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Products of Baire topological vector spaces
by

M. Valdivia (Valencia)

Abstract. Let I be a set whose cardinal number is larger than X,. In this article it is proved
that there are dense subspaces of ¢o(J) with additional properties which are Baire and whose product
is not Baite, The same properties are obtained taking IP(I), 0<p< o, instead of cq(f).

1. Introduction. All the linear spaces we shall use are defined over the field K
of real or complex numbers. If E is a set, we denote by E® the countable infinite
product of copies of E.

Oxtoby [5] proved that the continuum hypothesis implies that there is a com-
pletely regular Baire topological space whose square is not Baire. Actually, Oxtoby
uses the hypothesis that the union of <2% subsets of Lebesgue measure zero of
real numbers has Lebesgue measure zero. P. E. Cohen [2], using forcing techniques,
gave an absolute example of Baire spaces whose product is not Baire. Later
Fleissner and Kunen [3] gave new examples of Baire spaces whose products is
not Baire space without using additional hypothesis of the theory of sets. In this
article we give examples of Baire topological vector spaces whose product is not
Baire using in part techniques of Fleissner and Kunen [3].

Given a set I and an ordinal « we denote by card I and cardo the cardinal
numbers of I and o respectively. If f<a, [8, af is the interval of ordinal numbers
closed in # and open in o, ie.,

[B,a = {6: p<é<a}.

We represent by w, the first ordinal such that card w;>¥,. We suppose [0, «]
endowed with the order topology. A subset of [0, af is said to be stationary if it
meets every unbounded closed subset of [0, «]. Let y be the first ordinal such that -
card I = card y and let T, be a mapping from [0, y[ in [0, [, » = 1,2, .. We shall
need the following results: o

(a) If card y>w, the set

{e<y: T,(0,aD<=[0,0f, n= 1,2, o}

is unbounded and closed in [0, [,


GUEST


72 M. Valdivia

(b) If card y>, then any stationary subset of [0,y can be split into cardy
disjoint stationary subset of [0, y[ (see [4] and [8]).

2. Topological properties. Let / be an uncountable set. Let y be the first ordinal
such that card I = cardy. Let (M,) be a sequence of stationary subsets of [0, y[
pairwise disjoint. We set M = (J {M,: n =1,2,..}. Let £ be a Hausdorfl topo-
logical space whose points are families {x;: f<7} with

xp ek, card{f: x; # 0} <cardy.

We set O to denote the point {x;: f<y} with x; = 0, f<y, and we suppose
that O € E.
For every o in M we set

E, = {{x;: p<r} e E: x, =0 if p>a}

and we suppose E, endowed with topology induced by E. Let «, be a family of
open subsets of E such that 4 n E, ¢ & for every 4 in &, and

{dnE,;: des,)
is a base for the topology of E,. We suppose that
card o/, < card I
and if « is an ordinal limit of elements of M then
o, = U {y: p<a, feM}.
Moreover we suppose that
o =\ {,: aeM}

is a base of the topology of F and if ay <as,, @y and a, in M, then &, < o,
ProrositioN 1. If for every a in M,,, EP is a Baire space, m = 1,2, ..., then
every product of a finite number of copies of E is a Bdaire space.
Proof. Given a positive number p, let {D,: n = 1,2, ...} be a family of dense

open subsets of E¥. We fix a positive integer n and fin M. If A & g we find D,(4)
in & such that

® D,(4Y'=D, n A"

Since card o/, < card[ there is an ordinal number S,(f)<y such that D,(4) belongs
to s, for every 4 in of,. Given any o in [0, y[ let B(x) be the first ordinal in
[,y [ M. We set T,(x)= S,(B(®)). We apply result (a) to the family
{T,: n=1,2,..} of mappings from [0, y[ in [0, 9[ to obtain that the set

V= da<y: T(0,aD<[0, 0], n=1,2,..}
is unbounded and closed in [0, y[.
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Let us see now that D = () {D,:n = 1,2, ...} is dense in E”. We take 4 & «Z,,
ae M. If X is the set of points of [0, y[ which are limits of points of [u+1, y[ A M
it is obvious that X is unbounded and closed in [0, y[ and since M, is stationary
in [0, [ we can take an ordinal f in M, n X n V. We fix now a positive integer
and we take any element B in «7,. Since f is an ordinal number which is limit of
elements of M, there is <p, 6 € M, such that B belongs to ./, and, therefore,

Sn(5) = Tn(5)<ﬂ and D"(.B)E &{T.‘(b)
and thus D,(B) belongs to ;. From (1) it follows that
BN Ef nD,>E} nD,(BY # @.

Consequently, D, » Ef is dense in Ef, n = 1,2, ..., and since EJ is a Baire space,
D ~ EJ is dense in E}. One has that 4 € o/, and, therefore, 4” n Ej is a nonvoid
open subset of Ef from where it follows that

A"\ Do AP NEfnD+# @.

Consequently, E? is a Baire space.
For every o in M we set

B, = {Adyx Ay .. X Ay E®: Ay, Ay, oy Ay s, p=1,2,..}.
One has that B n E; # @, Be #,, and
{BAE?: Be#,}

o

is a base of the topology of EZ, card#,<card], and if o is an ordinal limit of
clements of M, then
B, = U {#: f<u, feM}.
Moreover one has that
B =\){B,: weM}

is a base of the topology of E® and if o, <oy, oy, %, € M, then &, is contained
in 8,,.

PROPOSITION 2. If for every o in M, EJ is a Baire space, then E® is a Baire space.

Proof. Let {D,: n =1,2,..} be a family of dense open subsets of £°. We
fix a positive integer n and we take f in M. If B belongs to &, we find D,(B) in &
such, that D,(B) is contained in B~ D,. There is an ordinal S,(8)<7y such that
D,(B) belongs to %, for every Bin #;. We proceed as we did in the proof of
the previous proposition to obtain {T,: n = 1,2, ..} and V.

Let us see now that D = () {D,:n = 1,2, ..} is dense in E®. We take o« in M
and B in &,, o<y, We obtain X as before and we take Bin M n X n V. Proceeding
again as in the previous proof we obtain that D n Ef is dense in Ej’ from where
it follows easily that D n B # @ and thus E® is a Baire space, B
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If x = {x,: f<y} is an element of E and Q is a subset of [0, y[ we set
x(Q) = {ys: <y} withy,=x,if fcQ and y,=0if f¢Q.
We set
F={x(Q): xeE, Q<[0,y[}.
We suppose F e_ndowed with a topology defined by a metric d such that
d(x(9), »(Q)<d(x, »), o=[0,9]

and E is a topological subspace of F.
For every x in F and every positive integer n we write

g() = sup{f<y: x5 # 0}, g,(x) = min{B<y: d(x, x([0, fD))<1/m}
and we suppose, when X,y = 0, g(x)>0, that

()] lim {x([0, BD:<}=x.
p<glx)

x,yek,

{

i

PrOPOSITION 3. Ifx = {x;: f<v} belongs to E and a<g(x), there is a neighbour-
hood U of x in E such that a<g(2) for every z in U.

Proof. We find an ordinal § such that a<d<g(x) and x; # 0. Since the
topology of F is finer than the topology of the pointwise convergence, there is
a neighbourhood U of x in E such that if z = {z3: B<y} is in U, then z; # 0 and
consequently a<g(z). H

PROPOSITION 4. Given a positive integer n and x = {x;: f<y} in E there is
a neighbourhood U of x in E such that g,(z)< 9.(X) for every z in U.
Proof. We take >0 such that

d(x([o’ gn(x) [), X)+28 < 1/71 .
We set

U={yekE: d(x,y)<s}.
Then, if z belongs to U, one has that

4(z(10, 9.(00), 2)<d(z(10, g,(4)1), x(10, 9, D))+
+d(x([0, g.(0)1), x)+d(x, 2)<2e+d(x([0, g,(0)[), x)<1/n
and thus g,(z)<g,(x). B
For every pair of positive integers p and g we write
Fpo={x€E: %y =0, g(x)e {M;: j<q,7 # p}} U {0},
F=TI{Fugi /= 1.2, 0},
Gy={xeE: x5y =0, g(x)e | {Mp:7=1,2,.., g—1,¢+1, ..}} v {0},
G=1{G;: q=1,2,.}.

icm

Products of Baire topological vector spaces 75

We suppose that given x in F,,,, ¢>0 and a<y there is an element z in F, e
such that d(x, z)<s and a<g(2).

PROPOSITION 5. Given an integer q>1, F, is not a Baire space,
Proof. For every positive integer », we set
D, = {x = (x1, %3, ..., X) € Ft min{g(x): j = 1,2, ..., 9}
>max{g,(x):j=1,2,..,q}}.
We apply Propositions 3 and 4 to obtain a neighbourhood ¥; of x; such that
g(z)y> max{g,(x): i = 1,2, ..., g},
g,,(Zj)SQn(xj), Z;€ V],j= 1,2,..,q.
Consequently,
min{g(z): j = 1,2, .., ¢}>max{g,(z): j = 1,2, .., q},
zeV,j=1,2,..,q,
and thus D, is open.

Given a neighbourhood ¥V of a point y = (yy, ¥, ..., ¥,) of F, we find ¢>0
and a neighbourhood W of y, WV, such that

{x = (%1, X3y s XY e Fyt d(xy, y)<e, i=1,2,..., g} W,
9)< gy, (g, tg s u)eW,
We can find z = (zy, 23, ..., Z,) in F, such that
max{g(y): i=1,2,..,4}<4(z),
Then ze W and
min{g(z): i = 1,2, .., q}>max{g(y): i=1,2,.., 4}
>max{g,(y): i =1,2, .., ¢}zmax{g,(z): i= 1,2, .., q}.

j=1,2,..,9.

d(yj,zj)<s, ji=12,..,q9.

Therefore ze W n D, from where it follows that ¥ n D, # @ and thus D,
is dense in F,. . ) )

Finally, let x = (xy, X5, ..., X,) be any point of F, w.xth x5 #£0,j=1,2,..,q.
We can take two positive integers h # k, h<gq, k<q with g(x,,). # g(x). Suppose
that g(x,) <g(x,). From (2) it follows that there is a positive integer n such that
g(x)<g.(x). Then obviously x is not in D,. We set

Do = {x = (X, %3, 0, X) € Fpy x;# 0, j= 1,2, ., q}.
Then D, is a dense open subset of F;. We obtain now
N{Dyin=0,1,2,..} =4.

PROPOSITION 6. The space G is not Bdire.
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Proof. For every positive integer n we set
D, = {x = (x;, %5, .)€ G: min{g(x): j=1,2,..,n}
>max{g,,(xj):j = 1: 2: ey n}} .

As in Proposition 5, changing ¢ by n, D, is an open set. Given a neighbourhood
V of a point y = (yy, yy, ...) of G we can find an integer m>n and a neighbourhood
W of y, WV, such that

fr = (xy, %0 )G dxy, py<e, i=1,2,.., M} W,
_ ) <g(¥), Wity )W,
We can find z = (z, z,,...) in G such that

Jj=1,2,..,n.

max{g(y): i=1,2,.., n}<g(z), d(y;z<e, j=1,2,..,m.
Then ze W and '
min{g(z): i =1,2, .., n}>max{g(y): i=1,2,..,n}
zmax{g,(y): i =1,2, ..., n}zmax{g.(z): i =1,2,..,n}.

Therefore z belongs to W n D, from where it follows that ¥ ~ D, # @ and thus
D, is dense in G. '

Finally, let x = (x;, x,, ...) be any point of G with X #0,)=1,2,.. We
can take two positive integers s # k with g(x,) # g(xy). Suppose g(x,)<g(xy).
From (2) it follows that there is a positive integer n>max(h, k) such that g(x,)
<gp(x). Then obviously x is not in D,. We set Dy = {x = (x;, X3, ..., Xjy ) €GL
x;#0,/=1,2,..}. Then D, is a countable intersection of dense open subsets of G.
We obtain

N{Dw:n=0,1,2,.)=0. @
3. Topological vector properties. Let 7 be a noncountable set. We set y to de-

note the first ordinal such that cardy = card . We write co(y) instead of ¢q([0, 7[)
Obviously ¢y(y) is a Banach space isomorphic to ¢y(). If oc'<y we set

L@ = {x = {x;: <y} ecoy): x, = 0, Bz}
We fix an ordinal number « such that there is a sequence of ordinal numbers

0=ap<ay<..<a, < ...
converging to « with
card[0, o[ = card[o,_y, o[, n=1,2, ..
Let Y be an algebraic complement of

UL n=1,2,.}
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in L(x). We fix a positive integer m. One has that
U{{r+L@): n=1,2,..} = L(@)"

and therefore there is a positive integer p such that (¥+L(x,))" is a dense Baire
subspace of the Banach space L(2)". For every x = {x;: f<y} of L(x) we set

Tx = {yp: a,<P<}, yp=12x5 o,<P<a.

It is immediate that T'is a topological homomorphism from L(a) onto cy([op, D).

Let ¢ be a bijective mapping from [a,, ¢4 [ onto [0, aypy [ I x = {x5: ¢, < f<a}
belongs to eq([o,, ) we write

Sx = {yp: B<y},

g = xp if apy <P<a,

Yo = Xp I ap<B<ayyy,
and  y, = 0 if a<f<y.
It is obvious that S is a topological isomorphism from ¢ ([o,, a) onto L(x). Since
(Y-+L(x,))" is a dense Baire subspace of L(®)" it follows that
| SoT(Y+L(x) = H,
is dense in L(e) and H;' is a Baire space. On the other hand, if x = {xz: B<y}
is a nonzero vector of H, it is immediate that
g(x) = sup{B<y: x; # 0} = .
Now we represent by Z the subset of [0, y[ such that « belongs to 2, if and

only if there is a sequence
0 =<y <. <0, < .o

converging to « and
card [0, o[ = card[o,q, &, [, n=1,2,..

PROPOSITION 7. Z is a stationary subset of [0, y[.
Proof. Let H be an unbounded closed subset of [0,y[. We can take

Bi<Bo< . <Py< .. in H such that
card [O, ,3,,[= card [ﬂn-—l’ ﬁn[’ n=1, 2’

If
ﬂ = SuP{Bn: n=1,2, "'}

then f8 belongs to H and also to Z. Thus Z n H # Q‘. |
We apply result (b) to split Z into a disjoint family

{Zp,: B<v,p=12, o}
of stationary subsets of [0, y[. We set
Zy=U{Zpp p=1,2,..}.
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We fix f<y. If o belongs to Z; , we take H, such that H} is a Baire space and we
set E, to denote the linear hull of
{Hs: 6<a, 62y} .
Since H, is dense in L(q) it follows that EY is a Baire space. If &, is the linear hull of
{E,: aeZs}

it is obvious that X} is dense in c,(y).
We take f, <f,< .. <B,<...in [0, y[. We set F, , to denote the linear hull of

U{x,,: ji<q, j #p}
and G, for the linear hull of

UlXp:i=1,2,.,0-1, g+1,..}.
We set

Fq = H {FM: j=1,2,..;4}
If E is the linear hull of

and G=[[{CG:qg=1,2,.}.

UV, i=1,2,.}
it is immediate that the distance deduced from the norm || || of ¢o(y) satisfies the
properties required for d in F in the former section. On the other hand, given
x = {x;: 6<y} in F, ,, 8>0, x<y, let r be a positive integer r 5 p, r<q. We find
6,>0;>a, 8,>g(x), 6;,6,€Z, and we take

y={ys 6<y}, 1 =0, 3+,

Since Hj, is dense in L(dy) there is an element z = {z;: 6<y} in Hj, such that

Vo = ¢/2.

llz— G+l <e/2.
Then z belongs to F, , and

Ix—zll<liz—Ge+ )|+l <e.

Consequently, Propositions 5 and 6 can be applied to F, and G.

THEOREM 1. There is a family {X;: i €I} of dense subspaces of co(l) satisfying
the following properties:

1. For every positive integer m, HY is a Baire space, i¢ 1.

2. Xy x X is not a Baire space, i,jel, i #j.

3. X7 is not homeomorphic 1o X7 for every positive integer m, i,jel, i #J.

»Prf)of. Since ¢o(7) is topologically isomorphic to ¢y(¥), it is enough to prove
properties 1, 2, and 3 for the family {X,: f<y} of dense subspaces of ¢y(y).

We fix <y and we take « in Z;. One has that E, coincides with.

{x = {x;: 6<y} e X! X3 = 0, dza},
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There is a dense subset U, of E, whose cardinal number coincides with carda such
that if oy <o, oy, o, € Z, then U, < U, and if « is an ordinal number which is
limit of elements of Z, then

U, = U{Us: 6<0, 62;}.
If x belongs to U, and if » is a positive integer we set

A(x,n) = {ze Fy: |lx—z||<1/n}.
We set
Ay, ={d(x,n): xeU,n=1,2,..}.

The family {4,: a«eZ;} satisfies the conditions required in the former sectiom
with X instead of E and Z,, instead of M,,, m = 1, 2, ... Consequently, Propo-
sition 1 can be applied to obtain that X} is a Baire space.

Taking f;<p, in [0, y[ one has that F; , and F, , coincide with Xj, and X},
respectively. Consequently, X, x X, is not a Baire space. Finally, if X, were
homeomorphic to X}, one would have that X7 x Xz, which is not a Baire space
would be homeomorphic to the Baire space Xfx"‘, m=1,2,.. This is a contra-
diction. B

TUEOREM 2. Given an integer g>1 there are g dense subspaces Ly, Ly, ...,L,
in ¢o(l) satisfying the following properties:

1. LY is a Baire space, j = 1,2, ..., 4.

2. T1{L 7= 1,2, e, p~1,p+1, ., q} is a Baire space, p = 1,2, .., ¢.

3. TT{L;: j<4q} is not a Baire space.

Proof. Since cy(I) is isomorphic to co(w,) % co(I), if we determine g dense
subspaces Ly, Ly, ..., L, of ¢o(w,) satisfying conditions 1, 2 and 3, then L, x co(I),
Ly x (), ..., Ly x co(I) are spaces isomorphic to dense subspaces of ¢y(I) satisfying
conditions 1, 2 and 3 (observe that the product of a metrizable Baire space and
a metrizable complete space is Baire [9]). So we can suppose card] = o;. We take

Lj=Fj,q, ]= 1: 2a-~-1q:

from where it follows that [ {L;: j = 1,2, ..., ¢} is not a Baire space. For every
®eZ, H, is separable and consequently H is a Baire space [5]. Therefore Propo-
sition 2 can be applied to obtain that X} is a Baire space f<w,. Since Xy, PS4,
is a dense subspace of L;, j # p, /<, it follows that L} and T[ {L;: j = 1,2, ...,
p—1,p+1,.., ¢} are Baire spaces. @

THEOREM 3. There is a countable family Ly, Ly, ...
of co(I) satisfying the following properties:

1. L} is a Baire space, j = 1,2, ...

2. T1{L;:j=1,2,.,p~1,p+1,..} is a Baire space, p = 1,2, ...

3. [T{L;: j=1,2,..} is not a Baire space.

Proof. It is analogous to the previous ome taking L; = Gj, j = 1,2, .. B

y Ly, ... of dense subspaces
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Note 1. Theorems 1, 2 and 3 are also valid changing co(Z) by ”(J), O<p<co,
with the same proofs.

Note 2. In [1] the construction of Fleissner and Kunen [3] and the method
of “coordinatés” are used also to obtain dense Baire subspaces of !*(w,) whose
product. is not a Baire space, but unfortunately the example given there does not
satisfy the required properties.

. Note 3. Independently of us R. Pol and J. van Mill have obtained normed
Baire spaces with product non-Baire. They have proven in [7] that in a F-space
of weight ¥, there are dense Baire subspaces such that their product is not Baire.
The reasoning used in [7] is based on a general version of the construction of Fleissner
and Kunen [3] given in [6].

OPEN QUESTION. Let E be a nonseparable Fréchet space. Does there exists
a dense Baire subspace F of E such that Fx F is not Baire?
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Extensions of functions from products
with compact or metric factors

by

Ama Wasko (Warszawa)

Abstract. This paper is a continuation of an earlier paper [3]. A subspace 4 of a space X is
ma-embedded in X, where & denotes a non-empty class of spaces, if for every Z ¢ % and for every
continuous function f: 4 x Z->I there exists an extension of f over XxZ. We shall prove that
% 4ue-embedding is equivalent to 7.4 x ¢-embedding, where :4 w % denotes the class consisting
of all metric and all compact spaces, and . x € — the class of products of a metric and a compact
space. We shall also give an example which shows that 7,4 x »-embedding does not imply 7p-em-
bedding where & denotes the class of all paracompact p-spaces.

Throughout this paper by a topological space we mean a completely regular
space, by a function or an extension — a continuous functien or a continuous
extension. Symbols A, ¥, # x¥, and 2 denote the classes of metric spaces,
compact spaces, products of a metric and a compact space, and paracompact
p-spaces, respectively. By P we shall denote the set of all irrational numbers and
by Q — the set of all rational numbers in the unit interval I,

The author is much indebted to T. C. Przymusinski for valuable remarks
concerning this paper. '

Let us recall (cf. [2]) that a subspace A of a space X is n,-embedded in X,
where & denotes a non-empty class of spaces, if for every Ze % and for every
function f: 4 x Z — I there exists an extension of f over X x Z. Obviously, if & =%’
then 7g.~embedding implies 74 -embedding. Thus n,-embedding implies 7 4 ¢-em-
bedding, which implies 74 -embedding. For dense subsets of topological spaces
the inverse implications are also true: T. C. Przymusiriski showed in [2] that for
a dense subset of a topological space 7,-embedding is equivalent to 74 ¢ ~em-
bedding. It turns out that in the case of closed subsets this theorem does not hold.
We shall give an example of a space Y and its closed subspace X which is
7 4.,z-embedded but is not n,-embedded in ¥. We shall also prove that 7 4, ¢-em-
bedding is equivalent to 7, x¢-embedding; thus our example will show that
T uxe-embedding does not imply 7,-embedding. These results will also previde
a negative answer to the problem raised by K. Morita in [1], whether every Cech-
complete, paracompact space is absolutely P-embeddable (a space X is absolutely

6 — Fundamenta Mathematicae CXXV. 1
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