Essential mappings and transfinite dimension

by

P. Borst and J. J. Dijkstra (Amsterdam)

Abstract. We construct a compact metrizable space with inductive dimension $\omega + 1$ that admits no essential mappings into Henderson’s $(\omega + 1)$-dimensional absolute retract $J^{\omega +1}$.

1. Introduction. A continuous mapping $f: X \to I^* = [0, 1]^*$ is called essential if there is no continuous extension $g: X \to \partial I^*$ of $f|f^{-1}(\partial I^*)$, where ∂I^* is the geometric boundary of I^*. The following characterization is well known (see e.g. Engelking [1], 3.2.10).

1.1 Theorem. A normal space has dim $\geq n$ if and only if it admits an essential mapping into I^n.

D. W. Henderson [2] has attempted to extend this result to transfinite inductive dimension.

1.2 Definition. Ind$(\emptyset) = -1$. Let α be an ordinal and X a normal space. Ind(X) is the smallest ordinal such that whenever every pair of disjoint closed subsets of X can be separated by a closed set with Ind $< \alpha$. Ind(X) is the union of disjoint open sets U and V with $A \subset U$ and $B \subset V$.

1.3 Definition (Henderson). For each countable ordinal α we define a compact metric space J^α, its "boundary" T^α and a point $p^\alpha \in T^\alpha$.

(i) If α is finite then $J^\alpha = I^\alpha$, $T^\alpha = \partial I^\alpha$ and $p^\alpha = (0, 0, ..., 0)$.

(ii) If α has a successor $\alpha + 1$ then $J^{\alpha + 1} = J^\alpha \times I$, $T^{\alpha + 1} = (T^\alpha \times I) \cup ((J^\alpha \times \{0, 1\})$ and $p^{\alpha + 1} = (p^\alpha, 0)$.

(iii) If α is a limit, put $K^\alpha = J^\alpha \cup J^\beta$ for every $\beta < \alpha$, where L^β is a half open arc such that $L^\beta \cap J^\beta = \{p^\beta\}$ is the end-point of L^β. J^α is defined as the one-point compactification of the discrete sum $\bigoplus_{\beta < \alpha} K^\beta$; $T^\alpha = J^\alpha \cup (\bigoplus_{\beta < \alpha} T^\beta)$ and p^α is the compactifying point.

A continuous mapping f from a space X into J^α is called essential if every continuous $g: X \to J^\alpha$ that satisfies $g|f^{-1}(T^\beta) = f|f^{-1}(T^\beta)$ is an onto mapping.

The following two theorems are due to Henderson [2].

1.4 Theorem. J^α is an absolute retract and Ind$(J^\alpha) = \alpha$.

1.5 Theorem. If there is an essential mapping from a normal space X into J^α then Ind$(X) \geq \alpha$ or Ind(X) does not exist.
Henderson asked the following question: if \(\text{Ind}(X) > \omega \), is there an essential \(f: X \to J^* \)? In view of Theorem 1.1 and the fact that there exist compact spaces with \(\dim < \text{Ind} \) it seems reasonable to restrict ourselves to metric spaces. We show that the answer to the question is yes for \(\alpha = \omega \) and no for \(\alpha = \omega + 1 \). This also solves two questions that were raised by R. Pol ([3], p. 238) who independently showed the following. There exists a countable ordinal \(\lambda \) such that for every countable \(\alpha > \lambda \) there is an \(\alpha \)-dimensional compactum without essential mappings into \(J^* \) ([3], Thm. 5.2). Note that Pol’s result, which was obtained by a method completely different from our’s, also gives different information concerning Henderson’s question.

2. Two theorems. In this section we prove the converse of Theorem 1.5 for \(\alpha = \omega \) and we give an addition theorem that will be used in the next section.

2.1 Theorem. If \(X \) is a normal space with infinite covering dimension then there is an essential \(f: X \to J^* \).

Proof. Let \(\dim(X) = \omega \). We construct sequences \(H_1 \supset H_2 \supset H_3 \supset \ldots \) and \((A_\alpha)_{\alpha \in \omega} \) of closed subsets of \(X \) such that for every \(\alpha \in \omega \), \(\dim(H_\alpha) = \alpha \), \(\dim(A_\alpha) \geq \alpha \) and \(A_\alpha \subseteq H_\alpha \setminus H_{\alpha+1} \). Let \(H = X \) and assume that \(H_1 \) has been constructed. Since \(\dim(H) = \omega \) there exist disjoint closed sets \(A \) and \(B \) in \(H_1 \) such that every closed set \(M \) that separates \(A \) and \(B \) has \(\dim(M) \) (see Engling ([1], 3.1.27)). Select a closed covering \(\{F, G\} \) of \(H_1 \) with \(F \cap G = \emptyset \) and \(\dim(F) = \alpha > \omega \). The union of \(F \) and \(G \) is infinite-dimensional and hence (see Engling ([1], 3.1.8)) one of them, say \(F \), has infinite dim. Put \(H_{\alpha+1} = F \) and let \(A_{\alpha+1} \) be a closed set that separates \(F \) and \(B \) in \(H_{\alpha+1} \). Then \(A_{\alpha+1} \subset H_{\alpha+1} \setminus H_{\alpha+2} \) separates \(A \) and \(B \) in \(H_{\alpha+1} \) and hence \(\dim(A_{\alpha+1}) \geq \alpha + 1 \). This completes the induction.

Consider now \(J^* = \{\alpha^*\} \cup \bigcup_{i=0}^{\omega}(J^* \cup J^*) \). Since \(\dim(A_\alpha) \geq \alpha \) we may select for every \(i \in \omega \cup \{0\} \) an essential \(f_i: A_{2i+1} \to J^* \) and a continuous \(g_i \) from \(A_{2i,2} \) onto the closed interval \(\{0\} \cup \{\alpha^*\} \). Moreover, let \(h \) be the constant function from \(H = \bigcup_{i=0}^{\omega} H_i \) into \(\{0\} \cup \{\alpha^*\} \). Put \(A = \bigcup_{i=0}^{\omega} A_i \cup H \), which is a closed subset of \(X \). Since \(\{A_\alpha\}_{\alpha \in \omega} \) is a pairwise disjoint collection of clopen subsets of \(A \) one easily verifies that

\[
\hat{h} = \bigcup_{i=0}^{\omega} f_i \cup \bigcup_{i=0}^{\omega} g_i \cup h
\]

is a continuous mapping from \(A \) onto \(J^* \). The fact that the \(f_i \)'s are essential guarantees in view of Henderson ([2], Prop. 3) that \(h \) is essential. Noting that \(J^* \) is an absolute retract we can find an extension \(\hat{h}: X \to J^* \) of \(h \) which is of course also essential.

2.2 Corollary. If \(X \) is a metric space such that \(\text{Ind}(X) \geq \omega_\alpha \), or such that \(\text{Ind}(X) \) does not exist, then there is an essential \(f: X \to J^* \).

2.3 Theorem. Let \(X \) be a hereditarily normal space and let \(\alpha \) and \(\beta \) be two ordinals. If \(Y \) is a subset of \(X \) such that \(\text{Ind}(Y) < \beta \) and for every open neighbourhood \(U \) of \(Y \), \(\text{Ind}(X \setminus U) < \alpha \) then \(\text{Ind}(X) < \alpha + \beta \).

Proof. (By transfinite induction w.r.t. \(\beta \)) If \(\beta = 0 \) then \(Y = \emptyset \). Since \(\emptyset \) is a neighbourhood of \(Y \) we have that \(\text{Ind}(X) < \alpha + \beta \).

Let \(\beta \) be a limit ordinal such that the theorem is valid for every \(\beta' < \beta \). If \(\text{Ind}(Y) < \beta \) then there is a \(\gamma < \beta \) such that \(\text{Ind}(Y) < \gamma \). By induction we have that \(\text{Ind}(X) < \alpha + \gamma < \alpha + \beta \).

Now assume that the induction hypothesis is valid for all ordinals \(\beta' < \beta + 1 \). Let \(A \) and \(B \) be two disjoint closed subsets of \(X \). Since \(X \) is normal there are closed, disjoint neighbourhoods \(A' \) and \(B' \) of \(A \) and \(B \), respectively. Assume that \(\text{Ind}(Y) < \beta + 1 \). Then there are open, disjoint subsets \(O_1 \) and \(O_2 \) of \(X \) such that \(A' \cap \text{int} O_1 \) and \(B' \cap \text{int} O_2 \) are disjoint and \(\text{Ind}(Y \setminus (O_1 \cup O_2)) < \beta \). It is easy to see that \(\text{Cl}(A \cup O_1) \cap \text{Cl}(B \cup O_2) = \emptyset \) and \(\text{Cl}(O_1 \cup O_2) = \emptyset \). Since \(X \) is hereditarily normal this implies (Engling ([1], 2.2.1)) that there exist disjoint open sets \(U_1 \) and \(U_2 \) in \(X \) such that \(A \cup O_1 \subseteq U_1 \) and \(B \cup O_2 \subseteq U_2 \). Define \(X = X \setminus (U_1 \cup U_2) \) and \(Y = Y \setminus (U_1 \cup U_2) \). Then we have that \(\text{Ind}(Y) < \text{Ind}(X \setminus (O_1 \cup O_2)) < \beta \). If \(Y \) is an open neighbourhood of \(Y \) in \(X \) then \(V \cup U_1 \cup U_2 \) is an open neighbourhood of \(Y \) in \(X \) and hence \(\text{Ind}(X \setminus (U_1 \cup U_2)) < \beta \). Applying the induction hypothesis we obtain that \(\text{Ind}(X) < \alpha + \beta \). Since \(X \) separates \(A \) and \(B \) in \(X \) we have proved that \(\text{Ind}(X) < \alpha + \beta + 1 \).

3. The counterexample. We construct a compact metric space \(\bar{X} \) that admits no essential mapping into \(J^{**} \) and has \(\text{Ind}(\bar{X}) = \omega + 1 \).

Consider the Hilbert cube \(Q = \prod_{i \in N} I_i \) and let \(0 = (0, 0, 0, \ldots) \in Q \). Define for \(i \in N \) the \(i \)-cube \(B_i \) in \(Q \) by

\[
B_i = \{ (y_i) \in Q | y_i \in [0, 1] \} \text{ for } i \in N \text{ and } x_i = 0 \text{ for } j \neq i.
\]

Let \(A_i \subseteq B_i \) be the closed set \(\bigcup_{j \neq i} B_j \). Consider now the Cantor set \(C \), represented in the usual way by a subset of \(I \). Let \(\{a_i, b_i\}, i \in N \) be an enumeration of the gaps of \(C \). Select an order preserving quotient mapping \(p: C \to I \) such that \(p(a_i) = p(y_i) \) then \(x = y \) or \(x = y \).

Let \(X = X \setminus \bigcup_{i=0}^{\omega} A_i \). Let \(Q: \bar{X} \to X \) be the natural mapping and define the “projections” \(p_1: \bar{X} \to I \) and \(p_2: \bar{X} \to A_i \) by

\[
p_1: q(f(\bar{x})) = p(t)
\]

and

\[
p_2: q(f(\bar{x})) = x
\]

Since \(p_1(q(C \times \{0\})) \) is a homeomorphism, we identify \(q(C \times \{0\}) \) with \(I \).

3.1 Claim. \(X \) is a compact metrizable space.
Proof. Since \tilde{X} is a quotient of a compact metrizable space, it suffices to show that X is Hausdorff. Since π_1 and π_2 are continuous, we only have to separate the points (a_1, x) and (a_2, x) for $a_1 \neq a_2$. It is easily verified that
\[q(\{(a, u) \cap C\} \times (A_1 \setminus A_2)) \] and
\[q(\{(a, 1) \cap C\} \times (A_1 \setminus A_2)) \] are disjoint open neighbourhoods of (a_1, x) and (a_2, x), respectively.

3.2. Claim. \(\text{Ind}(\tilde{X}) \leq \omega + 1 \).

Proof. This is a straightforward application of Theorem 2.3. We put $Y = I$, $a = 0$, and $b = 1$. If K is the complement of a neighbourhood of J in X, then there is an $i \in N$ with $K \subseteq \pi_i^{-1}(A_i \setminus A_i)$. It is left to the reader to verify that $\text{Ind}(\pi_i^{-1}(A_i \setminus A_i)) = i - 1$.

3.3. Claim. \(\text{Ind}(\tilde{X}) \geq \omega + 1 \).

Proof. Let $\{F, G\}$ be a closed covering of \tilde{X} such that $F \cap \pi_i^{-1}(\{1\}) = G \cap \pi_i^{-1}(\{0\}) = \emptyset$. Assume that $\text{Ind}(F \cap G) \leq n$ for some $n \in N$. We shall prove that for every $r \in C$, $q(\{r\} \times A_n)$ is contained in either F or G.

Let $r \in C$ and consider $F \cap q(\{r\} \times B_0), G \cap q(\{r\} \times B_0)$ for $k \geq n + 2$. Note that $q(\{r\} \times A_1)$ is an embedding. Since the cube $q(\{r\} \times B_0)$ is a k-dimensional Cantor-manifold (Engelking [1], 1.8.13) we have that either $q(\{r\} \times B_0) \subseteq F$ or $q(\{r\} \times B_0) \subseteq G$. If $q(\{r\} \times B_0) \subseteq F$ then $q(\{r\} \times B_0) \subseteq G$, which is a k-dimensional face of $q(\{r\} \times B_0)$, is contained in F. Since also $q(\{r\} \times B_0) \subseteq F$, we have that $q(\{r\} \times B_0) \subseteq F$. So we may conclude that $q(\{r\} \times A_n)$ is contained in either F or G.

Having established this consider $s = \sup \{r \in C \mid \{r\} \times A_{n+2} \subseteq q^{-1}(F)\}$. Since $q^{-1}(F)$ is closed we have that $\{t \times A_{n+2} \subseteq q^{-1}(F)\}$. If $t = \infty \cap C \neq \emptyset$ and $t \times A_{n+2} \subseteq q^{-1}(G)$ then $\{t \times A_{n+2} \subseteq q^{-1}(G)\}$. Suppose that $s = t$. In this case $q(\{t\} \times A_{n+2})$, which is homeomorphic to A_{n+2}, is contained in F and G, and hence $\text{Ind}(F \cap G) \geq \omega$. If $s \neq t$ then there is an $i \in N$ such that $s_1 = s$ and $t = b_i$. Put $k = \max \{n+2, i\}$ and note that $q(\{t\} \times A_k) = q(\{t\} \times A_k)$. This means that $\text{Ind}(F \cap G) \geq \text{Ind}(q(\{t\} \times A_k)) = \omega$.

3.4. Claim. There is no essential mapping from \tilde{X} into J^{n+1}.

Proof. Let f be an essential mapping from \tilde{X} into J^{n+1}. Recall that $J^{n+1} = (J^n \cup \bigcup_{i=0}^{n} \{J^i \times L^i\}) \times I$ and put $D_i = f^{-1}(J^i \times I)$. Observe that $f(D_0) \cap D_1 = J \cap I$ is essential for every $i \in N \cup \{0\}$. We shall prove that for every $n \in N$ there are x_n and y_n in $\pi_n^{-1}(A_n)$ such that $|x_n - y_n| < 1/n$, $f(x_n) \in J^n \times \{0\}$, and $f(y_n) \in J^n \times \{1\}$. This is then x_n, and y_n have the same set L of cluster points. This implies that $f(L) \subseteq (J^n \times \{0\}) \cup (J^n \times \{1\}) = \emptyset$, which contradicts the compactness of \tilde{X}.

Let λ be Lebesgue measure on I and pick an arbitrary natural number n. Since $\{D_i \mid i \in N\}$ is a collection of pairwise disjoint, closed sets we can find an $i > n$ such that $\lambda(D_i \cap I) < 1/n$. This enables us to select $0 < p_0 < p_1 < \ldots < p_{n-1} = 1$ in I such that $p_{i+1} < p_i < \ldots < p_{n-1} = 1$ in I such that $p_{i+1} < p_i < \ldots < p_{n-1} = 1$ in I and a $\lambda > 1$ such that $\frac{1}{\lambda} < \lambda(U) \cap \pi_n^{-1}(A_n) \cap D_i = \emptyset$. Note that $\{p(\alpha) \mid \alpha > n\}$ is dense in I. Select $m(1), m(2), \ldots, m(k-1)$ greater than λ such that $p(\alpha_i) \in \gamma$ for $i = 1, 2, \ldots, k-1$.

\[\begin{align*}
\lambda(U) & < 1/n, \\
1 - \lambda(U) & > 1/n, \quad 0 < \lambda(U) < 1/n.
\end{align*} \]

for $i = 1, 2, \ldots, k-2$. Then $\mathcal{P} = \{0, \alpha_i \mid \alpha \in \gamma \cap \pi_n^{-1}(A_n) \cap D_i = \emptyset\}$. Since for every $i < k$, $m(i) > j$ we have that $\{q(\pi_i \times A_1) \cap D_i \mid i \in \mathcal{P}\}$ is a clopen partition of D_i. Note that $\text{diam}(\pi_i \times A_1) < 1/n$ for every $i \in \mathcal{P}$. Since $f(D_i)$ is essential we have that $f(q(\pi_i \times A_1) \cap D_i)$ is essential for some $i \in \mathcal{P}$. Then $f(q(\pi_i \times A_1) \cap D_i)$ is dense in $f(J \times I)$ and hence $f(q(\pi_i \times A_1) \cap D_i) = f(J \times I)$. This can be seen as follows. Let $x \in f(J \times I)$ and let V be a canonical closed neighbourhood of x in J^{n+1}, i.e., V is an $(l+1)$-collar. If $f^{-1}(V) \cap q(\pi_i \times A_1) \cap D_i$ is contained in the $(n+1)$-dimensional set $\pi_n^{-1}(A_n) \cap D_i$ then $f^{-1}(V) \cap q(\pi_i \times A_1) \cap D_i$ is not an essential mapping into V. This implies that $f(q(\pi_i \times A_1) \cap D_i) = f(J \times I)$ is not essential. So we may pick x_n and y_n in $q(\pi_i \times A_1)$ such that $f(x_n) \in J^n \times \{0\}$ and $f(y_n) \in J^n \times \{1\}$. This proves the claim.

References

SURFASCHEIT WISSENSCHEN IN ENFORMATICA
VIJLE UNIVERSTEIT
De Boelelaan 1001
Amsterdam
The Netherlands
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WASHINGTON
Seattle, WA 98195
U.S.A.

Received 8 June 1983