is an infinite discrete space.

(30) For every sequence $\{U_n : n \in \omega\}$ of members of \mathfrak{p}, there is $U \in \mathfrak{p}$ such that $U \setminus U_n$ is finite for all $n \in \omega$.

(31) For every partition $\{P_k : k \in \omega\}$ of N such that $P_\mathfrak{p}$ is a member of \mathfrak{p}, there is $U \in \mathfrak{p}$ such that $U \cap P_k$ is finite for all $k \in \omega$.

For the proof see [1]; 4.7 and [3]; 6.3.

In the case $D = N$ (i.e. $\beta N - N$) the following is also known:

(32) $\mathfrak{p} \in \beta N - N$ is a P-point iff for each sequence $\{x_n : n \in \omega\}$ in 2^N (endowed with the product topology) there is $A \in \mathfrak{p}$ such that $\langle x_n : n \in A \rangle$ converges $\langle 1 ; 4.7 \rangle$.

(33) $\mathfrak{p} \in \beta N - N$ is a P-point iff for each bounded sequence $f : N \to R$ there is $A \in \mathfrak{p}$ such that $\lim f(n)$ exists.

The last statement can be derived from (32); an alternative proof will be given in § 3 (Corollary 3.1.2). This characterization will be of fundamental importance in our later work.

Using (30) above it is easily checked:

(34) Let $\mathfrak{p} \in \beta D - D$ and $A \in \mathfrak{p}$. Then \mathfrak{p} is a P-point of $\beta D - D$ iff $\mathfrak{p} \cap A$ is a P-point of $\beta A - A$.

The existence of a P-point in $\beta N - N$ is not provable in ZFC. Indeed, we cite the following result due to Shelah (cf. [11; Part VI, §§ 4-5, pp. 213-232]):
(35) If ZF is consistent, then so is ZFC + \(\omega_2 \text{Non} = \omega \text{Non} \). Indeed, every On does not contain \(\omega \)-points.

On the other hand, the existence of \(\omega \)-points in \(\beta \omega - \omega \) — indeed, of a dense set of such points — can be proved in ZFC + Martin’s Axiom (cf. [1; 4.13]).

3. X-neighbourhoods.

DEFINITION 36. Let \(p \in \beta X \) and \(U \subseteq X \). \(U \) is called an X-neighbourhood of \(p \) if \(U \) has the form \(V \cap X \) for some neighbourhood \(V \) of \(p \) in \(\beta X \).

In particular, when \(p \in X \), the X-neighbourhoods of \(p \) coincide with the neighbourhoods of \(p \) in \(X \).

We shall need the following characterization of X-neighbourhoods:

Lema 37. Let \(p \in \beta X \) and \(U \subseteq X \). \(U \) is an X-neighbourhood of \(p \) if \(\exists U \in Z \) such that \(U \subseteq Z \). \(Z = Z(\beta X) - Z(\beta X) \).

Proof. Routine. If \(U \cap X = X - Z \), \(U = Z \).

Lemma. (a) The sets \(U \in Z(\beta X) - Z(\beta X) \) form a base of open sets in the topology of \(\beta X \). Furthermore, \(U \cap X = X - Z \).

From this lemma and [3; 5.4(b)] it easily follows:

(36) Let \(E \subseteq C(X) \), \(p \in \beta X \) and \(r \in K \); then:

\[f(M^r) = r \iff f \in Z(X) \]

on an X-neighbourhood of \(p \).

\[f \] 2. General theory

2.1. Topological characterizations of real closed ideals.

A. Global version. We begin by giving (Theorem 1) a necessary and sufficient topological condition for a residue ring of the form \(C(X)/P \) to be a real closed ring, whenever \(P \) is a prime \(\omega \)-ideal of \(C(X) \). Combined with later results, this condition makes possible to detect in a quite efficient way the presence of prime ideals \(P \) such that \(C(X)/P \) is a real closed ring. It is the main tool for the investigation carried out in the present paper.

We shall call an ideal \(P \) real closed iff \(C(X)/P \) is a model of RCR. Real closed ideals are always prime, and if \(P \) is real closed if \(P \) is maximal or \(C(X)/P \) is RCR.

Theorem 1. Let \(P \) be a prime \(\omega \)-ideal of \(C(X) \) and let \(M^* \), \(p \in \beta X \), be the unique maximal ideal of \(C(X) \) containing \(P \). The following are equivalent:

1. \(P \) is real closed.
2. For every \(Z \in Z(M^*) - Z(P) \), \(Z = Z(P) \), \(Z = Z(P) \) and \(Z \) is the unique maximal ideal of \(C(X) \) containing \(P \).

Proof. \((2) \implies (1) \). By 1.22 the only divisibility property (DP) needs to be verified. Let \(0 < g \neq g \). Since (DP) holds automatically whenever the largest element in the inequality is invertible, we can assume \(g \neq 0 \). Non-invertible. The ring \(C(X)/P \) is a local ring whose maximal ideal is \(h/P \), \(h \in M^* \); hence \(g \neq M^* \). We can also assume without loss of generality that \(0 < g \), in particular \(Z(P) = Z(f) \).

Since \(P \) is a \(\omega \)-ideal, \(f(P) \neq 0 \) imply \(Z(f) \), \(Z(f) \neq Z(P) \). Now apply (2) with \(Z = Z(P) \) and \(l = f(P) \) (which is defined on \(X - Z \) to get \(W = Z(P) \) and \(h \in C^*(X) \), \(0 < h \leq 1 \), such that \(h \uparrow (W - Z) = l \uparrow (W - Z) \). For \(x \in W - Z \) we have \(g(h)(x) = f(x) \), for \(x \in Z \), \(f(x) = f = 0 \) and hence \(g(h)(x) = f(x) \). This shows that \(g \mid f = f \mid W \); since \(W = Z(P) \) and \(P \) is a \(\omega \)-ideal, we conclude \(g \mid P \) divides \(f \).

(1) \(\implies (2) \). Let \(Z = Z(g) \subseteq Z(M^*) - Z(P) \) and \(I \subseteq C(X - Z) \), \(0 < I \leq 1 \). Put:

\[f(x) = \begin{cases} 0 & \text{if } x \in Z, \\ g(h)(I)(x) & \text{if } x \in X - Z. \end{cases} \]

Since \(I \) is bounded and \(g \in C(X) \), we have \(f \in C(X) \). Also \(0 < f \leq g \) (since \(0 < I \leq 1 \)); hence \(0 < g \leq f \leq g \). Now apply (1) to get \(h \in C(X) \) such that \(g \mid P \). Put \(W = Z(g \mid f) \); then \(W = Z(P) \). For \(x \in W - Z \) we have \(g(h)(x) = g(h)(x) = g(h)(x) \), whence \(h(x) = I(x) \). By considering \(h \in (0, 1] \) instead of \(h \), since \(0 < I \leq 1 \), the map \(h \) can be taken to be bounded between 0 and 1.

Remark. Under the assumptions of the theorem, condition (2) is equivalent to:

(3) For every \(Z \in Z(M^*) - Z(P) \) and every \(I \subseteq C(X - Z) \), \(0 < I \leq 1 \), there are \(W = Z(P) \) and \(h \in C(X) \), \(0 < h \leq 1 \), such that \(h \uparrow (W - Z) = l \uparrow (W - Z) \).

Proof. Let \(Z \subseteq Z(M^*) - Z(P) \) and \(I \subseteq C(X - Z) \), \(0 < I \leq 1 \), be given. We prove first that there is \(W \in Z(P) \) such that \(W - Z = \emptyset \). If this is not true, then \(Z(P) \cup \{ Z \} \) has a finite intersection property, and hence there is a \(\omega \)-ultrafilter containing it; let \(M \) be a maximal ideal on \(X \) such that \(Z(P) \cup \{ Z \} \in Z(M) \) (3; 2.5). It follows that \(P \subseteq M \), and since \(P \) is contained in a unique maximal ideal, then \(M = M^* \); therefore \(Z \subseteq Z(M^*) = Z(M^*) \), contradicting our assumption.

Thus, \(W \) and \(Z \) are disjoint zero sets, and hence come completely separated (3; 1.15)], i.e. there is \(f \in C(X) \) such that \(f \mid W = 1 \), \(f \mid Z = 0 \) and \(0 < f \leq 1 \). Setting:

\[f(x) = \begin{cases} 0 & \text{for } x \in X - Z, \\ f(I)(x) & \text{for } x \in Z. \end{cases} \]

we conclude that \(h \in C(X) \) (because \(I \) is bounded), \(0 < h \leq 1 \), and \(h \uparrow (W - Z) = l \uparrow (W - Z) \) by the choice of \(f \) and \(W = W - Z \).

As a corollary we obtain an extensive class of spaces where all prime \(\omega \)-ideals (indeed, all prime ideals; cf. Corollary 9 below) are real closed. An \(F \)-space is a space \(X \) in which the ideals \(0 \) are prime for all \(p \in \beta X \) (3; 14.25(1)).

Proposition 1. If \(X \) is an \(F \)-space, every prime \(\omega \)-ideal of \(C(X) \) is real closed.

Proof. By [3; 14.25(6)] every cozero-set in \(X \) is \(C^* \)-embedded. Thus condition (2) of the preceding theorem is verified with \(W = W - Z \) (indeed of the zero-set \(Z \) and the function \(f \)).

Remark. In the case of the ideals \(0 \) this result was proved by Koby [4; 5.7] and [5; p. 520]. The restriction to \(\omega \)-ideals will be removed later (cf. Corollary 9).
A P-space is a space X such that 0^p is a maximal ideal for all $p \in \beta X$ [3; 14.29(1)], or, equivalently, every prime ideal is maximal. Proposition 2 is a source of models for the theory RCVR only in the case of P-spaces which are not P-spaces.

3. Examples of P-spaces which are not P-spaces. (a) $\beta X - X$, whenever X is a locally compact, α-compact space which is not compact (cf. [3; 14.27]); this space is also compact. In particular, $\beta N - N$ and $\beta E - E$ are P-spaces but not P-spaces.

(b) βX, whenever X is an infinite P-space (31; p. 212). Thus βN is another example.

(c) $X \times \beta X$, whenever X is an infinite P-space ([12; 8.38]).

(d) Every infinite zero-set Z of βX such that $Z \cap X = \emptyset$ ([3; 14.01]).

(e) $\beta E - E$, whenever E is a cozero-set in a compact space and $\beta E - E$ is infinite ([3; 14.02]).

(f) $\beta X - X$, whenever X is a locally compact F-space which is not compact ([3; 14.03]).

(g) If X is a P-space, every subspace of βX containing X but not contained in νX (the real compactification of X) is an F-space but not a P-space ([3; 1.2.1]).

On the other side of the picture, most familiar spaces are not P-spaces. For example: no metrizable space is an F-space, unless it is discrete; furthermore: no nonisolated point of an F-space has a countable base of neighborhoods ([3; 14.4.2]).

B. Local version. We shall now show that a "local" version of the topological condition (2) of Theorem 1 is still sufficient to characterize real closed ideals. Accordingly, we will be able to sharpen Proposition 2 into a corresponding "local" version.

Lemma 4. Let $p \in \beta X$ and let U be an X-neighborhood of p. Then for every $g \in C(X)$ there is $g^p \in C(X)$ such that $g^p \circ f = g^p \circ f$ and $Z(g^p) \subseteq U$.

Proof. Case 1. $\gamma^p(p) \neq 0$. By 1.4 and 1.38 this assumption implies that there is an X-neighborhood of p on which $g > 0$ (if $g/M^p > 0$) or $g < 0$ (if $g/M^p < 0$).

Considering $-g$ instead of g we reduce to the first of these alternatives. Replacing, if necessary, g by $f(g)$ and U by a smaller X-neighborhood of p, we can assume $g \geq 0$ on X. Furthermore, by considering $2g$ instead of g whenever $g^p(p) = r < 2$, we can assume that $g^p(p) \geq 2$; in particular, $p \notin Z(g)$.

Setting $f = 1 - \min(g, 1)$, we have $f \in C(X)$, $0 \leq f \leq 1$, $f = 1$ on $Z(g)$ and $(x) = 0$ whenever $g(x) > 1$. In particular, $Z(f) \subseteq G^{-1}[0, 1]$, which proves that $Z(f)$ is an X-neighborhood of p (because $g^p(p) > 1$). Since g and $g + f$ coincide on $Z(f)$, we conclude that $g^p = g + f$. Next, observe that $Z(g + f) = Z(g) \cap Z(f)$ because $g + f = 0$; since g and f are never simultaneously zero (by the definition of f), we have $Z(g + f) = \emptyset \subseteq U$. Set $g^p = g + f$.

Case 2. $\gamma^p(p) = 0$. Under this assumption, the set $\{x \in X \mid g(x) \leq 1\}$ is an X-neighborhood of p on which coincides with $\min(g, 1)$. Replacing, if necessary, g by the latter and U by a smaller X-neighborhood of p, we can assume that $|g| \leq 1$ on X, and (by Lemma 1.37) that $U = X - Z$ for some zero-set Z of X.

Complete regularity implies the existence of a zero-set V of X which is an X-neighborhood of p with $V \subseteq U$ (cf. [3; 3.2(6)]). Therefore V and Z are disjoint zero-sets, and hence completely separated ([3; 1.15]); let $f \in C(X)$ be such that $0 \leq f \leq 2$, $f = 0$ on V and $f = 1$ on Z. Set $g^p = g + f$. Then g and g^p coincide on the X-neighborhood V of p, whence $g^p = g^p \circ f$; if $x \in X - U = Z$, then $f(x) = 2$ and $|g(x)| \leq 1$, so that $g^p(x) = 0$. This proves that $Z(g^p) \subseteq U$, and hence also the lemma.

Proposition 5. Let p be a prime z-ideal of $C(X)$ and let M^p, $p \in \beta X$, be the unique maximal ideal containing P. Let U be an X-neighborhood of p. Then the following are equivalent:

1. P is real closed.
2. For every $Z \in Z(M^p) - Z(P)$ such that $Z \subseteq U$ and every $f \in C(X)$, $0 \leq f \leq 1$, there are $h \in C(X)$, $0 \leq h \leq 1$, and $W \in Z(P)$ such that $h \circ (W - Z) = 0$.

Proof. (1) \Rightarrow (2) holds by the corresponding implication in Theorem 1. To prove the converse, if $C(X)/P \hookrightarrow \mu (\mathcal{F})$, we can assume $Z(g) \subseteq U$, upon replacing, if necessary, the function g by the function g' given by the preceding lemma, and taking into account that $\mathcal{F} \subseteq P$. The proof proceeds, then, as in Theorem 1.

Proposition 6. Let $p \in \beta X$ and assume p has an X-neighborhood which is an F-space. Then for every nonmaximal prime z-ideal $P \subseteq M^p$, $C(X)/P$ is a real closed ring.

Proof. Let U be an X-neighborhood of p which is an F-space. By Lemma 1.37, there is $Z \in Z(M^p) - Z(P)$ such that $Z \subseteq U$; $Z \subseteq U$ is also an X-neighborhood of p, and since a cozero-set in an F-space is again an F-space ([3; 14.26]), we can assume without loss of generality that $U = X - Z$.

Let now $Z \subseteq U$ and $l \in C*(X - Z)$. Since U is an F-space, the map $l \circ (U - Z)$ has an extension $l \circ C^*(U)$, [3; 14.25(b)]; put $h(x) = \{ l(x) \}$ for $x \in U = X - Z$.

Since h coincides with l on $U - Z$, it follows that $h \in C^*(X)$. Hence condition (2) of Proposition 5 holds with $W = X$.

Remark. When p is a P-point (with an X-neighborhood which is an F-space) and $P = 0^p$, this result was proved by Kohls [5; 4.1(4)].

C. Preservation under extensions. We prove now that the family of real closed prime ideals is closed under extensions (superset). This applies to all prime ideals, not just z-ideals, and therefore extends considerably the scope of the preceding results.
This result shows that it should be considerably more difficult to find real closed ideals low in the tree of prime \(z \)-ideals — as is the case in the preceding results — than higher up in that tree, "near" the maximal ideal; the latter, at the top of the tree, is always real closed.

Proposition 7 (extension property). Let \(Q \subseteq P \) be prime ideals of \(C(X) \). If \(Q \) is real closed, then so is \(P \).

Proof. This follows at once from 1.23 because the natural map \(\varphi(f|Q) = f|P, f \in C(X) \), from \(C(X)/Q \) to \(C(X)/P \) is a surjective ordered ring homomorphism.

Corollary 8. Let \(X \) be any space.

1. If there is a minimal prime ideal \(J \subseteq P \) which is real closed, then \(C(X)/J \) is a model of \(RCR \).

2. \(C(X)/P \) is a real closed ring for every nonmaximal prime ideal \(P \) of \(C(X) \) (resp. included in \(M^* \), \(p \in \beta X \)) if \(C(X)/J \) is a real closed ring for every minimal prime ideal \(J \) of \(C(X) \) (resp. included in \(M^* \)).

Corollary 9. If \(X \) is in \(F^* \)-space, then every prime ideal is real closed. Similarly, under the hypothesis of Proposition 6, every prime ideal contained in \(M^* \) is real closed.

Proof. Immediate from Corollary 8 and Proposition 2 (resp. Proposition 6), taking into account that minimal prime ideals of \(C(X) \) are \(z \)-ideals (1.10).

Example 10. A space \(X \) where all prime ideals are real closed but which is not an \(F \)-space.

Let \(X_1, X_2 \) be \(F \)-spaces containing points \(p_1, p_2 \) such that \(0_p \) is not maximal. Let \(X \) be the space obtained by "wedging" \(X_1, X_2 \) together through \(p_1, p_2 \); i.e., \(X \) is the (disjoint) union of \(X_1 \) and \(X_2 \) with identification of \(p_1 \) and \(p_2 \) (into \(p \)); the neighborhoods of \(p \) are the neighborhoods of a neighborhood of \(p_1 \) in \(X_1 \) and a neighborhood of \(p_2 \) in \(X_2 \), while the open sets of \(X \) not containing \(p \) are those of \(X_1 \) and of \(X_2 \), not containing \(p_1 \) and \(p_2 \).

(a) \(X \) is not an \(F \)-space. For \(i = 1, 2 \), let \(\varphi_i : C(X) \to C(X) \) be the map \(\varphi(f) = f|X_i \). Obviously \(\varphi \) is a surjective ring homomorphism, and if \(0_p \subseteq P \subseteq M^* \), \(\varphi_i(P) \) and \(\varphi_j(P) \) are \(\leq \) incomparable prime ideals contained in \(M^* \). Indeed, if \(q \in \mathcal{M} - P \), then \(q \subseteq \varphi_i(P) = \varphi_j(P) \) and \(0 \cup q \in \varphi_i(P) \). If \(f \) is a function such that \(f|X_1 = f|X_2 \), then \(f \) is a function defined by:

\[
\varphi(f) = \begin{cases}
\varphi_1(f) & \text{if } x \in X_1 - \{p\}, \\
\varphi_2(f) & \text{if } x = p.
\end{cases}
\]

Let \(J_i = \varphi_i(0_p) \). The definition of the topology of \(X \) implies at once that \(0_p \neq J_i \cap J_j \). It follows that:

\[
(*) \quad \text{every prime ideal } P \subseteq M^* \text{ contains } J_i \cup J_j.
\]

Otherwise, let \(f \in J_i \cap J_j \); then \(f \) is \(0_p \), implying that \(P \) is not prime. Thus, \(J_1, J_2 \) are the minimal prime ideals contained in \(M^* \).

(b) In order to show that every prime ideal of \(C(X) \) is real closed, it suffices to show that \(J_1 \) and \(J_2 \) are (Corollary 8(2)). Now, if

\[
C(X) \to C(X) \to C(X)/0_p,
\]

where \(\varphi \) denotes the canonical projection, we have \(\ker(\varphi) = \varphi^{-1}[0_p] = J_i \). Hence \(C(X)/0_p \cong C(X)/0_p \) and \(J_i \) is real closed.

In this example, the maximal chain of prime ideals of \(C(X) \) joining \(J_1 \) to \(M^* \) is isomorphic to that joining \(0_p \) to \(M^* \). This is due to the fact that the map \(\varphi \) induces the obvious way an order-preserving bijection between these chains (easy verification).

D. Rings of bounded continuous functions. We shall examine briefly the case of the ring \(C^*(X) \) of bounded continuous functions on \(X \). Since \(C^*(X) = C(\beta X) \), the preceding theory does automatically apply but, as we shall see, it is simpler to consider directly the ring \(C^*(X) \) rather than taking a detour via the space \(\beta X \).

The isomorphism relation above implies that the results of § 1.E apply also to the ring \(C^*(X) \); cf. [3, 6.6(6)]. To each \(p \in \beta X \) there corresponds a unique maximal ideal of \(C^*(X) \): \(M^* = \{ f \in C^* : f(p) = 0 \} \). We have that \(M^* \cap C^* \subseteq M^* \), and it is the unique \(q \in \beta X \) for which the relation \(M^* \cap C^* \subseteq M^* \) holds. Also, if \(p \in C(X) \) is a prime \(z \)-ideal, then so is \(p \cap C^* \) and for \(p \in \beta X \), \(p \subseteq M^* \) if and only if \(p \cap C^* \subseteq M^* \). For further details see Mandelker [9].

Proposition 11. Let \(Q \subseteq P \) be prime ideals of \(C^*(X) \) and let \(M^* = \{ p \in \beta X \} \) be the unique maximal ideal of \(C^*(X) \) containing \(Q \). The following are equivalent:

1. \(Q \) is real closed,
2. For every \(Z \in Z(M^* - \beta X) \) and every \(p \in Z(X - Z) \), \(0 \leq l < 1 \) there are \(W \in Z(\beta X) \) and \(h \in C(X) \), \(0 \leq h < 1 \), such that \(h \upharpoonright (W - Z) = l(\beta X - Z) \).

Proof. First notice that the proof of Theorem 1 carries over literally to the bounded case (that is, with \(C^* \) and \(M^* \) replacing \(C \) and \(M^* \), respectively); i.e., condition (1) is equivalent to:

\[
\begin{align*}
&\text{(2) for every } Z \in Z(M^* - \beta X) \text{ and every } l \in Z(X - Z), 0 \leq l \leq 1, \text{ there are } W \in Z(\beta X) \text{ and } h \in C(X), 0 \leq h \leq 1, \text{ such that } h \upharpoonright (W - Z) = l(\beta X - Z). \n\end{align*}
\]

Next we remark that

\[
Z(M^* - \beta X) = \begin{cases}
Z(M^*) & \text{if } M^* \subseteq M^* \cap C^*, \\
Z(X) & \text{if } M^* \neq M^* \cap C^*,
\end{cases}
\]

(by [3; Theorem 1] the second case occurs if \(M^* \) contains a unit of \(C(X) \)). In the first case (2) and (2) are obviously equivalent. In the second case this equivalence follows from the condition:

\[
\text{(3) for every } Z \in Z(M^* - \beta X) \text{ and every } l \in Z(X - Z), 0 \leq l \leq 1, \text{ there are } W \in Z(\beta X) \text{ and } h \in C(X), 0 \leq h \leq 1, \text{ such that } h \upharpoonright (W - Z) = l(\beta X - Z).}
\]
This, in turn, is a consequence of:

(4) for every \(Z \in \mathcal{Z}(X) \setminus \mathcal{Z}(M^p) \) there is \(W \in \mathcal{Z}(Q) \cap \mathcal{Z}(M^p) \) such that \(W \cap Z = \emptyset \).

Proof of (4). Let \(\mathcal{F} = Z(Q) \cap Z(M^p) \); then \(\mathcal{F} = Z(M^p) \) if \(M^p \cap C^* \subseteq Q \), and \(\mathcal{F} = Z(Q) \) if \(Q \subseteq M^p \cap C^* \) (\(Q \) is comparable with \(M^p \cap C^* \) [9; Theorem 1]); in particular, \(\mathcal{F} \) is a proper prime \(x \)-filter. If (4) is false, let \(Z \in \mathcal{Z}(X) \setminus \mathcal{Z}(M^p) \) be such that \(W \cap Z = \emptyset \) for all \(W \in \mathcal{F} \). Then \(\mathcal{F} \cup \{ Z \} \) generates a \(x \)-ultrafilter, i.e., there is a \(q \in \beta X \) such that \(\mathcal{F} \cup \{ Z \} \subseteq Z(q) \). Since \(Z \in Z(M^p) \), the prime \(x \)-filter \(\mathcal{F} \) is contained in the distinct \(x \)-ultrafilters \(\mathcal{Z}(M^p)_1 \), \(\mathcal{Z}(M^p)_2 \), contradicting [3; 2.13].

Proof of (4) \(\Rightarrow \) (3). Given \(Z \) and \(I \) as in (3), let \(W \in \mathcal{Z}(Q) \cap \mathcal{Z}(M^p) \) be so that \(W \cap Z = \emptyset \). By [3; Theorem 1.15] \(W \) and \(Z \) are completely separated, i.e., there is \(f \in C(X) \) such that \(f \upharpoonright W = 1, f \upharpoonright Z = 0 \) and \(0 < f \leq 1 \). Set \(h = f|_Z \) on \(X \setminus Z \), \(h = 0 \) on \(Z \). Since \(I \) is bounded and \(f \upharpoonright Z = 0 \), we have \(h \in C(X) \); also \(0 < h \leq 1 \). Furthermore, \(W - Z = W \), and thus \(h \upharpoonright (W - Z) = 1 \upharpoonright (W - Z) \).

A corresponding "local" result is obtained by using Proposition 5 instead of Theorem 1.

Corollary 12. Let \(P \) be a prime \(x \)-ideal of \(C(X) \). Then:

(1) \(P \) is real closed if \(P \cap C^* \) is real closed.

In particular,

(2) \(M^p \cap C^* \) is a real closed ideal of \(C^* \).

(3) Any prime \(x \)-ideal \(Q \) of \(C^* \) containing \(M^p \cap C^* \) is real closed.

Proof. (2) follows from (1) and the fact that \(M^p \) is real closed. (3) is a consequence of (2) and the analogue of Proposition 7 for prime ideals of \(C^* \). Remark: That this analogue holds, as the fact (noted earlier) that the results of § 1E carry over to the ring \(C^* \) entails at once that 1.22 is also true for ideals in \(C^* \).

Statement (1) follows at once from Theorem 1 and Proposition 11, since the equality \(\mathcal{Z}(P) = Z(P \cap C^*) \) holds for any prime \(x \)-ideal \(P \) of \(C^* \), as is readily verified.

The above and [3; 7.9(o)] imply that whenever \(X \) is a realcompact space (see the definition in [3; 5.9]), \(M^p \cap C^* \) is a nonmaximal real closed ideal of \(C^* \), for every \(p \in \beta X \); this remark is due to the referee, improving an earlier observation by the authors. This contrasts with the results of the next section where we will prove that the existence of real closed ideals properly contained in \(M^p \) is not provable in \(ZFC \); whenever \(X \) is metrizable and \(p \in X \).

2.2. Real closed ideals and \(P \)-points. We shall now discuss the relationship between these two notions. Our analysis will be based on the characterization of \(P \)-points of \(BN \) in 1.33 and the following intermediate concept.

Definition 1. Let \(X \) be a topological space, \(p \in X \), and \(\mathcal{F} \) a filter of subsets of \(X \). \(\mathcal{F} \) is called a \(P \)-filter iff for every function \(f \in C(X - \{p\}) \), \(0 \leq f \leq 1 \), there is \(Y \in \mathcal{F} \) such that \(\lim f(x) \) exists.

Clearly any filter containing a \(P \)-filter is also a \(P \)-filter.

We will prove first that the \(\mathcal{F} \)-filter corresponding to any minimal prime ideal below a real closed ideal is a \(P \)-filter for suitable \(p \in X \). Next we show that in the case of a metrizable space \(X \) the existence of a nonmaximal real closed ideal contained in \(M_p \), \(p \in X \), implies the existence of a \(P \)-point in \(\beta N \).

Theorem 2. Let \(p \in X \), let \(P \subseteq M_p \) be a prime ideal, and let \(Q \subseteq P \) be a minimal prime ideal. If \(P \) is real closed, then \(Z(Q) \) is a \(P \)-filter.

Proof. Suppose \(f \in C(X - \{p\}) \), \(0 \leq f \leq 1 \), is such that \(\lim f(x) \) does not exist for \(x \in X \).

Clearly any \(f \) is bounded, \(f \in C(X) \) and defines a \(\beta \) in the obvious way to a \(C(X) \) also denoted by \(f \).

Let \(r = h(p), f^* = |f|_r, h' = |h|_r \). Clearly \(h'(p) = 0 \), \(h' \in C(X) \) and defining \(f^* \) on \(X \) above, a routine computation shows that \(f^*(f^*) = |h|_r \).

Thus \(f(f^*) \upharpoonright Z(Q) \). Therefore \(Y \in Z(Q) \) (since \(Y \subseteq Y_Q \), \(Y_Q \) is a zero-set and \(Z(Q) \) is a \(P \)-filter). On the other hand \(Y \in Z(Q) \) (since \(Y \subseteq Y_Q \), \(Y_Q \) is a zero-set and \(Z(Q) \) is a \(P \)-filter). Since \(f \in C(X) \) and \(f \subseteq f^* \) there follows (3; 2.13) that \(f^* \subseteq f \), \(P \subseteq f^* \subseteq f \). Since \(f \subseteq f^* \), \(P \subseteq f^* \), \(P \subseteq f \).

Therefore \(f \in C(X) \) (since \(Y \subseteq Y_Q \), \(Y_Q \) is a zero-set and \(Z(Q) \) is a \(P \)-filter). Therefore \(f \subseteq f^* \), \(P \subseteq f^* \subseteq f \).

Therefore \(Y \subseteq Y_Q \), \(Y_Q \) is a zero-set and \(Z(Q) \) is a \(P \)-filter. Therefore \(f \subseteq f^* \), \(P \subseteq f^* \subseteq f \).

Therefore \(f \subseteq f^* \), \(P \subseteq f^* \subseteq f \).

Theorem 3. If \(X \) is a metrizable space, \(p \in X \), and there is a prime \(\mathcal{F} \)-filter \(\mathcal{U} \) of zero sets such that \(\mathcal{U} \subseteq Z(M_p) \), there is a \(P \)-point in \(\beta N \).

Proof. Let \(d \) denote a metric defining the topology of \(X \). Fix \(r_1 > r_2 > \ldots > 0 \) and let

\[A_i = \{ x \in X \mid d(x, p) > r_i \} \]

\[A_i = \{ x \in X \mid d(x, p) < r_{i+1} \} \]

for \(n > 1 \).

These are zero-sets of \(X \) (3; 1.1)), and since \(p \) is nonisolated (because \(\mathcal{U} \) is proper) we can assume without loss of generality that the \(A_i \)'s are all nonempty. Set

\[Y_1 = \bigcup A_{2n} \cup \{ p \} \]

\[Y_2 = \bigcup A_{2n+1} \cup \{ p \} \]
Clearly $Y_1 \cup Y_2 = X \in \mathcal{F}$ and we can assume $Y_1 \in \mathcal{F}$ without loss of generality. For $S \subseteq N$ define

$$Y(S) = \bigcup_{n \in S} A_{2n} \cup \{p\},$$

and let

$$\mathcal{U} = \{S \subseteq N | Y(S) \subseteq \mathcal{F}\}.$$

It is easily checked that \mathcal{U} is an ultrafilter on N ($\emptyset \notin \mathcal{U}$ follows from $\{p\} \notin \mathcal{F}$ which, in turn, is a consequence of $\mathcal{F} \neq Z(M_\mathcal{I})$). Moreover, \mathcal{U} is nonprincipal, for if $\{x\} \in \mathcal{U}$ would imply $A_{2x} \cup \{p\} \in \mathcal{F}$, and (since \mathcal{F} is a $P(p)$-filter) also $\{p\} \in \mathcal{F}$, a contradiction.

Now we use the characterization (1.33) to show that \mathcal{U} is a P-point. Let $f \in C^\infty(N)$ be given. It is easy to construct a function $f' \in C^\infty((0, \infty))$ such that

$$f'(t) = f(n) \quad \text{for} \quad r \in [2^{n+1}, 2^n], \quad n \in N.$$

Then define

$$f^*(x) = \lim_{n \to \infty} f'((x, n)).$$

Thus, $f^* \in C^\infty(X - \{p\})$. Fix $Z \in \mathcal{F}$ so that $\lim f^*(x)$ exists; we may suppose $Z \subseteq Y_1$.

Set

$$S = \{n \in N | Z \cap A_{2x} \notin \mathcal{U}\}. $$

Then $Z \subseteq Y(S)$, implying that $S \not\in \mathcal{U}$ and

$$\lim_{n \to \infty} f = \lim_{n \to \infty} f^*;$$

this shows that $\lim f$ exists.

Corollary 4. Let X be a metrizable space, $p \in X$, and assume M_p contains a nonmaximal real closed ideal; then there is a P-point in $\beta N - N$. In particular, the existence of such ideals is not provable in ZFC.

2.3. The operation γ

In [6; § 2] Kohls introduced a one-to-one correspondence γ between prime \mathcal{I}-ideals of $C(X)$ contained properly in M_p — where p is a nonisolated G_δ-point of the space X — and certain prime \mathcal{I}-ideals of $C(X - \{p\})$.

Our result in this section (Theorem 2) gives an exact characterization of real closed ideals of the form $\gamma(Q)$, in terms of the ideal Q. This characterization is essential for later work in § 3.

1. Definition and basic properties. Let X be an arbitrary (completely regular) space and $p \in X$ be a nonisolated G_δ-point. Let $i: X - \{p\} \to X$ be the inclusion, let X_1 be the largest subspace of $\beta(X - \{p\})$ on which i admits a continuous X-valued extension (for its existence, see [3; 10.13]), and let ϕ be the (unique) continuous extension of i to X_1. Then ϕ is a closed map and $\phi^{-1}(p) = X_1 - (X - \{p\})$ is nonempty (cf. [3; 10.13]).

The closure operator cl_X maps $Z(X - \{p\})$ into $Z(X)$ ([6; 2.1]) and therefore it induces a map γ with the following properties:

1. γ is a bijection of the family \mathcal{B} of all prime \mathcal{I}-ideals Q of $C(X - \{p\})$ such that $Z(Q)$ converges to a point of $\phi^{-1}(p)$, onto the family \mathcal{I} of all maximal prime \mathcal{I}-ideals of $C(X)$ contained in M_p.

2. For $Q \not\in \mathcal{B}$, $\gamma(Q)$ is defined to be the (unique) prime \mathcal{I}-ideal such that $Z(\gamma(Q)) = \{c_X(Y) | Y \in Z(Q)\}$.

3. The inverse map γ^{-1} of γ is determined by the condition:

$$Z(\gamma^{-1}(P)) = \{Z - \{p\} | P \in \mathcal{I}\},$$

for $P \in \mathcal{I}$.

4. For $Q \in \mathcal{B}$, Q is maximal if and only if $\gamma(Q)$ is an immediate prime \mathcal{I}-ideal of M_p.

For the proof of these properties and some examples of the effect of the map γ, see [6; § 2].

We now turn to the proof of:

Theorem 2. Let p be a nonisolated G_δ-point of X, and $Q \in \mathcal{B}$. The following are equivalent:

1. The ideal $\gamma(Q)$ is real closed.

2. (a) Q is real closed, and

 (ii) for every $f \in C(X - \{p\})$, $0 \leq f \leq 1$, there are $Y \in Z(Q)$ and $h \in C(X)$, $0 \leq h \leq 1$, such that $h \upharpoonright Y = f \upharpoonright Y$.

Remark. We give two rather different proofs. They illustrate dual aspects — set-theoretical and algebraic — of the same subject.

First proof. The following two facts [6; p. 451] will be needed in the proof; they can be easily verified by the reader:

(i) If F is a closed subset of X, then $\gamma(f - \{p\})$ is either $F - \{p\}$ or F.

(ii) If F is a closed subset of $X - \{p\}$, then $\gamma(f - \{p\}) = F$.

From (i) and (ii) it follows:

(iii) If $F \in Z(X)$, then $F \in Z(\gamma(Q))$. $F - \{p\} \in Z(\gamma(Q))$.

Since $\{p\}$ is a zero-set iff it is G_δ (cf. [3; 3.11(b)]), the assumption gives:

(iv) $(p) \in Z(M_p)$ and every member of $Z(M_p)$ contains p.

(1) \Rightarrow (2). Assume $\gamma(Q)$ is real closed. By Theorem 2.11 the following holds:

$\gamma(Q) \in Z(M_p)$.

5. For every $Z \in Z(M_p) - Z(\gamma(Q))$ and every $I \in C(X - Z)$, $0 \leq I \leq 1$, there are $W \in Z(\gamma(Q))$ and $h \in C(X)$, $0 \leq h \leq 1$, such that $h \upharpoonright (W - Z) = I \upharpoonright (W - Z)$.

Let g be the unique point of $\gamma(f - \{p\})$ such that $Q \subseteq M_p$; necessarily $g \in \phi^{-1}(p)$.

Proof of (2a). By Theorem 2.11 again, Q is real closed if:

$\gamma(Q) \in Z(M_p)$.

For every $Y \in Z(M_p) - Z(\gamma(Q))$ and every $m \in C(X - \{p\})$, $0 \leq m \leq 1$, there are $V \in Z(\gamma(Q))$ and $g \in C(X - \{p\})$, $0 \leq g \leq 1$, such that $g \upharpoonright (V - Y) = m \upharpoonright (V - Y)$.

$\gamma(Q)$ is real closed.
To prove (**), let such \(Y, m \) be given. From 1.(i) and (iii) we get at once:

- \(\gamma(Y) \in Z(M^r) \) for \(m \in \gamma(Y) \);
- \(\gamma(Y) \) is a \(\gamma(Y) \) for \(m \in \gamma(Y) \), hence by (iv),
- \(p \in \gamma(Y) \).

Now, setting \(Z = \gamma(Y) \) and \(l = m \) in (ii), get \(W \in Z(\gamma(Y)) \) and \(h \in C(X) \), \(0 \leq \ell \leq 1 \), such that \(h \uparrow (W - Z) = m \uparrow (W - Z) \). Further, we set \(V = W - \{ p \} \) and prove:

- \(V \uparrow Y = W - Z \).

Clearly \(V \uparrow Y = (W - \{ p \}) \uparrow Y = W - \{ p \} \uparrow Y \), and by (ii), \(\gamma(Y) - \{ p \} = Y \); hence \(Y \uparrow \{ p \} = \gamma(Y) = Z \).

Put \(g = h \uparrow (X - \{ p \}) \), and (***) follows at once from (iii) and (vii).

Proof of (2.b) by (iv) and \(Z(\gamma(Y)) \) is \(Z(M^r) \) we get \(\{ p \} \in Z(M^r) - Z(\gamma(Y)) \).

Setting \(Z = \{ p \} \) and \(l = f \) in (ii) gives \(W \in Z(\gamma(Y)) \) and \(h \in C(X) \), \(0 \leq \ell \leq 1 \), such that \(h \uparrow (W - \{ p \}) = f \uparrow (W - \{ p \}) \). Putting \(Y = W - \{ p \} \), (2.b) follows at once from (iii).

(2) \(\Rightarrow \) (i). We assume (**) and (2.b) and prove (a).

By the remark following Theorem 2.1.1, (***) is equivalent to:

- For every \(Y \in Z(X - \{ p \}) - Z(Q) \) and every \(m \in C(X - \{ p \}) - Y \), \(0 \leq m \leq 1 \), there are \(V \in Z(Y) \) and \(g \in C(X - \{ p \}) \), \(0 \leq g \leq 1 \), such that \(g \uparrow (V - Y) = m \uparrow (V - Y) \).

Let \(Z \in Z(M^r) - Z(\gamma(Y)) \) and \(l \in C(X - \{ p \}) \), \(0 \leq l \leq 1 \), be given. Set \(Y_0 = Z - \{ p \} \). Then \(Y_0 \in Z(X - \{ p \}) - Z(\gamma(Y)) \) (by (iii)), and \(l \) is defined on \((X - \{ p \}) - Y_0 \). Using (***) with \(Y = Y_0 \) and \(m = l \) we get \(V \in Z(Y) \) and \(g \in C(X - \{ p \}) \), \(0 \leq g \leq 1 \), such that

\[
\frac{g \uparrow (V - Y_0)}{l \uparrow (V - Y_0)} = \frac{m \uparrow (V - Y_0)}{l \uparrow (V - Y_0)}.
\]

Setting \(W_0 = \gamma(Y) \), we have \(W_0 \in Z(\gamma(Y)) \), \(Y = W_0 - \{ p \} \) (by (ii)), and

\[
V - Y_0 = (W_0 - \{ p \}) - Y_0 = W_0 - Z.
\]

Now, using the assumption (2.b) with \(f = g \), get \(Y_1 \in Z(\gamma(Y)) \) and \(h \in C(X) \), \(0 \leq \ell \leq 1 \), such that \(h \uparrow Y_1 = Y \). If \(W_1 = \gamma(Y_1) \), then as above we conclude that \(W_1 \in Z(\gamma(Y)) \) and \(Y = W_1 - \{ p \} \). Hence:

\[
\frac{g \uparrow (W_1 - \{ p \})}{h \uparrow (W_1 - \{ p \})} = \frac{m \uparrow (W_1 - \{ p \})}{l \uparrow (W_1 - \{ p \})}.
\]

Let \(W = W_0 \cap W_1 \); then \(W \in Z(\gamma(Y)) \). Since \(p \in Z \), we obtain:

\[
\frac{h \uparrow (W - Z)}{g \uparrow (W - Z)} = \frac{m \uparrow (W - Z)}{l \uparrow (W - Z)} \quad \text{by } (++) \text{ and } (+++),
\]

and

\[
\frac{h \uparrow (W - Z)}{l \uparrow (W - Z)} = \frac{m \uparrow (W - Z)}{l \uparrow (W - Z)} \quad \text{by } (++) \text{ and } (+++).
\]

Thus (a) is verified. ■

Second proof. Set \(R = C(X) / \gamma(Y) \), \(R' = C(X - \{ p \}) / \gamma(Y) \). The restriction map \(\varphi : C(X) \rightarrow C(X - \{ p \}) \) induces a monomorphism \(\varphi^* : R \rightarrow R' \), because \(\gamma(Y) \in Q \) and \(\gamma(Y) \) is a \(\gamma(Y) \) as is readily verified.

Condition (2.b) is equivalent to:

(2.b) If \(0 < a < 1 \) in \(R' \), then \(a \in \text{Range}(\varphi^*) \).

Now, since \(R, R' \) both satisfy the condition:

- If \(1 < b \) then \(b \) is invertible (cf. 1.18),
- it follows that the divisibility property (DP) for \(R, R' \) is equivalent to:

- If \(0 < a < b < 1 \), then \(b \) divides \(a \).

Hence, if (2.b) holds, then the divisibility property for \(R \) is equivalent to the divisibility property for \(R' \), or in other words:

(2.b) \(\iff \) ((1) \(\iff \) (2.a)).

Hence to prove the theorem it suffices to show:

(i) \(\iff \) (2.b). Fix \(0 < a < 1 \in R' \). Since \(\gamma(Y) \notin M_a \), we can choose \(f \in M_f \).

(ii) For every \(\varphi^* : R \rightarrow R' \), \(f' = \varphi^*(f) \). We can find a function \(g \in C(X) \) satisfying:

\[
0 < g \leq f;
\]

\[
\varphi^* g = \varphi^*(g) \gamma(Y) \text{ for all } \gamma(Y) \in \gamma(Y).
\]

Indeed, let \(a \in C(X - \{ p \}) \) be so that \(0 < a < 1 \) and \(a / q = a \), and set

\[
g = \begin{cases} a & \text{on } X - \{ p \} \\ 0 & \text{at } p. \end{cases}
\]

Now apply the divisibility property in \(R = C(X) / \gamma(Y) \) to conclude that there is a function \(h \in C(X) \) satisfying:

\[
\varphi^* h \gamma(Y) = gh(Y).
\]

Set \(h' = \varphi^*(h) \gamma(Y) \) and compute:

\[
f h' = \varphi^*(f) h' = \varphi^*(f) \gamma(Y) \gamma(Y)
\]

since \(f' \neq 0 \) we obtain \(a = h' \), as desired. ■

Applying Theorem 2 to the case where \(Q \) is maximal, gives:

Corollary 3. Let \(X \) and \(p \) be as in Theorem 2, and let \(M_f \) be a maximal ideal of \(C(X - \{ p \}) \) such that \(q \in \varphi^{-1}(p) \). Then the following are equivalent:

(i) \(\gamma(M_f) \) is real closed;

(ii) For every \(f \in C(X - \{ p \}) \), \(0 < f < 1 \), there are \(Y \in Z(M_f) \) and \(h \in C(X) \), \(0 < h < 1 \), such that \(f \uparrow Y = h \uparrow Y \).

Condition (2) implies:

(iii) Every bounded real-valued function on \(X - \{ p \} \) has a limit at \(p \) over a set of \(Z(M_f) \); i.e., \(Z(M_f) \) is a \(P(p) \)-filter.

If \(X \) is normal or \(p \) has a compact neighborhood, then (2) and (i) are equivalent.
Proof. Since a maximal ideal is real closed, the equivalence between (1) and (2) follows at once from Theorem 2. Likewise, (3) ⇒ (4) is obvious since \(\lim f(x) = h(p) \), obviously \(f' \in C(Y \cup \{p\}) \) and we can assume, without loss of generality, that \(0 \leq x \leq 1 \). Also \(Y \cup \{p\} \) is a closed subset of \(X \). If \(X \) is a normal space, \(Y \cup \{p\} \) is \(C^\ast \)-embedded in \(X \) (23.13), i.e. there is \(h \in C(Y) \) such that \(h \| Y \to f \) and \(f(p) = \lim f(x) \).

In the next section we will meet situations where \(X \setminus \{p\} \) is \(C^\ast \)-embedded in \(X \) under this assumption Theorem 2 gives:

Corollary 4. Let \(X, p \) and \(Q \) be as in Theorem 2, and assume that \(X \setminus \{p\} \) is \(C^\ast \)-embedded in \(X \). Then \(\gamma(C) \subseteq \{p\} \) is closed if \(Q \) is real closed. In particular, if \(\gamma \in \gamma(C) \) is an immediate prime \(z \)-ideal of \(M^\ast \) which is real closed.

Proof. Immediate from Theorem 2 and 1.4 above. \(\blacksquare \)

2.4. \(\beta P \)-points. The notion of a \(\beta P \)-point was introduced by Kohls in [4]. The simplest way of defining this notion is the following:

Definition 1. A point \(p \in \beta X \) is a \(\beta P \)-point if the ideal \(0^P \) is prime.

In this section we study the behaviour of prime ideals contained in \(M^\ast \), when \(p \) is a (nonisolated) \(\beta P \)-point. The key to this study is Lemma 2. Using a refinement of a technique already employed by Kohls (cf. [4, p. 46] and [5, pp. 330–331]), we prove that if the space \(X \) is normal or the point \(p \) has compact \(X \)-neighborhood, then the immediate prime \(z \)-ideal of \(M^\ast \) (whenever it exists) is real closed.

As an application of the results of § 2.3 we consider next the case where \(p \) is, in addition, a \(G_\delta \)-point belonging to \(X \); no extra assumptions on the space \(X \) are made here. We reprove a result of Kohls (4, Theorem 5.7) and (5, p. 453), which says that in this case \(M^p \) does have an immediate prime \(z \)-ideal which is real closed, and gives an explicit characterization of it.

Recall that each of the following conditions on a point \(p \in \beta X \) is equivalent to being a \(\beta P \)-point:

1. the set of prime ideals below \(M^p \) is totally ordered by inclusion (1.12).
2. for every \(f, g \in C(X) \) such that \(f(\pi(p)) = g(\pi(p)) = 0 \), there is an \(X \)-neighborhood \(\mathcal{U} \) of \(p \) such that \(\mathcal{U}(f \cap \mathcal{U}) \cup \mathcal{U}(g \cap \mathcal{U}) \subseteq \mathcal{U}(f \cup \mathcal{U}) \cup \mathcal{U}(g \cup \mathcal{U}) \) (5, Theorem 2.20 [9], 5; Theorem 5.3));
of \(p \) such that \(\mu_{p, +} \leq 0 \) on \(U_2 \). As before we conclude that

\[
\mu_{p, +} \leq 0 \quad \text{for} \quad x \in U_2 - Z.
\]

By (a) and (**) \(\| (x) - \tau_0 \| \leq \varepsilon \) for \(x \in (U_1 \cup U_2) - Z \).

Lemma. Let \(P \subseteq P \) be \(z \)-ideals of \(C(X) \). Then the following are equivalent:

1. \(P \) is an immediate \(z \)-ideal predecessor of \(P' \).
2. For every \(f, g \in P - Q \) there is \(h \in Q \) such that \(Z(f) \cap Z(h) = Z(g) \cap Z(h) \).

Proof. Routine, using that the \(z \)-ideal of \(C(X) \) generated by a \(z \)-ideal \(I \) and a function \(f \) is given by: \(\langle I, f \rangle = \{ g \in C(X) \mid \exists h \in f \text{ so that } Z(f) \cap Z(h) \neq Z(g) \cap Z(h) \} \).

Our main result is the following:

Theorem 4. Let \(p \in \mathcal{P}X \) be a \(\beta \mathcal{F} \)-point. Assume that either,

(a) the space \(X \) is normal and \(M^* \) is a real ideal, or

(b) \(p \) has a compact \(X \)-neighborhood.

If \(P \subseteq M^* \) is an immediate prime \(z \)-ideal predecessor of \(M^* \), then \(P \) is real closed.

Proof. We want to prove that in the case (a), condition (2) of Theorem 2.1.1. is satisfied; in the case (b) we will verify the corresponding local condition (2) of Proposition 2.1.5.

We shall first prove:

Claim 1. Assumption (b) implies that the ideal \(M^* \) is real.

Proof of claim 1. By [3; Theorem 6.1.4] it suffices to show that the intersection of countably many members of \(Z(M^*) \) is nonempty.

Let \(\{ f_{\alpha} \}_{\alpha \in \mathcal{A}} \) be a countable set of functions in \(M^* \). Considering, if necessary, \(\inf f_{\alpha} \) instead of \(f_{\alpha} \), we can assume that \(0 \leq f_{\alpha} \leq 1 \) without altering the corresponding zero-sets. Furthermore, replacing \(f_{\alpha} \) by \(\sum f_{\alpha} / \sum f_{\alpha} \) we can assume that the set \(\{ Z(f_{\alpha}) \} \) is decreasing (that is, \(Z(f_{\alpha}) \subseteq Z(f_{\beta}) \) for \(m > n \)) without changing the set \(\{ Z(f) \} \).

Now fix a compact \(X \)-neighborhood \(C \) of \(p \); by 1.37 there is \(W \subseteq Z(X) - Z(M^*) \) such that \(X - W \subseteq C \).

In this situation, the proof will be finished if we show that \(Z(f) \cap C \neq \emptyset \) for all \(n \geq 1 \), for the compactness of \(C \) implies \(\bigcap_{n \geq 1} Z(f) \cap C \neq \emptyset \), and hence \(\bigcap_{n \geq 1} Z(f) \neq \emptyset \).

Thus, we have to show:

\[
f \in M^* \Rightarrow Z(f) \cap C \neq \emptyset.
\]

But notice that, in fact, we have:

\[
f \in M^* \Rightarrow Z(f) \cap (X - W) \neq \emptyset.
\]

Otherwise, we would have \(Z(f) \subseteq W \) which, together with \(Z(f) \subseteq Z(M^*) \) and \(W \subseteq Z(X) \) imply at once \(W \subseteq Z(M^*) \), a contradiction.

Let \(Z \subseteq Z(M^*) - Z(P) \) and \(l \in C^*(X - Z) \); for the case (b) fix a compact \(X \)-neighborhood \(C \) of \(p \) and assume (using [3; 3.2(b)] if necessary) that \(Z \subseteq C \).

Henceforth we assume that \(M^* \) is real. We shall establish the next result under this assumption but no other assumption on the space \(X \) or on the point \(p \):

Claim 2. There are \(W \subseteq Z(P) \) and \(l_0 \in C^*(W) \) such that \(l_0 \upharpoonright (W - Z) = 1 \upharpoonright (W - Z) \).

Proof of claim 2. Using Lemma 2 extend \(l \) to a continuous function \(l' \) on \((X - Z) \cup \{ p \} \); then extend \(l' \) further to a (not necessarily continuous) function \(l'' \) on \(X \cup \{ p \} \) by setting \(l''(x) = l'(p) \) for \(x \in Z \).

Recall that the oscillation of a real-valued function \(F \) at a point \(p \) is defined as:

\[
osc(F, p) = \limsup_{s \to p} F(x) - \liminf_{s \to p} F(x).
\]

Since \(l'' \) is continuous at \(p \), for every \(n \geq 1 \) we can find an \(X \)-neighborhood \(U_n \) of \(p \) such that \(osc(l'', x) < 1/n \) for every \(x \in U_n \).

By Lemma 2.1.1 we can find functions \(k_n \in C(X) \), \(0 \leq k_n \leq 1 \) such that \(Z(k_n) \subseteq U_n \) and \(k_n(p) = 0 \) for all \(n \geq 1 \). Since \(M^* \) is real, by [3; 7.2 and 7.9(c)] we conclude that \(k_n \in M^* \); furthermore, by [3; Theorem 3.14], there is a function \(s \in M^* \) such that:

\[
\bigcap_{n \geq 1} Z(k_n) = Z(s).
\]

Now we show:

\[
\bigcap_{n \geq 1} Z(k_n) = Z(s).
\]

Indeed, if \(s \in P \), then (**) follows from (**) by taking \(k = s \). If \(s \notin P \), let \(g \in M^* - P \) be such that \(Z(g) = Z \); since \(P \) is an immediate prime \(z \)-ideal predecessor of \(M^* \), by Lemma 3 there is \(k \in P \) so that \(Z(s) \cap Z(k) = Z(g) \cap Z(k) \); (***) follows at once from this and (**).

Condition (**) says that at each point of \(Z \cap Z(k) \) the oscillation of \(l'' \) is zero. Since \(l'' \upharpoonright (W - Z) \) is continuous on \(X - Z \), at each point of \(Z(k) \cap Z \) its oscillation is also zero. Therefore \(l'' \) is continuous on \(Z(k) \).

The claim follows by setting \(W = Z(k) \) and \(l_0 = l'' \upharpoonright W \).

Returning to the proof of Theorem 4, when \(X \) is normal, \(W \) is \(C^* \)-embedded ([3; 3.2]]). Under assumption (b) notice that we can choose \(W \subseteq C \); hence \(W \) is compact and by [3; 3.11(c)] \(W \) is \(C^* \)-embedded.

Hence in both cases there is \(h \in C^*(X) \) such that \(h \upharpoonright W = l_0 \). Clearly \(h \) and \(l_0 \) coincide on \(W - Z \). Therefore the ideal \(P \) is real closed.
Corollary 5 (Kohls). Let \(p \in \beta X \) be a \(\beta F \)-point such that \(M^p \vdash \) a real ideal, if \(\Omega^p \) is an immediate prime \(z \)-ideal predecessor of \(M^p \), then \(\Omega^p \) is real closed.

Proof. Apply Claim 2 in the proof of Theorem 4 with \(P = \Omega^p \); then \(W \) contains an open \(X \)-neighborhood \(U \) of \(p \). By complete regularity there is \(f \in C(X) \) such that

\[
0 \leq f \leq 2, \quad f^+ \cap (X - U) = 0 \quad \text{and} \quad f^0(p) = 2 .
\]

Let \(f' = \min\{f, 1\} \). Then \(0 \leq f' \leq 1, f' = 0 \) on \(X - U \), and \(f' = 1 \) on some \(X \)-neighborhood of \(p \). Setting \(W = Z(f'(\cdot - 1)) \) we thus have \(W^p \in Z(\Omega^p) \). Let

\[
h(x) = \begin{cases} 0 & \text{for } x \in X - U \\ f'(x)l_0(x) & \text{for } x \in U . \end{cases}
\]

Since \(l_0 \) is bounded and \(f' = 0 \) on \(X - U \), it follows that \(h \in C(X) \); also \(h(x) = l_0(x) \) for \(x \in W^p \). We conclude then:

\[
h \upharpoonright (W \cap W^p - Z) = l_0 \upharpoonright (W \cap W^p - Z) = 1 \upharpoonright (W \cap W^p - Z).
\]

Since \(W \cap W^p \in Z(\Omega^p) \), this proves that \(\Omega^p \) satisfies condition (2) of Theorem 2.1.1, and therefore that it is real closed.

Remarks. (1) Theorem 4 is inspired by Kohls' proof of Corollary 5 (see [5; Theorem 4.1]) and uses some of the same technique. Kohls' original statement of Corollary 5 makes no explicit assumption about \(M^p \), but the fact that it is real is actually used in the proof. Corollary 8 below is an application of Theorem 4.

(2) Note that the assumption \("M^p \) is real\(" \) is actually verified automatically when \(p \in X \).

(3) The space \(\Sigma_p \) considered in \$3.1 \$ below is an example where the assumptions of Corollary 5 are verified (for \(\psi = \omega \)); cf. [3; 4.3.1.9]. More generally, assume that the point \(p \in \beta X \) is such that \(M^p \) is real, and in addition satisfies:

- for every \(f \in C(X) \) such that \(f^*(p) = 0 \), there is a (deleted) \(X \)-neighborhood of \(p \) where one of the relations \(f > 0, f < 0 \) or \(f = 0 \) holds.

Then \(\Omega^p \) is an immediate prime \(z \)-ideal predecessor of \(M^p \)(this point is checked using Lemma 3 above and Lemma 2.1.4; we leave it as an exercise). This condition is fulfilled, for example, when \(p \) is a \(\beta F \)-point and a \(p \)-point of \(\beta X \). For more details, see [4; \$ 5] and [5; \$ 6].

We shall now impose further restrictions on the \(\beta F \)-point \(p \) (but none on the space \(X \)); namely, we shall require that \(p \in X \) and that \(p \) be a nonisolated \(G_p \)-point. As remarked in [5; p. 329], the class of points \(p \) satisfying all these requirements is rather restricted, but by no means empty.

Note that \(\{p\} \) is \(G_p \) if it is a zero-set (cf. [3, 3.11(6)]). Then from Lemma 2 we obtain:

Corollary 6. Let \(p \in X \) be a \(G_p \) and \(\beta F \)-point. Then \(X - \{p\} \) is \(C^* \)-embedded in \(X \).

Remark. Using Urysohn's theorem, [3; 1.17], one can easily give a proof of this result which does not use Lemma 2.

From Corollary 6 we infer the following:

Corollary 7. Let \(p \in X \) be a nonisolated, \(G_p \), \(\beta F \)-point, and let \(\phi \) be the map defined in 2.3.1. Then \(\phi^{-1}(p) \) has cardinality 1.

Proof. If \(q_1, q_2 \in \phi^{-1}(p) \) and \(q_1 \neq q_2 \), then by 2.3.1(1) we would have \(\gamma(M^p) \neq (M^p) \); by 2.3.1(4) both would be immediate prime \(z \)-ideal predecessors of \(M^p \), and hence incomparable under inclusion, which contradicts (1) above.

Corollary 8. Let \(p \in X \) be a nonisolated, \(G_p \) and \(\beta F \)-point. Then \(M^p \) has an immediate prime \(z \)-ideal predecessor, \(M'^p \), which is real closed.

Proof. Let \(q \in \beta X \) be the unique member of \(\phi^{-1}(p) \), and set \(M'^p = \gamma(M^p) \).

The result follows at once from 2.3.4.

Now we give a more precise characterization of the prime \(z \)-ideal \(M'^p \).

Proposition 9. Let \(p \in X \) be a nonisolated, \(G_p \) and \(\beta F \)-point. Then \(M'^p = \{f \in C(X) \mid f \text{ is a limit point of } Z(f) \} \).

Proof. Call \(f \) the right hand side of the equality.

(a) \(I \) is a prime \(z \)-ideal.

The only nontrivial point to check is that \(I \) is closed under addition. Let \(f, g \in I \). Since \(I \subseteq M^p \), by condition (2), p. 07, there is an \(X \)-neighborhood of \(p \) (and hence a neighborhood of \(p \), since \(p \in X \)), \(U \), such that \(Z(f) \cap U \subseteq Z(g) \cap U \) or \(Z(g) \cap U \subseteq Z(f) \cap U \). Assume, for instance, that the first inclusion holds. Let \(V \) be an arbitrary neighborhood of \(p \), and \(V = V - \{p\} \). Since \(f, g \in I \), then \(Z(f) \cap U \cap V^c \neq \emptyset \); whence \(\emptyset \neq Z(f) \cap Z(g) \cap U \cap V^c \subseteq Z(f - g) \cap V \). This proves that \(f - g \in I \).

(b) \(I \subseteq M'^p \).

Since \(\{p\} \) is \(G_p \), it is a zero-set; clearly \(\{p\} \not\subseteq Z(I) \). Hence \(\{p\} \not\subseteq Z(M^p) - Z(I) \), and thus \(I \subseteq M'^p \).

Since \(M'_p \) is the (unique) immediate prime \(z \)-ideal predecessor of \(M^p \), then \(I \subseteq M'_p \).

(c) \(M'_p \subseteq I \).

Let \(f, g \in M'_p \); and let \(V \) be a neighborhood of \(p \). Using Lemma 2.1.4 choose \(g \in G_p \), such that \(Z(g) \supseteq V \). Since \(I \) is a prime ideal, by considering \(f \) instead of \(f \) we can assume \(f, g \neq 0 \) without loss of generality. Now we have \(f, g \in M^p \), and therefore \(Z(f + g) = Z(f) \cap Z(g) \subseteq Z(M^p) \). Since \(M'_p \subseteq M^p \), then \(\{p\} \not\subseteq Z(M'_p) \), and we conclude:

\[
\emptyset \neq (Z(f) \cap Z(g)) - \{p\} \subseteq (Z(f) \cap (Z(g) - \{p\})) \subseteq (Z(f) \cap (V - \{p\}))
\]

which shows that \(f, g \in I \).

J. Chazave (unpublished) has considerably extended Corollary 8 and Proposition 9.

\$ - \text{Fundamenta Mathematicae} 139, 3$
§ 3. Concrete cases

In this section we will apply the general results proved in § 2 to give precise characterizations of the real closed members of certain families of prime ideals of continuous functions in some specific spaces.

In § 3.1 we study the case of N^*, the one-point compactification of the countable discrete space N; we obtain an elegant algebraic characterization of P-points of $B(N)$ in terms of residue rings of $C(N^*)$: if $w \in B(N)$ is a P-point then $C(N^*)_{w}$ is a valuation ring, by Proposition 1.27. Here P_* is the minimal prime ideal of $C(N^*)$ canonically determined by w (see below).

This result makes it possible to identify the real closed members of a certain family of prime ideals in $C(R)$ — called ideals "of type E" — introduced by Kohls in [6]. This is the subject of § 3.2.

In § 3.3 we carry out a detailed analysis of prime ideals in $C(D^*)$ contained in M_*; D^* denotes the one-point compactification of an uncountable discrete space D and ∞ its "point at infinity".

We show that the class of these ideals is similar in important respects to the corresponding one in the ring $C(N^*)$. We obtain a complete classification of the minimal prime ideals, and a characterization of the P-points of $B(D)$ analogous to that of the countable case.

In § 3.4 we introduce a class of prime ideals in $C(R^*)$ (cf. § 2.3.1) and the Lebesgue measure on R^*. We characterize exactly the real closed members of this class, and using Martin's axiom we prove that they form a nonempty subclass.

3.1. P-points of $B(N)$ and real closed ideals in $C(N^*)$. We shall denote by N^* the one-point compactification of the countable discrete space N and by ∞ its "point at infinity". To each nonprincipal ultrafilter \mathcal{F} on N we associate the set $P_\mathcal{F} = \{ f \in C(N^*) : f(\infty) \in \mathcal{F} \}$.

It is easily seen [3; 14.G] that $P_\mathcal{F}$ is a minimal prime ideal contained in M_* and that the correspondence $\mathcal{F} \mapsto P_\mathcal{F}$ establishes bijection between $B(N)$ and the minimal prime ideals contained in M_*.

Recall that \mathcal{F} denotes the set $N \cup \{ \infty \}$ with the topology for which the points of N are isolated and the neighborhoods of ∞ are the sets $U \cup \{ \infty \}$, $U \in \mathcal{F}$. \mathcal{F} is an F-space; the ideal \mathcal{F} is prime but not maximal; for more details, cf. [3; 4.M].

We shall prove something more precise than the equivalence announced above.

Theorem 1. The following are equivalent:

1. \mathcal{F} is a P-point of $B(N)$.
2. $C(\mathcal{F})_{0_\mathcal{F}} \cong C(N^*)_{P_\mathcal{F}}$.
3. $C(N^*)_{P_\mathcal{F}}$ is a real closed ring.

Proof. (2) \Rightarrow (3) follows immediately from Proposition 2.1.2 (\mathcal{F} is an F-space).

(1) \Rightarrow (2). We show first that (1) implies:

($*$) for every $f \in C(\mathcal{F})_0$ there is $g \in C(N^*)$ such that $f|_{0_\mathcal{F}} = g|_{0_\mathcal{F}}$.

Let $r = f(\infty)$. Since $f \in C(\mathcal{F})_0$, for every $n \geq 1$ we have $U_n = f^{-1}([-1/n, 1/n]) \cap U \in \mathcal{F}$. By 3.30 there is $U \in \mathcal{F}$ such that $U - U_n$ is finite for all $n \geq 1$. Let $g : N \cup \{ \infty \} \to R$ be defined by $g \upharpoonright U = f \upharpoonright U$, $g(\infty) = r$.

To see that $g \in C(N^*)$ it suffices to prove that $W_\mathcal{F} = g^{-1}([-1/n, 1/n])$ is cofinite for all $n \geq 1$. Indeed, it is easily verified that $N^* - W_\mathcal{F} \subseteq U - U_n$, a finite set.

Since $f = g$ on $U \cup \{ \infty \}$ and $U \in \mathcal{F}$, it follows that $Z(f - g) \subseteq Z(\mathcal{F})$ and $f|_{0_\mathcal{F}} = g|_{0_\mathcal{F}}$. By ($*$) the canonical map $f \mapsto f|_{0_\mathcal{F}}$ from $C(N^*)$ into $C(\mathcal{F})_{0_\mathcal{F}}$ is surjective, and it is easily checked that it induces the desired isomorphism.

(3) \Rightarrow (1). We use here the characterization of P-points given in 3.1. Since $P_\mathcal{F}$ is a prime \mathcal{F}-ideal, Theorem 2.1.1 gives:

($**$) for every $Z \in M_*$ and every $\mathcal{F} \in \mathcal{F}(\mathcal{F})$, $0 \leq l \leq 1$, there are $W \in Z(P_\mathcal{F})$ and $h \in C(N^*)$, $0 \leq h \leq 1$, such that $h \upharpoonright (Z - W) = l \upharpoonright (Z - W)$.

Consider any such Z and a partition $\{ P_k \}_{k \geq 1}$ of N such that $P_k \nsubseteq \mathcal{F}$ for $k \geq 1$; let $l_0 : N \to R$ be defined by

$l_0(n) = \begin{cases} 1 & n \in P_k, \\ 0 & n \notin P_k. \end{cases}$

Since $\infty \in Z$, then $l_0 \in C(N^* - Z)$, and obviously $0 \leq l_0 \leq 1$. Notice that $\lim l_0 = 0$ because $P_k \nsubseteq \mathcal{F}$ for all k. Let $W_\mathcal{F}$, h be obtained by applying ($*$) to Z and l_0, and let $W = W - W_\mathcal{F}$. Then $h(\infty) = 0$ and since h is continuous at ∞, $h^{-1}([-1/k, 1/k])$ is cofinite. Hence

$W \cap (N - h^{-1}([-1/k, 1/k])) = W - \{ n \in N : l_0(n) < 1/k \}
= \{ n \in W : l_0(n) \geq 1/k \} = W \cap \bigcup_{k=1}^\infty P_k,$

is finite. Thus, we have $W \in \mathcal{F}$ and $W \in P_\mathcal{F}$ for all k, showing that \mathcal{F} is a P-point of $B(N)$.■

In Kohls [6; 3.4] it is proved that in this case (i.e., when $N = N^*$, $p = \infty$) one has $f^{-1}(\infty) = B(N)$.

Since $N = X - \{ p \}$ is discrete, the only prime \mathcal{F}-filter of N converging to the point \mathcal{F} is \mathcal{F} itself.

It is easily verified that $\gamma(f \in C(N)) Z(f) \in \mathcal{F}$; by 2.3.1(4) there are no prime \mathcal{F}-ideals strictly between $P_\mathcal{F}$ and $P_\mathcal{F}$. The preceding theorem and the equivalence between (1) and (3) of Corollary 2.3.3 imply at once:

Corollary 2. Let $\mathcal{F} \in B(N)$. Then \mathcal{F} is a P-point of $B(N)$ if and only if for every bounded sequence of real numbers there is $Y \subseteq \mathcal{F}$ such that lim $f \upharpoonright Y$ exists.■
Conversely, it is quite easy to derive the equivalence (1) \iff (3) of Theorem 1 from Corollary 2 and Corollary 2.3.3.

The next two statements summarize the situation concerning the distribution and existence of nonmaximal real closed ideals of \(C(N^*) \) contained in \(M_n \).

Proposition 3. Let \(P \) be a prime ideal of \(C(N^*) \), \(P_n \subseteq P \subseteq M_n \) for \(n \in N \cap N \). Then \(P \) is real closed if \(n \) is a \(P \)-point or \(P = M_n \).

Proof. (e). By Theorem 1 and Proposition 2.1.7. (e). By Theorem 2.2.1 and Corollary 2.3.

Proposition 4. (1) The existence of nonmaximal real closed ideals in \(C(N^*) \) is not provable in ZFC.

(2) Martin's axiom implies the existence of (infinitely many) nonmaximal real closed \(\mathcal{P} \)-ideals in \(C(N^*) \).

Proof. An immediate consequence of the above and the results mentioned in \(\S \).1.2.

3.2. Ideals of type \(\mathcal{P} \)

In [6] Kohls introduced a special type of prime \(\mathcal{P} \)-ideal in \(C(X) \), for a wide class of spaces \(X \) including, among many others, the metric spaces.

Definition 1. Let \(p \) be a fixed isolated point of a space \(X \), \(S \) a sequence of distinct points of \(X \setminus \{p\} \) having \(p \) as its only limit point and \(\mathcal{U} \) a normal principal ultrafilter on \(S \). The ideal \(I_{\mathcal{U}} \) (or \(I_{\mathcal{U}} \) for short), called the ideal of type \(\mathcal{P} \) associated with \(S \), \(p \) and \(\mathcal{U} \), is defined by:

\[I_{\mathcal{U}} = \{ f \in C(X) \mid p \in Z(f) \} \]

These ideals enjoy the following properties:

(1) \(I_{\mathcal{U}} \) is a prime \(\mathcal{P} \)-ideal contained in \(M_n \); [6; 3.2], and if \(\{p\} \) is a \(G_\delta \), then \(I_{\mathcal{U}} \) is properly contained in \(M_n \).

(2) If \(p \) is a nonisolated \(G_\delta \)-point of \(X \), and either \(X \setminus \{p\} \) is normal or \(S \) converges to \(p \), then any ideal of type \(\mathcal{P} \) associated with \(S \) and \(p \) is the image by the map \(\gamma \) of a maximal ideal belonging to the family \(\mathcal{B} \) of \(\mathcal{P} \)-points of \((1) \), and therefore is maximal among prime \(\mathcal{P} \)-ideals properly contained in \(M_n \); [6; 3.5].

(3) Let \(S \) converge to the \(G_\delta \)-point \(p \), and let

\[J = \{ f \in C(X) \mid Z(f) \cap S \text{ is cofinite in } S \} \]

If \(X \) is normal, or \(p \) has a compact neighborhood, or each point of \(S \) is \(G_\delta \), then the ideals of type \(\mathcal{P} \) associated with \(S \) constitute the class of minimal prime ideals of \(C(X) \) containing \(J \); [6; 3.6].

Ideals of type \(\mathcal{P} \) (and therefore also the quotient rings modulo such ideals) are obviously determined by the ultrafilter \(\mathcal{U} \) and the behaviour of continuous functions on the subspace \(S \cup \{p\} \). Whenever \(S \) converges to \(p \) this subspace is homeomorphic to \(N^* \). Calling \(\varphi \) this homeomorphism (canonically defined by \(\varphi(x) = n \) and \(\varphi(p) = \infty \), where \(S = \{ x_n | n \in N \} \)), we have:

Proposition 2 Let the sequence \(S \) converge to \(p \), and let \(\mathcal{U} \) be a nonprincipal ultrafilter on \(S \). Then \(C(X)/I_{\mathcal{U}} \cong C(N^*)/P_n \). In particular, under this assumption \(I_{\mathcal{U}} \) is real closed if \(\mathcal{U} \) is a \(P \)-point of \(\beta(S) \cap \mathbb{N} \). \(N^* \).

Proof. Put \(S' = S \cup \{p\} \)

\[P_n = \{ f \in C(S') \mid f \text{ is } Z(f) \text{ and } S \cap f \in \mathcal{U} \} \]

Obviously, it suffices to show that \(C(X)/I_{\mathcal{U}} \) is isomorphic to \(C(S')/P_n \). The map \(\psi(f/I_{\mathcal{U}}) = f(S')/P_n \) is a well-defined ring monomorphism between the preceding quotient rings. In order to verify that it is surjective, recall that \(S' \) is a compact — and therefore \(\mathcal{C} \)-embbeded — subspace of \(X \) ([3; 3.11(3)]) Then, given \(f \in C(S') \) there is \(g \in C(X) \) such that \(g(S') = f \); hence \(\psi(g/I_{\mathcal{U}}) = f/P_n \).

3.3. The one-point compactification of uncountable discrete spaces. In this section we shall denote an uncountable discrete space of arbitrary cardinality, and \(D^* \) its one-point compactification; the "point at infinity" of \(D^* \) will be denoted \(\infty \).

We carry out a study of the structure of prime ideals of \(C(D^*) \) contained in \(M_n \). We shall see that there are significant analogies with the case of \(C(N^*) \). For example, we obtain results similar to Theorem 3.1.1 and Proposition 3.1.3, and show that also in \(C(D^*) \) maximal prime \(\mathcal{P} \)-ideals coincide with the minimal prime ideals. We classify these and show that there are \(2^{2^{2^{2^1}}} \) of them (\(D = \aleph \)).

The first four statements in the following list of preliminary results can be easily proved by the reader.

(1) \(Z \in Z(D^*) \Rightarrow Z \subseteq D \text{ is finite, or } \infty \in Z \text{ and } D - Z \text{ is countable.} \)

(2) Let \(A \subseteq D^* \), \(\infty \in A \), then

\[A \text{ is open } \iff A \text{ is co-finite,} \]

\[A \subseteq G_\delta \iff A \text{ is co-finite,} \]

(3) \(f \in M_n \Rightarrow f \in Z(f) \text{ and } D - Z(f) \text{ is countable;} \)

(4) \(f \in 0_n \Rightarrow f \in Z(f) \text{ and } D - Z(f) \text{ is finite.} \)

(5) If \(P \) is a nonmaximal prime ideal of \(C(D^*) \), then \(P \subseteq M_n \) (and hence \(0_n \subseteq P \)).

(6) If \(P \) is a prime \(\mathcal{P} \)-ideal of \(C(D^*) \) such that \(0_n \subseteq P \subseteq M_n \), then there is a nonprincipal ultrafilter \(\mathcal{F} \) on \(D^* \) such that \(Z(P) = Z(D^*) \setminus \mathcal{F} \); [12; 4.14]. An ultrafilter \(\mathcal{F} \) with these properties will be called associated with \(P \). In the theorems below \(P \) will be a fixed nonmaximal prime ideal of \(C(D^*) \) and \(a \) a fixed function in \(M_n - P \). Let \(Z = Z(0) \). By (3), \(\infty \in Z \) and \(D - Z \) is countably infinite. Let \(\varphi : N \rightarrow D - Z \) be a bijection.

(7) We associate to each map \(f \in C(D^*) \) a function \(f_{\varphi} : N^* \rightarrow R \) defined as follows:

\[f_{\varphi}(n) = f(\varphi(n)) \]

\[f_{\varphi}(\infty) = f(\infty). \]
Since the topology induced by D^* on $(D-Z) \cup \{\omega\}$ makes it the one-point compactification of the countable discrete space, it follows that $f_\omega \in C(N^*)$.

(7) Conversely, given $g \in C(N^*)$, let $g^* : D^* \to R$ be the map

$$g^*(f) = \begin{cases} g(f^{-1}(d)) & \text{if } d \in D-Z \\ g(\omega) & \text{if } d = \omega. \end{cases}$$

Again, it is seen without difficulty that $g^* \in C(D^*)$ and $(g^*)_\omega = g$.

Now we define:

(5) $P_\omega = \{ f_\omega : f \in P \}$.

Lemma 1. (1) P_ω is a prime ideal of $C(N^*)$ contained in M_ω.

(2) If P is a z-ideal, so is P_ω.

(3) $P_\omega = \{ f_\omega : f \in P \}$.

(4) $f_\omega \in C(D^*)$ and $f_\omega \in P_\omega$ imply $f \in P$.

Proof. (1) This is obvious since the ring operations in $C(N^*)$ and $C(D^*)$ are defined pointwise, and P is prime.

(2) Let $h \in P_\omega$ and $g \in C(N^*)$ be such that $Z(h) = Z(g)$. Hence $h = f_\omega$ for some $f \in P$. One checks without difficulty that equality $Z(f) \cup Z = Z(g^\omega) \cup Z \omega$, i.e., $Z(f) = Z(g^\omega)$. Since $f_\omega \in P$ and P is a z-ideal, $g^\omega \in P$, and then (since $b \in P$, $g(\omega) \in P_\omega$. Hence $(g^\omega)_\omega = g \in P_\omega$.

(3) If $f_\omega \in C(N^*)$ and $f_\omega \in P_\omega$, then $(f_\omega)^*_\omega = f_\omega \in P_\omega$. Conversely, if $f_\omega \in P_\omega$, then $f = f_\omega$ for some $g \in P$. Since $g(\omega) = 0$ for $d \in Z$, this equality implies $f^*_\omega = g^\omega$; hence $f^*_\omega \in P$, and since $b \in P, f^*_\omega \in P$.

(4) We have $f_\omega = f_\omega$ for some $g \in P$. Then $g \in P$ and $(f_\omega)_\omega = (g)_\omega$. Since $f_\omega = f_\omega = 0$ on Z, the preceding equality gives $f_\omega = f_\omega$; hence $f \in P$.

Proposition 2. Let P be a nonmaximal prime ideal in $C(D^*)$. Then $C(D^*)/P \cong C(N^*)/P_\omega$.

Proof. Let $\psi : C(D^*) \to C(N^*)/P_\omega$ be defined by

$$\psi(f) = f_\omega/P_\omega.$$ Clearly ψ is a ring isomorphism. Moreover, ψ is surjective: $\psi(g^\omega) = (g^\omega)_\omega/P_\omega = g/P_\omega$ for $g \in C(N^*)$. Finally, $\ker(\psi) = P$. Let $f \in \ker(\psi)$; then $f \in P_\omega$, and by Lemma 1(2), $f \in P$. Thus, $\ker(\psi) \subseteq P$, and the reverse inclusion is clear.

Remark. The construction of the prime ideal P_ω is not independent of the choice of the function $b \in M_\omega - P$. Thus, the map $P \to P_\omega$ becomes unambiguously defined only after a choice of maps $b \in M_\omega - P$ for $P \subseteq M_\omega$ has been fixed. In Proposition 3(1) below we fix a nonmaximal prime ideal Q, a function $b \in M_\omega - Q$, and assume that the ideals P_ω are uniformly constructed from the same map b, for all $P \subseteq Q$.

Proposition 3. (1) Let Q be a fixed nonmaximal prime ideal. The map $P \to P_\omega$ is an order homomorphism of the family of prime ideals contained in Q into that of prime ideals contained in P_ω.

(2) (a) Every nonmaximal prime z-ideal P of $C(D^*)$ is minimal, and $P_\omega = P_\omega$ for some $\omega \in \mathcal{N}$ (cf. § 3.1 above).

(b) Conversely, for every P_ω there is a minimal prime ideal $J_\omega \subseteq M_\omega$ of $C(D^*)$ such that $J_\omega = P_\omega$.

(3) With the notation of (2a), if \mathcal{F} is an ultrafilter associated with P, then \mathcal{F} and \mathcal{F} are related as follows: $\mathcal{F} \subseteq \mathcal{F} \subseteq (D-Z)$.

Proof. (1) We prove that $P \subseteq P'$ if $P \subseteq P_\omega$ (where $P, P' \subseteq \mathcal{Q}$). This shows that the map $P \mapsto P_\omega$ is injective and order-preserving. Lemma 1(2) proves (a) once the implication from right to left; the other implication follows from the definition (8) of P_ω.

(2a) follows from the corresponding fact about $C(N^*)$ by (1) and Lemma 1(2).

(3) Since $Z(\mathcal{F}) = Z(\mathcal{F}) \cap \mathcal{F}$ and $Z(\mathcal{F}) = Z(D^*) \cap \mathcal{F}$, we have $Z(\mathcal{F})$.

Let now $X \in \mathcal{F}$, so that $\varphi(\mathcal{F}) \subseteq \varphi(\mathcal{F}) \subseteq (D-Z)$.

Let now J_ω be constructed as above from the ideal J and the function α. By Lemma 1(4), $a_\omega \neq a_\omega$, and hence (Lemma 1(1)) J_ω is a nonmaximal prime z-ideal of $C(N^*)$; it follows that the inclusion $P_\omega \subseteq P_\omega$ automatically implies the equality $P_\omega = J_\omega$.

(3.1) Let $f \in P_\omega$, i.e., $f \in Z(f)$ and $f \in Z(\mathcal{F}) \cap N \in \mathcal{F}$. By (3), $\varphi(Z(f) \cap N) \subseteq \mathcal{F} \cap A$. Using (7) one easily checks that $Z(f) = \varphi(Z(f) \cap N) \subseteq D^* - A$; this obviously implies $Z(f) \subseteq D^* - A$, and then $Z(f) \subseteq Z(f)$. Since J is a z-ideal, $f \in J$; hence $f \in J_\omega$.

Proposition 3. (1) and (2), shows in analogy to the case of $C(N^*)$—that each nonmaximal prime ideal of $C(D^*)$ contains exactly one minimal prime ideal, and that distinct maximal chains of prime ideals included in M_ω, meet only at M_ω (cf. 1.11). Our next result is the analog for $C(D^*)$ of Proposition 3.1.1.

Theorem 4. Let P be a nonmaximal prime ideal of $C(D^*)$, J be the unique minimal prime ideal contained in P, and \mathcal{F} be an ultrafilter on D^* associated with J. Then the following are equivalent:

(1) P is real closed;

(2) \mathcal{F} is a P-point of $\beta D = D$.

Proof. By Proposition 3.2(a), $P_\alpha = P_{\beta} \in P_{\alpha}$ for some $\alpha \in \beta N - \aleph$. Since P_{α} is a nonmaximal prime ideal in $C(D^*)$, Proposition 2, Proposition 3.1.3, Proposition 3.2(a) and 3.4 applied in order prove the following equivalences:

P is real closed <
$C(D^*) | P$ < RCR <
$C(N^*) | P$ < RCR <

P_α is real closed <
α is a P-point of $\beta N - \aleph$ <
$\forall \alpha \in \beta N - \aleph$ <
P_α is a P-point of $\beta D - D$.

COROLLARY 5. The existence of nonmaximal real closed ideals in $C(D^*)$ is independent from ZFC.

Proof. Immediate from the proof of Theorem 4 and the results mentioned in § 1.1.

6. Classifying minimal prime ideals in $C(D^*)$. The preceding results show some similarities between the order structure of the tree of prime ideals of $C(D^*)$ contained in M_{\aleph_1} and that of the corresponding tree in $C(N^*)$.

There are some important differences too. For example, while the classifying object of minimal prime ideals of $C(N^*)$ contained in M_{\aleph_1} is $\beta N - \aleph$, the classifying object of prime ideals of $C(D^*)$ is not $\beta D - D$ but a suitable quotient of it.

For $\forall \alpha \in \beta D$, let:

$\forall \alpha \equiv \forall \alpha \in \beta D$. and $\forall \alpha$ contain the same countable subsets of D.

This is an equivalence relation; each principal ultrafilter is equivalent to itself, while all ultrafilters which do not contain countable subsets of D form a single equivalence class, \aleph. Setting $P_{\alpha} = P_\alpha = \beta D | \forall \alpha = \aleph$, then βD is then embedded in P_{α}. D

LEMMA 7. The map $J \rightarrow \forall \alpha \in \beta D$, where $\forall \alpha$ is any ultrafilter associated with J, is a bijection of the family of minimal prime ideals of $C(D^*)$ contained in M_{\aleph_1} onto $\beta D - (D \cup N)$.

Proof. To begin with, note that if $\forall \alpha$, $\forall \alpha$ are nonprincipal ultrafilters on D^*:

$\forall \alpha \in \beta D \Rightarrow \forall \alpha \in \beta D$ if $\forall \alpha \cap \beta (D^*) = \forall \alpha \cap \beta (D^*)$.

This is easily derived from the equality:

$\forall \alpha \cap \beta (D^*) = \{D^* - A : A \subseteq D, \forall \alpha \subseteq N_\aleph, \forall \alpha \notin \forall \alpha \}.$

In this case, this is an easy consequence of (1), (p. 37), because $\forall \alpha$, $\forall \alpha$ are nonprincipal.

If $\forall \alpha$, $\forall \alpha$ are ultrafilters on D^* associated with J, they are nonprincipal (since $J \subseteq M_\aleph$) and $\forall \alpha \cap \beta (D^*) = \forall \alpha \cap \beta (D^*)$. It follows from (4) that the map of the statement is well defined. Using (4) from left to right we obtain that it is injective. Since $\beta (D^*)$ contains no finite set, its range is included in $\beta \aleph D - D$.

and since $J \subseteq M_{\aleph_1}$, it cannot take on the value \aleph; hence, its range is contained in $\beta \aleph D - D \cup \aleph$.

Finally, in order to show that this map is surjective, let $\forall \beta$ be a nonprincipal ultrafilter on D containing at least one countable subset (i.e., $\forall \beta \equiv \forall \alpha \in \beta D - (D \cup \aleph)$), and let us construct a prime α-ideal $J \subseteq M_{\aleph_1}$ such that $\forall \alpha \cap \beta (D^*) = \forall \alpha \cap \beta (D^*)$. It is easily seen that the set

$\forall \alpha \cap \beta (D^*) = \{D^* - A : A \subseteq D, \forall \alpha \subseteq N_\aleph, \forall \alpha \notin \forall \alpha \}$

has the finite intersection property; let $\forall \alpha$ be an ultrafilter containing $\forall \alpha$, and let J be the unique prime α-ideal of $C(D^*)$ such that $Z(J) = \forall \beta \cap \beta (D^*)$ (cf. [9; 11; 14F]); clearly $Z(J) = \{D^* - A : A \subseteq D, \forall \alpha \subseteq N_\aleph, \forall \alpha \notin \forall \alpha \}$. Now (3) of p. 17 implies at once $J \subseteq M_{\aleph_1}$, and since $\forall \alpha$ contains at least one countable set, it follows that $J \subseteq M_{\aleph_1}$. Finally, in order to check that $\forall \alpha \cap \beta (D^*) = \forall \alpha$, notice that $\forall \beta \cap \beta (D^*) = Z(J) = \forall \alpha \cap \beta (D^*)$, $\forall \beta \cap \beta (D^*) = \forall \alpha$, and apply (1), (1).

Dualizing, the map

$J \rightarrow \{D^* - A : A \subseteq D, \forall \alpha \subseteq N_\aleph, \forall \alpha \notin \forall \alpha \}$

establishes a classification of the minimal prime ideals of $C(D^*)$ contained in M_{\aleph_1} by the set of nonprincipal maximal ideals of the lattice (without 1) of countably subsets of D, which will be denoted by $L_\aleph(D)$. This shows at once that the cardinality of the set of minimal prime ideals of $C(D^*)$ contained in M_{\aleph_1} is at most $2^{|D|\aleph_1}$, where $D = \aleph$. We shall now show:

PROPOSITION 8. There are exactly $2^{|D|\aleph_1}$ minimal prime ideals of $C(D^*)$ contained in M_{\aleph_1} (where $D = \aleph$).

Proof. Put $D = \aleph$. Let us call a set $\forall \beta \subseteq L_\aleph(D)$ independent if whenever $A_1, \ldots, A_n \subseteq D$, and B_1, \ldots, B_n are pairwise distinct members of $\forall \beta$, $A_1 \cap A_2 \cap \ldots \cap (A_n - B_n) = \emptyset$.

Each subset $\forall \beta$ of an independent set $\forall \beta \subseteq L_\aleph(D)$ gives rise to an ultrafilter $\forall \beta$ on \aleph such that the set $\forall \beta \cup \{\{x - B, \forall \beta \subseteq \forall \beta \} \}$ has the finite intersection property. Furthermore, for distinct $\forall \beta$'s the ultrafilters obtained in this way are pairwise nonequivalent modulo \emptyset (the countable members of $\forall \beta$ are those of $\forall \beta$ and, possibly, some members of $L_\aleph(D) - \forall \beta$).

In view of Lemma 7, in order to prove the theorem it suffices to show that there is an independent set $\forall \beta$ of cardinality $|D|\aleph_1$. We shall prove this by a variant of a technique due to Ketonen (cf. Kunen [9]).

Let $\forall \beta(x, y) = \{f \in L_\aleph(D) : \forall \beta \subseteq L_\aleph(D) \}$.

A set $\forall \beta \subseteq \forall \beta(x, y)$ is independent if given distinct $f_1, \ldots, f_\aleph \in \forall \beta$ and arbitrary $A_1, \ldots, A_\aleph, \forall \beta \subseteq L_\aleph(D)$, we have $\forall \beta \notin \forall \beta(x, y)$. Observe that an independent set $\forall \beta \subseteq \forall \beta(x, y)$ gives rise to an independent subset $\forall \beta \subseteq L_\aleph(D)$. Indeed, it suffices to put $\forall \beta = \{f - f_1 : f \in \forall \beta \}$, where I is any set such that $\emptyset \notin \forall \beta - L_\aleph(D)$. Moreover, the correspondence $f_1 \rightarrow f - f_1$ is injective; for considering $i_0 \in I$, $j_0 \notin I$, $j_0 \neq 0$, and distinct $f_1, f_2 \in \forall \beta$ we have $\emptyset \notin \forall \beta(x, y)$.
\(\bigvee_{i=1}^{n} [a_i < x_i] \in \mathcal{F} \downarrow [1] - x_i \). The theorem follows, then, from the existence of an independent \(\mathcal{F} \subseteq \mathcal{M} \) of cardinality \(\aleph_0 \), which we now prove.

Let \(\{ (s_i, x_i) \mid x_i < \alpha \} \) enumerate the set \(\{ (s, r) \mid s \in \mathcal{P}_3(\alpha), r \in [\mathcal{N}_0 - 0] \} \). For \(A \in \mathcal{L}_0(\alpha) \) let \(f_A : \alpha \to \mathcal{N}_0 \) be defined by:

- \(f_A(\alpha-1) = 0 \)
- \(f_A(\alpha) = r_A \cap s_A \) for \(\alpha \in A \).

Set \(\mathcal{F} = \{ f_A \mid A \in \mathcal{L}_0(\alpha) \} \). If \(A_1, \ldots, A_n \in \mathcal{L}_0(\alpha) \) are pairwise distinct and \(i_1, \ldots, i_n \geq 1 \), then for \(1 \leq k < l \leq n \), let \(s_{kl} = (A_k - A_l) \cup (A_l - A_k) \); put \(s = \{ s_{kl} \mid 1 \leq k < l \leq n \} \). Clearly \(A_k \cap s = r_A \cap s \) for \(k < l \). The correspondence \(r_A \cap s = i \) is then well defined and it can be extended to a map in \([\mathcal{N}_0 - 0] \). If \(s = s, r = r \), we have \(\alpha \in \bigcap f_A[1] \).

3.4. Measure ultrafilters. In the present section we will discuss some prime \(z \)-ideals in \(C(\mathbb{R}, R) \), where \(R^{**} \) is the one-point compactification of \(R^* \); the non-negative reals; \(R^{**} \) is, of course, homeomorphic to \([0, 1] \).

It is clear that \(S(R^{**}) \) contains many ideals of type \(E \); there are, in fact, \(2^{2^{\mathbb{N}}} \) such ideals associated with each convergent sequence in \(R^{**} \).

We now want to consider ideals which are in some sense at the opposite extreme. A filter of zero-sets (= closed sets) in \(R^* \) will be called a measure filter iff all of its elements are of infinite Lebesgue measure. In particular, a measure \(z \)-ultrafilter on \(R^* \) contains all closed sets whose complements are of finite measure (and conversely). By abuse of notation we shall identify here \(z \)-ultrafilters \(\mathfrak{U} \) of \(R^* \) with the corresponding maximal ideals \(M \) of \(C(R) \) such that \(Z(M) = \mathfrak{U} \).

Applying Corollary 3.3.3 we obtain a characterization of those \(z \)-ultrafilters \(\mathfrak{U} \) on \(R^* \) such that the corresponding prime \(z \)-ideal \(\gamma(\mathfrak{U}) \) of \(C(R^{**}) \) is real closed.

Proposition 1. Let \(\mathfrak{U} \) be a \(z \)-ultrafilter on \(R^* \). Then \(\gamma(\mathfrak{U}) \) is defined and the following are equivalent:

1. \(\gamma(\mathfrak{U}) \) is a real closed ideal of \(C(R^{**}) \).
2. \(\mathfrak{U} \) is a \(P(\alpha) \)-filter.

Proof. That \(\gamma(\mathfrak{U}) \) is defined follows from the fact that the map \(\phi \) is defined on \(\mathbb{B} R^* \), \([3; 6.5][0]) \). The rest follows from the equivalence between (1) and (3) of Corollary 2.3.3.

Our goal in the rest of this section is to prove in a suitable extension of \(ZFC \) that measure \(P(\alpha) \)-filters do exist. As in the theorem of existence of \(P \)-points in \(\mathbb{B} N \), this can be done under the additional assumption of Martin's axiom.

Theorem 2. Assuming \(MA \), then \(P(\alpha) \)-filters exist.

Proof. We will show that it is possible to associate to each continuous function \(f : R^* \to [0, 1] \) a pair \(p(f) = \langle f', r' \rangle \) consisting of:

1. a strictly increasing function \(f' : N \to N \),
2. a real number \(r' \),

and satisfying a further condition (c) which we now describe.

For \(x \in R^* \), set \(i(x) = \sup \{ n \in N \mid |f(x) - r'| < 1/n \} \). Then \(i(x) \in N \cup \{ \infty \} \). Let \(X(f) = \{ x \in R^* \mid i(x) \in N \wedge x < f(i(x) + 1) \} \cup f'^{-1}[r'] \).

Since \(f \) is continuous, the set \(X(f) \) is measurable.

The condition on \(p(f) \) is then:

1. For all \(k \geq 1 \) and all continuous \(f_1, \ldots, f_k : R^* \to [0, 1] \), the set \(X(f) \cap \bigcap_{i=1}^{k} X(f_i) \) has infinite measure.

Notice that we will then have:

\[
\lim_{n \to \infty} f(i(x)) = r' \text{ is } \mathbb{N}.
\]

Indeed, for given \(n \geq 1 \), if \(x \in X(f), \ x > f'(n), \) then \(n < i(x) \), and hence \(|f(x) - r'| < 1/n \).

If \(C \) is a closed set such that \(m(R^* - C) < \infty \) (where \(m \) denotes the Lebesgue measure), then from \(m(X(f)) = m(X(f) - C) + m(X(f) \cap C) \) and (c) we conclude that \(X(f) \cap C \) has infinite measure. It follows that the family:

\[
\{ X(f) : f : R^* \to [0, 1], \text{continuous} \} \cup \{ C \mid C \subset R^*, \ m(R^* - C) < \infty \}
\]

has the finite intersection property, and any \(z \)-filter containing it is a measure \(P(\alpha) \)-filter.

It remains then to construct a suitable map \(p \). This is done inductively, using some list \(\langle f : a < \mathbb{N} \rangle \) of all continuous functions from \(R^* \) to \([0, 1]\). In order to carry out this induction we need only prove the following:

Lemma 3. Let \(F \) be a family of fewer than \(2^{2^{\mathbb{N}}} \) continuous functions from \(R^* \) to \([0, 1]\), and let \(f : R^* \to [0, 1] \) be another continuous function. Assume that a map \(p : F \to \mathbb{N} \times [0, 1] \) has been defined satisfying conditions (a)-(c) above for \(f_1, \ldots, f_k \in F \). Then there is a pair \((f', r') \) such that the extension of \(p \) by \(f' \), \(r' \) defines a map \(p' : F \cup \{ f \} \to \mathbb{N} \times [0, 1] \) satisfying conditions (a)-(c) for \(f_1, \ldots, f_k \in F \cup \{ f \} \).

Proof. Let \(x, n \) be as specified. We will define a partially ordered set \(P \) whose elements are, intuitively speaking, finite approximations to the desired pair \((f', r') \).

Let \(P \) be the set of all pairs \((x, n) \) such that \(x = s = \emptyset \) or there is \(n \geq 1 \) such that:

1. \(x = \{ 1, \ldots, n \} \to N \) is a strictly increasing function;
2. \(n = \{ 1, \ldots, n \} \to \{ 0, 1 \} \);
3. \(x \in \mathbb{N} \), then for all \(k \geq 1 \) and all continuous \(f_1, \ldots, f_k \in F \), the set \(X(f) \cap \bigcap_{i=1}^{k} X(f_i) \) has infinite measure. We call \(n \) the length of \((x, n) \); \((x, n) \) has length \(0 \); note setting \(r_0 = 0, n = 0 \); condition (ii) is verified by \((0, 0)\). The ordering of \(P \) is that of restriction on both coordinates: \((1, n) < (2, x) \) if length \((x, n) = n < \text{length} \) \((2, e)\) and

\[
t = x, \quad n = \delta.
\]

Since \(P \) is countable, it satisfies the c.c.c.
Let D_δ be the set of elements of P of length at least n. We claim:

(1) D_δ is dense in P.

This is obvious for $n = 0$, and if $(s, \delta) \in P$ is of length $n \geq 0$ we obtain an extension (s', δ') of (s, δ) of length $n + 1$ by defining $s'(n + 1)$ arbitrarily and checking at once that one of the two possible values of $\delta'(n + 1)$ makes condition (iii) hold. The result follows by induction on n.

Now associate to each $(s, \delta) \in P$ a set $X(s, \delta)$ as follows. For $x \in \mathbb{R}^s$ define:

$$f(s, \delta, x) = \sup \left\{ k \in \mathbb{N} \cup \{ \omega \} : \sup \left\{ \left| f(x) - r \right| : r_k \leq r < r_{k + 1} + \frac{1}{2^k} \right\} \leq \frac{1}{h} \right\}. $$

Set:

$$X(s, \delta) = \{ x \in X(s, \delta, 0) \} \cup \{ x \in X(s, \delta, n) : i(x, s, \delta) > n \},$$

where $n = \text{length} (s, \delta)$.

For $g_1, \ldots, g_k \in F$ and $n \in \mathbb{N}$, define

$$D_{k, n} = \{ (n, \delta) \in D_\delta : m(X(\delta) \cap X(n, \delta)) \geq \delta \}. $$

We now claim:

(2) $D_{k, n}$ is dense in P.

Fix $(s, \delta) \in P$. Fix an extension $s' \geq \delta$ of length $n + 1$ so that condition (iii) above is satisfied; in particular, $X(s', \delta) \cap f^{-1}[r_k, r_{k + 1} + 1 + 2^{n + 1}]$ has infinite measure. Choose an interval I so that

$$m(X(s', \delta)) \cap f^{-1}[r_k, r_{k + 1} + 1 + 2^{n + 1}] \cap \{ f \in X(s', \delta) \} \geq \delta.$$

Let now s' be an extension of s of length $n + 1$ so that $s'(n + 1) \in T_j$. We claim that $(s', \delta) \in D_{k, n}$. This clearly follows from:

$$f^{-1}[r_k, r_{k + 1} + 1 + 2^{n + 1}] \cap \{ f \in X(s', \delta) \} \geq \delta.$$

In order to prove this, fix $x \in \mathbb{N}$ satisfying $f(x) \in [r_i, r_{i + 1} + 1 + 2^{n + 1}]$. Then $i(x, s', \delta) \geq 2^{n + 1} + n + 1$ and $x \in X(s', \delta)$, as desired.

Now apply Martin’s Axiom to obtain a \mathcal{P}-generic subset G of P with respect to

$$G = \{ D_{k, n} : n \in \mathbb{N} \} \cup \{ D_{k, n} : l \in \mathbb{N}, \ n \leq l, \ \| \delta \| \leq \mathbb{N}, \ \delta \in F \}.$$

Since the elements of G are compatible and G meets each $D_{k, n}$, there are unique functions $f', g \in \mathcal{P}$ such that

$$G = \{ (f', n, g, n) : n \geq 1 \}.$$

We now extend the function $f : F \to \mathbb{N} \times [0, 1]$ by setting:

$$p'(f) = \left< f', r_p \right>$$

with $r_p = \sum_{i \leq n} 2^i p_i$. It remains to be seen that condition (c) is satisfied by p', or in other words that for $g_1, \ldots, g_k \in F$, $n \in \mathbb{N}$ arbitrary, we have: $m(X(\delta) \cap X(f')) \geq \delta$.

Consider accordingly an integer n such that $(f' \upharpoonright n, \delta, n) \in D_{k, n}$. Let $s' = f' \upharpoonright n$, $(s, \delta) = \delta \upharpoonright n$. It suffices to prove that $X(s, \delta) \subseteq X(f')$. Fix $x \in X(s, \delta)$; then there are two cases to consider:

- Case 1. $i(x, s, \delta) < n$. Since f' is increasing,$$
\sup \left\{ \left| f(x) - r \right| : r_k \leq r < r_{k + 1} + 1 + 2^k \right\} \geq \left| f(x) - r_p \right|,
we have $i(x, s, \delta) \leq l(f'(x))$; since f' is increasing,$$i(x, s, \delta) + 1 \leq l(f'(x) + 1);$$

hence $x \in X(f')$.

- Case 2. $i(x, s, \delta) \geq n$. Since $i(x, s, \delta) \leq l(f'(x))$, it follows that$$i(x, s, \delta) + 1 \leq l(f'(x));$$so $x \in X(f')$, hence again $x \in X(f')$.

This completes the proof of the lemma, and hence of Theorem 2. \blacksquare

References

MATHEMATICS DEPARTMENT
BELL CENTER FOR THE MATHEMATICAL SCIENCES
RUTGERS UNIVERSITY
NEW BRUNSWICK, N.J. 08903
USA

V.H.R. DE MATHÉMATIQUES
TOUR 46–48, 6 IMPAS
UNIVERSITÉ PARIS 7
ZONE ENSEIGNEMENTS PARIS 7
RECEIVED 17 SEPTEMBER 1984