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Note 1. Theorems 1, 2 and 3 are also valid changing co(Z) by ”(J), O<p<co,
with the same proofs.

Note 2. In [1] the construction of Fleissner and Kunen [3] and the method
of “coordinatés” are used also to obtain dense Baire subspaces of !*(w,) whose
product. is not a Baire space, but unfortunately the example given there does not
satisfy the required properties.

. Note 3. Independently of us R. Pol and J. van Mill have obtained normed
Baire spaces with product non-Baire. They have proven in [7] that in a F-space
of weight ¥, there are dense Baire subspaces such that their product is not Baire.
The reasoning used in [7] is based on a general version of the construction of Fleissner
and Kunen [3] given in [6].

OPEN QUESTION. Let E be a nonseparable Fréchet space. Does there exists
a dense Baire subspace F of E such that Fx F is not Baire?
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Extensions of functions from products
with compact or metric factors

by

Ama Wasko (Warszawa)

Abstract. This paper is a continuation of an earlier paper [3]. A subspace 4 of a space X is
ma-embedded in X, where & denotes a non-empty class of spaces, if for every Z ¢ % and for every
continuous function f: 4 x Z->I there exists an extension of f over XxZ. We shall prove that
% 4ue-embedding is equivalent to 7.4 x ¢-embedding, where :4 w % denotes the class consisting
of all metric and all compact spaces, and . x € — the class of products of a metric and a compact
space. We shall also give an example which shows that 7,4 x »-embedding does not imply 7p-em-
bedding where & denotes the class of all paracompact p-spaces.

Throughout this paper by a topological space we mean a completely regular
space, by a function or an extension — a continuous functien or a continuous
extension. Symbols A, ¥, # x¥, and 2 denote the classes of metric spaces,
compact spaces, products of a metric and a compact space, and paracompact
p-spaces, respectively. By P we shall denote the set of all irrational numbers and
by Q — the set of all rational numbers in the unit interval I,

The author is much indebted to T. C. Przymusinski for valuable remarks
concerning this paper. '

Let us recall (cf. [2]) that a subspace A of a space X is n,-embedded in X,
where & denotes a non-empty class of spaces, if for every Ze % and for every
function f: 4 x Z — I there exists an extension of f over X x Z. Obviously, if & =%’
then 7g.~embedding implies 74 -embedding. Thus n,-embedding implies 7 4 ¢-em-
bedding, which implies 74 -embedding. For dense subsets of topological spaces
the inverse implications are also true: T. C. Przymusiriski showed in [2] that for
a dense subset of a topological space 7,-embedding is equivalent to 74 ¢ ~em-
bedding. It turns out that in the case of closed subsets this theorem does not hold.
We shall give an example of a space Y and its closed subspace X which is
7 4.,z-embedded but is not n,-embedded in ¥. We shall also prove that 7 4, ¢-em-
bedding is equivalent to 7, x¢-embedding; thus our example will show that
T uxe-embedding does not imply 7,-embedding. These results will also previde
a negative answer to the problem raised by K. Morita in [1], whether every Cech-
complete, paracompact space is absolutely P-embeddable (a space X is absolutely

6 — Fundamenta Mathematicae CXXV. 1


GUEST


82 A. Wagko

P-embeddable if, whenever X is P-embedded in a space ¥, X'xZ is P-embedded
in YxZ for any space Z).

THEOREM. If A is 7 4, -embedded in X, then A is % 4 xq-embedded in X,

Proof. It suffices to show that 4 xM is P-embedded in X'xM for every
metric space M. Naturally, 4x M is C-embedded in X'x M, Let % = {U,: se S}
be a locally finite cozero covering of 4 x M. Find cozero subsets Uy in X x M so
that U; n (4% M) = U,. There exist cozero subsets U,, and zero subsets Fo
of AxM such that U, ,_,cF,, 1<U,,cU, and U U,,, = U,. Let K, be a zero

subset of A4 x M such that U Fy 1oK@ U Us,n and let % be a o-locally finite

base of M; for each Be .@ ohoose a point z,, e B. For every (s, n, B) define U, ,
= {xed: {x,z;) e U,,} and for every (n, B) let K, 5= {xed: {x, z,) EKn}
The family {U,,,,, B}SES is a locally finite cozero family in 4 and K, zc U Us s

Since K,y is a zero set, there exists a locally finite family {#¥;,, 5};es of c‘o7ero sub-
sets of X such that W, ,n AcU,,p and K,zc U Wi 5. Define %

{( s XB) AUt seS, n<w, Be B} Obviously, ’%f/ 1s a o-locally finite
in Xx M family of cozero sets and #" | (4 xM)-<4%. It remains to show that
AxMe YW Let {x,z) e Ax M. Choose all such sy, ..., 5, that (x, z) & U,, and
let 2 be such that {x, z) € IntK,. There is a B containing z and such that {x}x B

«Intk, n {') U\ U{U,: 5 # 5} Thus, x e K, 5 and x € W, ,,  for some s¢ §.
i=1

Consequently, x€ W, p3<U,,p and {(x, zB> € U,,,. This implies, that s = 5, for
some i<k. Thus (x,z) € (W, , zxB)n UY, wh1ch completes the proof. B
Remark. The above theorem actually proves that if 4x M is C-embedded
in XxM and AxC is C-embedded in X C for a metric M and a compact C,
then AxMxC is C-embedded in XxMxC. It is a natural question whether
the assumption that 4x M < X'x M can be relaxed to 4 x M = X'x M, for a non-

discrete M. In other Words Does 4xM & X% M imply AxM < XxM for
a non-discrete M?

EXAMPLE. 7y, §-embedding does not imply 7gp-embedding.

Proof. According to the above theorem, it suffices to give an example of
a space Y and its closed subset X which is 7, 4-embedded but js not T a-embedded.

Let us represent the interval I as the union of two disjoint sets B’ and C’ such
that [B'| = |C'| = ¢ and every compact space contained either in B’ or in C'is
countable. Let B = B\Q and C = C'\Q. For each g & ON\{0} choose a sequence
{Pyn}nen of points of B converging to g, and open iatervals [, , with rational end-
points such that gel,,, p¢l,, and the family {q,,,x{pq ,,}: geQ, nelN}is
discrete in I:\A4. ‘ '

Let us generate a topology on Z = (Bu C)xI=PxJ by declaring:that
the points of the form (&, 0), where b € B, have neighbourhoods as in the Nie-
mytzki plane and all remaining points have usual Euchdean nelghbourhoods
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Define ¥ ='(Bu C)xIxB<l?, T, , = {(a,0;p,,p € Y:-ael,} and 4
= {{b,0,b) e Y: be B}. Let us generate the topology on .Y by declarmg that:

"(1) The points-'of Y\(4 U-U{T,,: geQ;, neN}) have usual Euchdean
nelghbourhoods,

(2) Neighbourhoods U, of the .point <b,0, b) eAz:Y are of the form U,

= ¥, U W,, where V, is 4 neighbourhood of the point (b 0 b) in the product
topology on Z xB and W, is a neighbourhood of the set -

(Vs 0 [(B v C)x {0} x BN, 0, B)}

in the usual Euclldean topology on Y; :

(3) Intervals T, have the usual topology and they are open and closed in Y.

In the sequel we shall denote the closure, the interior and the boundary of
a set in the above topologies on X or Y by cl, int and Fr respectlvely, while the
closure, the interior and the boundary of a set in the usual Euclidean topology
shall be denoted by cl”, int™ and Fr™, respectively.

First we shall show .that X is x,-embedded in Y. Let M e # and let
fi XxM —~1I be.a continuous function. A function F: YxM — I such that
FH0)cF~(0) and f~Y{(1) = F~*(1) will be constructed asin the proof of Urysohn’s
lemma. For every rational g € I we shall define an open set Uj= Yx M and a closed
set Fyc YX M such that f~1(0)cF,, fT'()= ¥ x M\U;, olU,cF, and if g<g¢’
then F,cU,. Then we shall define the function F by the formula

inf{g: ¢y, myeU} for (y,myeU, '
F = g .
0. m {1 Cfor (ymyd Ui,

Let us arrange all rational numbers in the interval (0,1) into-an jhﬁnite sequence
93, 44, ... and let g; = 0, g, = 1. Let us choose the numbers r, €I and 5, € such
that for ne N r,<s, and if g,<g, then s,<r,.

Let % = |) %, be a o-discrete base in M ahd let ¥ be a countable base in .
neN
For Ge % and ae Bu C define

{[G, 6 (BU O)x {0} x(GnB)cX: G,e9,.aeG,} for ae CU(B\G),

{[{a} x {0} x (G n B)] LU W,: W, is a neighbourhood
of the set {a} x{0}x(G N B) in X and W,
={{x,0,y): (y22x—a,y>—2x+3a) or
(y<2x—a, y< =2x—3a)}}

For Ue %, Ge¥% and ne N define

Zv,g,, = {aeB U C: there exists D,e 9, ¢ such that for every xeD and

for every m e U the inequality f(x, m)<s, holds}, ;
A% 6w ={aeBu C: there exists D, €%, such that for every xe D, and

for every m e U the inequality f(x, m)>r, holds},
Ao,G,n =5 U{pa: aez?],q,y}i »
Al.G.n‘ =‘U{Dn: a E;{:J,‘G,n} .

-@a,a =

for aeBnG.

B>
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Let us observe that if x € c"4y, 6 ,\NU{T,,: ¢€ O, ne N} then every me clU
satisfies f(x, m)<s, and if x € cl'”A},‘G,,,\U {Tq,,,: ge Q, ne N} then every me ol
satisfies f(x, m)>r,. It follows that for Gy, G, €% and U, U, e% such that
clU; nclU, # & we have

* 01"'/431,61,7. N 1Ay, 6ymE U{Tyn: 9€ 0, neN}.

Let us arrange the elements of the set {(G,n): Ge ¥, ne N } into a sequence
{Gy, 1), (G, ny), ... We shall construct inductively the sets K X and K}, such
that U{df,¢,,xU: Ue,}cint"k{, for je{0,1} and oK}, nol"K}, = &
for i, le N.

We shall omit the first step in our inductive construction since it is similar
to the following ones.

Assume that for /<i the sets X7, have been already defined. For Ue %, and
je{0,1} put

REG,={(a,t,bye ¥: {a,0,b) cintydfg,, and t<1/i},
B3 = U {IB<, 1/iy, 1/i} 0 {6, 0)}1 % (G; 1 B): <b, 0,b) € 4, G NIt AD 6,0}
Riin=Ril, o RE,,
Ri, = U{RE,.xU: Ue Uy
A, = U{dd 6,,xU: Ue ux,} .

Let us observe that the sets K, arc open in ¥ and that clfRj,,n X
= clf 4} g,n- At the same time from (%) and from the fact that the families Uy,
are discrete it follows ‘that

o AP, 0 ol" 4], [(U{Ty: g€ Q, ne N x MIN(AS, U 43) .

Consequently,

WuaKin O K 0 XX MY (U {T, 0 g€ Q, ne NY)x MNERS, U RL).

It follows that
i ]
0 ‘
Ap,cK), = Kg,,\jL_—chl"'K},,, and  A},cK}, = K,l,,,\jU lcl"‘K(}‘,,.
Moreover, the sets K{, and Kj, are open. Putting

:vnyg" Y [fnl([o’sn)) n U{T;l,n: ‘Le Q: ne N}]

and

K; zlyjK},n v [f‘l(( 1]) N U{ it 9€ 0, n EN}]
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we_obtain

—1([0’ Sn))c 191A§]’" Y [fﬂ([o’ Sn)) a} U{Tq.n: q€ Q, ne N}JcKy = intk?,

o0

F N, 1) U LU (0 1) 0 U{T,00 g€ 0, ne N)]ek? = intK?

and KN K} = @.

Now, we shall construct inductively the sets U,,= U, and F, = F,. Put
U =@, F,=f"'0), U, = YxM\f~i(Q1), F, = YxM

Assume that the sets U; and Fi have been already defined for i<n and that
they satisfy:

@ fOFy, f ) (Fx MND;;

(b) clU;cFy;

(© if g;<q; then F;cUj;

@ f7H0, s) Ui 0 X x M)<F; 0 (X x M)=f (0, r}]).

Let n'<n and n"<n be such that g, = max{g;: i<n and ¢;,<g,} and g¢,.
= min{g;: i<n and g;>gq,}. The sets F,\(XxM) and YxM\[U,, U (Xx M)]
are disjoint and closed in (¥\X)xM. The topology on Y\X coincides with the
usual Buclidean topology. Thus the product (¥NX)x M is metrizable and there
exist disjoint sets Wi and W;, containing F,\(X x M) and (¥x M)\[U,\(X x M)]
respectively, which are open in (¥NX)x M dnd therefore open in ¥'x M. We shall
show that there exist disjoint sets W; and W, open in ¥x M such that F,.\(X x M)
c W, and (XxM)\F, c W, Let us generatte a mew topology on ¥~
= (Y M)\[F,, n (X' x M)]. The neighbourhoods of the point {x, m) € (X x M)\F,.
are of the form UNF,., where U is a neighbourhood of {x, m) in the metric topology
on YxM. All other points have neighbourhoods as in the product topology on
Yx M. Let us observe that for the latter points the topology on ¥'x M coincides
with the metric topology. The space Y’ is metrizable and the sets F,.\(X x M)
and (X x M\F, are closed in Y’. Thus there exist required sets W, and W, that
are open in Y. The topology of Y’ is coarser than the subspace topology induced
by the topology of Y'x M. Thus the sets W{ and W, are open in ¥x M.

Similarly, one can verify that there exist disjoint sets W, and W,, both open
in ¥'x M, such that (¥x M)NU,NX x M)W, and (X x M) n U,.< W,. Define

W1 Wi W, Wy=WinWy, U=Wsn KU W,
F, = (Yx MN\[(W; n intKy) v W,].
One can easily check that the sets U, and F, satisfy conditions (a)-(d). The con-

struction of the sets' U, and F,, and the proof of the fact that X is = 4-embedded
in ¥ are complete. : -
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Now we are going to show that X is mg-embedded in Y. Let # = {Uses
be a locally finite cover of X consisting of functionally open sets and let §’
={seS: U,nd # @} We shall show that [S'|<R,. For seS’ put B,
={beB: (b,0,byeU,} and ‘choose b, e B, and n,€ N such that UARS {0}><
x (by—1/ng, b+ 1/nc U,

‘Define S, = {se8': n,;zn}. If the inequality |’ >N, held, there would exist
an neN such that |S;|>¥,. Thus, there would exist an aeB u C such that
aecl({b € B: se S;\{a}) and each neighbourhood of {a, 0, by, where b is a point
from (a—1/n, @) n B, would intersect infinitely many sets Uy, which contladlcts
the fact that the coVer % is locally” ﬁmte

- As we-have shown, the family %’ = {Uy: se.8'} U { U Uv} is a countable,

locally finite, functionally open cover of the space X. Thc set X is n_4-embedded
in ¥, so X is also C-embedded in Y. Thus there exists.a functionally open, locally
finite cover ¥~ = {V;: se S’} u {V} of ¥ such that ¥, n XcU, and ¥V n X<
cU{U;: seS\S’}. The set Y\V is functionally closed and the set {J ¥, is

568"
functionally open in,¥. Moreover, YNV« | ¥,. Thus there exists a functionally

838

open set Wc: Y such that WU VieWedWeV. Since Ve Y54 is metrizable

seS’
and Vn X is functlonally closed in ¥, there ex1sts a locally finite, functionally
open cover ¥ = {V,: seS\S} of ¥ such that ¥,n X< U, n V. The family
V= {V,: seS} {V. 0 W:s&S\S'} is a locally finite functionally open cover
of the space Y such that ¥ P X<%. The proof that X is nq-embedded in Yis
complete '
Now, we' shall prove that X is not ng-embedded in Y Let

4= {<pq',,.,'q, n>: qe‘Q, neN}e:Bx(QxN)chﬁ(QxN),

where Q is equipped w1th the discrete topology, and let Z = clpx gigumd =B X
X B(Q'xN). We shall define a function f: X'x4 ~ {0, 1} which is extendable to
bE XxzZ~{0; 1}, but not to F: ¥YxZ — I. Let

i x¢T,,,

if xeTy,.

‘ ) ‘ “f(x: pq;mﬂ: n) = {I,

Flrst we shall show that f is extendable to J: X xZ -+ {0, 1} namely that
CIXxBxﬂ(QxN)f 10) A el pupigumy (1) = . Let xo € X and let (b, z,) € Z\A,
Then z, € B(Q X N)N(Q x N). We shall consider the following, two cases: xoe€ 4
and o, ¢Aa.

I xo = (b, 0, bo) €4, put Cy = {{g,n): {by, 0 s Pany € Tguh, and Cy =
{{a; w>:<bs, 0; ) €T,,,}. Then the fact that ConCy = @ implies the existence
of 2 neighbourhood U of. the point z, in B(Qx N) such that either Un Cy = @
or Un C; = . Assume that U n Co = @. Let ¥’ be such a neighbourhood of
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the set {bo} x {0} x (B\{bo}) in X that if {b,0, p, > €T,, then
[(B U C)x{0} x {11 A VT,

and if (bo, 0, 14> & Ty, then V- Ty, = @ (such a neighbourhood exists, because
the family {T,,: ¢ Q, ne N} is discrete in I*\A). Then ¥V = V" U {{b, 0, B>}
is a neighbourhood of x; in X and ¥xBxU is a neighbourhood of (xo, 2o, b)
in XxBxp(QxN) disjoint from £~1(0).

If xy ¢ 4 there exists a neighbourhood U of the point x, in X which intersects
at most one interval T, ,,. Then UxBx [B(Qx N)\{(gq, nop}] is a neighbour-
hood of {xy, 2o, by disjoint from £~*(1).

We have shown that clyy pxpgxmS " 0) N Clx x pxpigxmf (1) = . We have
to verify that there does not exist any extension F: ¥'xZ - I of f. We shall prove
that there exist no disjoint sets Uy, U;, open in ¥'xZ and containing f~1(0) and

ST(1) respectively. Assume the contrary. Then for each be B and ze B(Qx N)

such that (b, z) e Z, there exist basic neighbourhoods ¥, Uand W of  in B, of z in
B(QxN) and of (b,0,b) in Y respectively, satisfying Wx[(VxU) n Z]c U,
or Wx[(VxU)nZ]cU,.

Since for every be B the set Z n [{b} x f(Q x N)] is compact, there exists
a neighbourhood ¥, of b in B and a neighbourhood W, of {b, 0, b) in ¥ such that
for every ze B(QxN) either W,x[(V,x{z}) nZ]1=U, or W, x[(V,x{z}) n Z]
< U,. The set B is not a first category set. Thus there exist: a set B,—B dense in
some set U open in I, a set ¥ open in B, and an integer », such that for each b € B,
we have ¥, = V and W, ,x V< W,, where W, , is a disc of radius 1/n tangent to
Ix{0} at b, 0).

Take g€ Q n U and m e N such that p, ,, € Vand U1, ,, and take by, b, € B
such that by e (U N Bo)\Iy,,, byeUn Byn 1, and |by~b;|<1/n. Then W, , 0
O Wy,,, # B, and thus there exist y € (Wyy, 5 N Way,n) X {Pg,n} and

W =LY, Pgms 9> My € Wi X VXV x{{g, m)}) N Wy wx VX Vx{{q,m)}).

At the same time wo = (by, 0, Pgm> Paym» 4> My € Wo = Wy uX Vx V'x{{q, m},
Wi = (b1, 0, Pams Dgyms 4 M) € Wy = Wy o x VxVx{{q, m}, JOwo) = flw) = 0
and f(w,) = f(w,) = 1. Since the sets W, n (¥ xZ) and W, n (Y x Z) are contained
in U, or in Uy, we have Wy, n (¥YxZ)c Uy and Wy 0 (YxZ)cU,. Thuswe Wy n
N (YXZ)n WU, n Uy = & which is a contradiction. B

Remark 1. This example together with the theorem implies that not every
closed subset of a paracompact p-space is m-embedded (see [3], Example 1.7).

Remark 2. The above example actually proves that 7, .,-embedding does
not imply 7,-embedding, where " denotes the class of all Cech-complete Lindelsf
spaces, Thus, the example together with the theorem implies that Cech-complete
Lindelf space need not be absolutely P-embeddable and consequently it answers
in the negative problem raised by K. Morita in [1].
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A correction of two papers concerning Hilbert
manifolds

by

H. Toruiczyk (Warszawa)

In [8] the author has claimed the following result: if X is a complete separable
ANR and there is a Z-set X in X such that X\K is a manifold modelled on the Hil-
bert space [, then X is a Hilbert manifold itself. This result is false as will be seen
from an example due to P. Bowers and J. Walsh and presented in §A. The author
would like to express his sincere thanks to his colleagues from the University of
Tennessee, and particularly to M. Bestvina, P. Bowers and J. Walsh, for referring
this example to him.

The purpose of this corrxgendum is to prove in §B a modified version of the
result claimed in [8] and to introduce in §C necessary changes in another author’s
paper [9] where that result has been used as a technical tool in establishing a charac-
terization of /,-manifolds. In the appendix we include a version of Bing’s shrinking
criterion which allows to consider in §B certain manlfalds modelled on spaces
different from I, as is done in [8].

All the unexplained notions have the meaning of [8] or of [9]. Function spaces
are considered in the limitation topology and we say that f is approx1mable by
functions in a set S if feclS.

§A. Z-sets versus Z-sets. Let us say that K is a Z-set in X (resp. a Z-set
in X) if it is closed in X and idy is approximable by maps f: X — X satisfying
(X)) n K = @ (resp. clf(X) n K = @, cl denoting closure). In [6] D. W, Henderson
has given characterizations of Z-sets in ANR’s (cf. also [4], [1]) and, in connection
with an application in [2] and [10] and a question pcsed on a conference in
Oberwolfach in 1970, has established the following fact: :

Al. Let X be a manifold modelled on a locally convex metric linear space E
such that £ = E® or E & EP = {(x) e E®: x;, = 0 for almost all ’s}. Then the
family of Z-sets in X coincides with that of Z-sets in X.

It was also known to Menderson that these families may differ if X is merely
an ANR (oral communication to the author from 1972). The following example -
illustrating this is due to P. Bowers and J. Walsh:

A2. Exameie. Let X = [0, 1]%{0} U {27":ne N}% [0, 1}cI? and p = (0, 0)
Then K = {p}.is a Z-set in X but is not a Z-set in X.
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