Finite-to-one restrictions of continuous functions (*) o
by
H. Torufczyk (Warszawa)

Abstract. Tt is shown that if f: X — ¥ is a map of locally cbmpacti metric spaces and
p=dimY < oo, then there exists a set 4 C X such that dim4 < sup{dimf-'(y): y& ¥} and
no fiber f~*(y), y € Y, contains more than p points of X\A4. A connection between this result and
the problem of characterization of Q manifolds is indicated. -

- Let f: X —» Y be a map of a Iocally compact metrlc space X. In this note wq
consider the question whether the structure of f can be significantly simplified by
passing to a restriction f|X\d, where A4 is an appropriately chosen subset of X of
dimension comparable to -dim(f) = sup{dim/~*(y): ye Y}. In §§ 1-3 we show
that if dim ¥ < co then this is in fact so; Specifically, we prave:

. TueoREM 1. Let f: X — Y be a a-closed map -of Separable metric spaces such
that "% = dini(f) and-p = dim ¥ are finite. Then, there is. a set ACX such that
dimd <k and fIX~A is p-to-1. ‘ v . T

COROLLARY 2. In notation of Theorem 1 there is a set BcX such that* dim B
<k+E(p/2) andle\B is 1-to-1. S

Here, we denote by E(x) the integer part of x and we say that amap [+ X -»Y
is p-to-1 if no fiber f~X(»), y € ¥, contdins more than p pofnts,

" The above results are applied in §4 to give cettain conditions under which
maps [0, 1 — R" mdy be approximated by maps whose images are trausverse,
in‘a very.vague sense, to all fibers of a given map f: R"— Y. ~
' . The statements of §§ 3, 4 may be viewed as selection type results, with Corol—
lary 2 providing a certain lower bound for the maximal dimensiort of closed subs
sets of ¥ over which f adm]ts a continuous selection. (In case f is open, a classical
result on sections of f is given in [RC]). '

The considerations of this note have been motivated by the problem -of
characterization of .Hilbert oube ‘manifolds. ‘A dimensiofi-theoretic approach to
this problem naturauy leads to questlons concermng the poss1b111ty of 1mprov1ng
properties of a map by neglecting a “small” subset of its domain '/howcver in contrast

sl

(*) Some results of this notg' have been obtamed durmg a’ visit
Oklahoma at Norman. d S
4*
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to Theorem 1 the range of the map may be of infinite dimension. We formulate some
of these questions.in § 6 and we preceed this by showing in § 5 how Theorem 1
can be applied to derive a characterization of Q-manifolds, We note that, although
formally new, this characterization can be derived from a result of R. D. Daverman
and J. Walsh [DW] and yet another dimension-theoretic result, due to J. Walsh [W],
Nevertheless, we sketch a proof of it to indicate the approach alluded to above and
to illistrate - the..connection between a problem concerning Q-manifolds and
results, or questions, in dimension theory.

Notation. All spaces are assumed to be separable and topologized by a fixed
metric which we denote by ¢. We say that f: X — Y is o-closed if X is the union
of countably many closed sets X; such that each restriction f]X;: X; — F(X,) is
a closed map. Closed maps with compact fibers are called proper.

- Remark 1. Bya lemma of I..A. Vainstein ([E], p. 139) if f: X - Y'is closed
then there is an open set U< X such that f|X\U is proper and f(U) s a countable set.

We say that a family of sets is of size ¢ if the diameter of each of its members
is <e. The boundary of a set 4 is denoted by 94. We write N (resp. R) for the set
of integers (resp' real numbers) and 7 for the segment [0, 1]. Undefined notions
have the: meamng of [E]

‘§1..0- dlmensmnal maps. In this section we demonstrate Theorem 1 in the
special case where dim(f) = 0. We need two lemmas.

"LEMMA 1. Let f: X — Y be a closed map with dim(f) = 0 and let &> 0. Then,
there is an open cover W of Y with the property that whenever {UY} refines W and
VointU then there are discrete families 9 and & = {E(D): De D} of open sub-
sets of X such that:

(@) if De D then diam(D U E(D)) <z and E(D)=f Y(U\P);

() D covers f7X(V) and E(D) is a neighbourhood of dD, for each D e 9;

© if X, xe U & and JCe1) = f(x;) then g(xy, x;) <.

Proof. For each y e ¥ there is a neighbourhood G(y) of f~ Y(y) in X which
is the union of a discrete collection %(y) = {G,(»), G2(}), .. .} of open sets of
size &. Since f is closed we have f~4(W(»)) =G () for some neighbourhood W( y)
of y. Let # = {W(y): ye Y} If VeintU and U= W(y) then let Fy, Fy, ..
Qpen nelghbourhoods of V satisfying Foc U and F,.,<F, for each i, Write

! {D ieN} where D= G(y) Of T E) s
and ' .
E(Df) =G) O f T (Faseg\Faysy), ieN.
Condmons (a) and (b) are clearly met. Also, f| (E@) nf (E(D,)) @ which coupled
with (2) yields (c)-

DermNniTION:: We. say: that g:4 - B is a (p; &)-map if each point-inverse
'l(b), beB, is a union of p sets of size &. .
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LemMA 2. Let £>0, let f1 X - Y be a closed map with dim(f) = 0 and
dimY =p<cand, fori=1,2,..,1, Tet K; and L; be closed disjoint subsets ofX.
Then, there are open subsets E; of X separating X between K; and L; and such that
flE, v .. VE, is a (p, &)-map. '

Proof. Take closed sets Sy, ..., S; so that §; separates X between K; and L,;
we may require that the metric ¢ of X is such that ¢(X; U L;, S))> & for each i</
(otherwise rdplace o(xy, x,) by o(xy, x2)+.z |Ai(eg) —~ A6zl for $uitably . chosen

maps 4y, ..., ;). Let # be a cover of ¥ assured by Lemma 1. By a result of Monta.
there is a locally finite open cover % of Y such that {oU: Ue %} is of order p—1
and % refines #°; see [E], p. 229. Let {V(U): Ue %)} be a closed shrinking of
% such that {U\V(U): Ue%} is of order p—1, and for Ue%. let 2(U) and
{E(D): De2(U)} be families provided by Lemma 1 for the palr (U v (U)).
We write

2,={Del{2(U): Ueu}: Dnsﬁe@},
T,=U{6D: Ded;} and F =\ {E(D): DeD;}.

Then, T; contains the boundary of 'a neighbourhood of 'S; in X\(K;u L) and
hence separates X between K, and L,. Let B = F, U ., u E,.  To show that f|B
is a (p, &)-map fix xe B and let %, = {Ue%: f(x)e U\V(U)} then card%, < p:
We have

(f1B) () =f ) n U {E(D): D e D(U) and Ue U},

and for each Ue %, the set f %/ (x) n U {E(D): D€ D (U)} s of size &, by property
(©) of {E(D): De2(U)}. Thus (f|B)"%f(x) is a union of p sets of size & and we
may let E; to be any neighbourhood of T, whose closure is contained in E,.

ProrositioN 1. Let f: X - Y be a o-closed map with dim(f) =0 gnd dita’Y
= p < 00. Then, there is a set A € F,(X) such that f|4 is pto-1 ind dlm(X\A) = 0.

Proof. Let X; =X, < ... be closed subsets of X such that UX,; = X and each
Sf1X; is a closed map. Let {4;, B;: ie N} be.closed subsets of X such that 4; n B,
= @ and both {4,: ie N) and {X\B,: ie N} are bases of nelghbourhoods of X.
With p = dim ¥ we shall construct relatively open subsets U} and Vl of X, z<n
so that

(2) U';m Vi=@ and U/nX, N 4, V{:X,,nB,;
(b) U"'MDU" and V"+IDV:‘;

OAUXNT VD isa Guymap

The inductive construction, Suppose {Uf, Vi: i = 1,..,n} are known. We

write U,y = @ = V., and

Ki=4;0 %, VU, L= Bpn Xypsy Y Vi for i<ntl
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Temma 2 applied to f|X,,, readily implies the existence of the required sets
{Urtt, yr*t: i<a+1}. (The first step is analogous). Write

' T = XU {UE U VE: keN);

then 77 is'a closed set separating X;, between A; and B;. Thus 4 = J{I7:i,ne N}
is an F,-set in' X such that dim(X,>4) = 0 for each 7, yielding dim(X\4) =0
by the countable sum theorem. Finally, condition (¢) shows that f|U{T7: i, n < k}
is a (p, &)-map for each ke N and ¢>0, whence no fiber of f|4 contains p+1
points.

§ 2. Restrictions that lower a map’s dimension.

PROPOSITION 2. Let fi XY be a o-closed map with dim(f) =k and
dimY < co. Then for each | <k there exists a set X, FAX) such that dim X,</
and dim(fIXNX)<k—I-1.

Proof. If X;_, is constructed then it suffices to require for / <k —1 that X;
be an F,-set in X;_; with dimX; </ and dim(X,_,\X;) <k—I-2. The existence
of X,_, in turn follows routinely from Remark 1 and the following

Lemma 3. Let f: X — Y be a proper map with dim(f) = k < 00 and dim Y < oo,
and let A and B be disjoint closed subsets of X. Then, there is a closed set T in X such
that dmT < k—1 .and, for each ye Y, T separates f~*(y) between A and B.

Proof. Let & = |J {N*: k>0}, the set of all finite sequences of integers.
For i € % define the integer }i| by the requirement that i e N'l. We angree that * is
the element of N° and if i€ &, pe N, then (i, p) is the naturally defined member
of N'*1, We shall construct sets F(i), U(i), ¥(i) so that the following conditions
are satisfied for each i & ‘ :

(a) F(i) is closed in Y and U(}) and V(i) are open sets in X with T() n
nVi) =2;

(b) F(x) = Y and U(x)o4, V(+x)>B; )

(c) for each pe N we have U@, p)>U()) nf~ (F(@, p)) and V(Fi,p)=V () o
nfFE p); ’ ‘

@) F@) = U {F(,p): pe N} and diamF(}) < 1/}i|;

() the set E() = f~(FEO)NUE) v V() admits an open cover of size 1/|i]
and order k—1; )

(f) in notation of (¢), the family {E(i, p): p e N} is discrete in X,
Assuming the above sets to be'constructed write

T,=U{E@: lil =n} and T=N{T,: n20}.
If yeY ‘fhen, by (d), there are ij,i,,... € N 'such that
D yeFG)n F(,i)n ., .
and we have fY(Y\T = U(y) U V(»), where the set
LU0 =T A U UG ) PN}
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and the analogously defined set ¥(y) form the necessary partition of £~ Y(y)\T.
To show that dim(7T") < k—1 we notice that, by (e), each set T, is closed and admits
an open cover of size 1/n and order k—1. Thus compacta in T are of dimension
<k—-1 and dimT< k—1 in case X is compact. In the general case we infer that,
at least, each fiber of f|T is of dimension <k—1. Moreover, f|T = Ba, Where
o: T— N® and fi: im(0) » Y are defined by the requirements that

te E(iy) nE(y, i) 0 ..., where  (iy, is,..) = a(?), _

and
ﬁ(i;l’ i29 --') € ﬂlF(iis revs ip) .
p=

Both o and f are continuous, ¢.f. (d) and (f), and so f|T = fo implies that « is
proper and dim(e) < dim(f|T)<k—1. Therefore dimT<k—1 by a classical
theorem of Hurewicz ([E], p. 136). ) )

It remains to construct the sets satisfying (a)—(e), which is done by induction
on [i|. Assume that F = F({), U = U(i) and ¥ = V() are constructed so that (a)
and (b) hold. Write g = dim ¥ and let W7, ..., W, be disjoint open subsets of X" such
that each of them separates X between U and V. For /< g and 'y & F let P(y) be
a closed set separating f~Y(y) between U and V and such that dimP(y)
<dimf*(y) <k and P(y)=W,. Let Q(y) be a neighbourhood of P(y) in W,
which admits an open cover of size (n+1)"* and order k—1. Since fis closed it
follows that there is a neighbourhood G(») of y in F such that f~*(G(»)) n Qu(»)
separates f (G(y)) between U and ¥, for each /< g. By a result of Ostrand ([E],
p. 228) there is an open cover ¢ of F which refines {G()): y e F} and is the union
of its discrete sub-families %, ..., 4,. Then, for each G'e ¥ there are open subsets
U(G) and V(G) of X, with disjoint closures, such that

U@ T, V(@=fHO YV,
and if Ge ¥, then
S HONUG) v V(@)= Qi)
Let {F(G): Ge G} be a closed shrinking of & of size 1/}i| and let
E(G) = {FONUG) v ¥(3)

for G e @. Each of the families {E(G): G € ¥} is discrete and for (?e {4 yand He ?,,,

we have E(G)n E(H)cW,n W, = @. Thus {E(G): _Geﬁ} is discrete. With

Gy, Gy, ... being an enumeration of ¥ we may thus write :
FG,p) = F(G), UGP=U®G,), V@ip=V@G)

to' get the desired sets satisfying conditions (a)—(e). This concludes the proof qf
the Lema and of Proposition 1.

for some yeF.
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Reémark 2. In case X is compact Proposition 2 can also be proved using
a theorem announced by B. A. Pasynkov in [P]. Conversely, Pasynkov’s theorem
can be extended to o-closed maps and derived as a consequence of Proposition 2:
COROLLARY 1 (C. f. [P]). Assume f: X — Y is o-closed and dim(f) = k < o0,
dim Y < co. Then, there exists a map g: X — I* such that dim(fx g) = 0. ‘
Proof, By Proposition 2 there'is a set 4 € F,(X) such that dim4 = 0 and
dim(f]X~\A4) < k—1. Take a map u: X — I such that /|4 is 1-to-1; then dim (fx u)
<k—1 and the result follows by induction on k.

§ 3. Proof of Theorem 1 and of Corollary 2. Assume notation of Theorem 1.
By Proposition 2 there is a set P— X such that dimP <k—1 and dim(f|X\P) = 0.
By a well-known theorem of Tumarkin ([E], p. 45) there is a G;-set P in X such
that PoP and dimP < k—1. Then, f|X\FP is o-closed any by Proposition 1 there
is a set Qe F,(X\P) such that dim(X\P\Q) = 0 and f|Q is p-to-1. We let 4
= X\Q to get the desired set.

Proof of Corollary 2. We consider first the case where dim(f) = 0. Take
sets Y= ¥,>¥,_;>..s0that dimY; = i and dim(¥\Y;-,) =0 fori=0;1, ...
.es p. (Simply require that ¥;_, be the union of the boundaries of all members
of an appropriate basis of the topology of ¥}). Let ¥, = Y if ¢>p and

Xj =fn1(Y2j+1\Y2j—1),

where r is such that 2r+1<p and 2r+3>p.

Applying ‘Theorem 1 to f|X;: X; > Y,;,.(\Yz;_; we get sets 4;=X; such
that dim4; = 0 and f]X\4; is 1-to-1. We let 4 = X, U 4y V... U 4,; then
F1X\4 is 1-to-1 and it follows easily that dim4 < E(p/2). (Observe that dimX,, ,
<dim(f)+dim(¥\Y;,+,)<0). This proves the Corollary under the additional
assumption k = 0. The general case now follows easily from Proposition 2, c.f. the
proof of Theorem 1.

j=0,1,.,r+1,

§ 4. Cells general positioned with respect to a map. In this section we fix
f: R*—> Y where p=dimY<co. Our goal is to approximate maps I® — R",
s <n—dim(f), by maps with images intersecting each fiber of f in finitely many
points or, possibly, in sets of cardinality 1. If s> 2 then the results are obtained
under a global assumption on f stating that the singular ser of f, =

S(f) = ke I’ £7Y0) # (<)
is tamely embedded, in sense of Stanko demension theory ([E1], [§]). We write

C(I% R") for the space of all maps I° - R" (compact-open topology).

TueoreM 2. If dim(f)<n—2 then {we C(I, R"): fa is p-to-1} is dense in
C(I, R". :

Addendum. If dim(f)+E(p/2) <n—2 then {xe C(I, R"): fx is l-to-1} is
dense in. C(I, R™).
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Proof. Let E = C(I, R") and

G) = {aeE: fu is a (p, &)-map},
G = {aek: fuis pto-1} = N {G(e): >0}

(In the case of the Addendum replace p by 1 in these definitions). We omit the
verification that each G(g) is open in E. By the Baire category theorem it remains
to prove that whenever « € E and ¢> 0 are given then o € G(e).

Fix r>0 and take d&(0,r) so that if |t—s|>¢/2 then o(a(s), w(f)) > 36.
Let # be a triangulation of I with diama(J) <& for Je #. By § 3, there is a set
A= R" such that dimA4 < n~2 and f|R"™\A4 is p-to-1. There is no loss of generality
in assuming that a(dJ)=R"\4 for Je # and

if @ ta(x) # {x} then carda"te(x) =2 and xe{{0J: Je £}.

Let {U(J)): Je #} be a collection of pair-wise disjoint open connected sets in R*
such that U()2a(J\&J) and diamU(J) < 4. It follows from Mazurkiewicz theo-
rem ([E], p. 80) that there are continua C(J) such that «(8J)>C(J) and C{(/N(37)
cU()\4 for each J & #. Then, C = {J {C(J): J€ #} is a compact set in R*™\4
and thus there is a neighborhood ¥ of C such that f|V is a (p, 6)-map. With S
= |J {a(d)): J € #} we may use the Hahn-Mazurkiewicz theorem to get for each J
an are By V A UUWN(S) U a(d)) having «(dJ) as end-points, and we define
BeE so that f(J) = B, for all Je #. Then, im(B)=V and

(@) e(B,my<d<r;

(b) if ye ¥ then f~*(») A ¥ is a union of p sets size 4;

(¢) if Kcim(P) is a set of 'size & then diamp™(K) <e.

(In fact, (a) implies that piK)ca " (K) where diamK < 35) .Thus feG, and
o(B, @) <r; by the arbitrareness of r this shows that ce G(e).

It is convenient to quote now the following

LiMMA 4. Let A be a subset of R" such that every map (1%, 81*) — (R", R"™\4)
is relative 81* approximable by mappings with images missing A. Let se N satisfy
s+dimA < n. ‘

() If A is o-compact then {feCU* R"): im(B)nd = O} is dense in
', R");

(i) If a: 91° —» R" satisfies im(x) 0 A = @ then there is a compact set Cc R4
such that @ is null-homotopic in every neighbourhood N of C in R

Comment. Part (i) needs to be shown for compacta only and follows by
induction on s, using Alexander duality and Hurewicz theorem. Se [S], [B-], [El].‘
Part (if) follows in a similar but more delicate manner, using Sitnikov duality [M}
for non-closed subsets of R” and Hurewicz theorem in Borsuk’s weak shape theory.
For a proof see the recent paper [S] of S. Spiez.
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PROPOSITION 3. [f s <n—dim(f) and n>5 then {xe C(I, R"): dim(f¥) = 0}
is dense in C(I°, R").

Proof. If s = 2 then it follows using Theorem 2 that the set

H = {ne C(I*, R"): folW is p-to-1},
where
o W = {(s, t) € I*: cither s or ¢ are rational},

is dense i C(I%, R"). If o € H then each fiber of fo meets W in finitely many points
whence dim(fx) = 0,
o If s> 2 we fix embeddings «;: I* — R" such that dim(fx;) = O for each ie N
and {o;: ie N} is dense in C(I% R").

CLAM. There is a set A € F(R") such that

() dim4 <dim(f)—1 and dim(f|R™A4) = 0, and

(i) Any {im(x): ieN} = @.

Assuming the claim it follows from Lemma 4 that

G={eeC(’ R": im(®) n 4 = O}

is dense in C = C(I*, R"). By Baire category theorem G n H is dense in C, where
H = {ne C: dim(z) = 0}. Bvidently, dim(fx) =0 for e G n H. ‘

" The proof of the claim can be repeated after that of Proposition 2, except
that the set T of Lemma 3 has to be constructed so that T~ im(s,) = @, for each i.
To assure this we require that the sets inductively constructed in the proof of that
Lemma satisfy, in addition to conditions (a)(f),

® E@) A im(ay) = @,

The previous construction works in this setting for the sets K(y) = im (o) N
Nf~Yy) being 0-dimensional it follows that the sets Si(y) separating 4 from B
in f7}(y) may be taken to be disjoint from K(»),

THEOREM 3. Assume that any map I* —~ R" is approximable by maps with images
missing S(f), the singular set of f. If s+dim(f)+E(p/2)<n then the set
{ae CUI%, RY: fu is 1-to-1} is dense in C(I*, R

Proof. We consider two cases

(1) dim(f)= 0. Fix p: I* > R" and &>0; we shall constrict an a: I* — R"
such that dist(x, f)<e and o e G(e), where Co

' G(gé): {oz € C(I%, R"): « and flim(x) are (1, ¢)-maps} .

The assertion will then follow by Baire category theorem.
The construction of «. Let  be any triangulation of I° which is so fine that
any set B(0), o€, is contained in an open ball U(o) in R* of radius g/2. Let
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{op % = RNS( 1)} be a dense subset of C(I%, R") consisting of embeddings. By
induction and Baire category theorem we may assume that § is such that

(@) fBIT="Y is 1-to-1, and

) T n U {im(p): ie N} = 2,

R By Corollary 1 there is a o-compact set 4= S(f) such that dim4 = E(p/2)

and flR"™A is 1-to-1. Write
| B AUfYRTT NG

We have dimf* YB3 ) <dim(f)+s—1 and so dimB< max(E(p/2),s—1)
<n—s (we are using assumptions on s and results in [E], pp. 136 and 43).

: By Lemma 4 there arc compacta C(0)cU(0)\B, ce I\ s=1  guch that
ploo is null-homotopic in every neighbourhood of C{s) in R With C
‘= {C(o): o0& \T* "} it is transparent that f|C is I-to-1. By compactness
of C there is a neighbourhood N of C in R" such that f|N is a (1, ¢)-map; the
properties of C(o)’s then allow us to construct a map a: I*— R" s1.10:h that a(o)
< U(s) n N and «|0o = f|do, for each o € I\I*"1. By general position we may
'additionally require that o be an embedding and hence a desired member of G(2)
with dist (a, B) <e. (Here, property (b) and Lemma 2 are used to construct « so
that a(o|Nda) A (T ) = @, for every oe I\T*"). .

(2) The general case, We embedd I* standartly in I, where t = n—dim(f),
and extend a given f: I° - R" to a map u: I' - R". Using Propotsnmn 3 an'd as-
sumptions on S(f), along with Baire theorem, we get a map v: I' — R" which is
as close to v as we wish and satisfies the following conditions:

(@) dim{fv) = 0; o .
(i) v(W) N S(f) = B, where W = {xel': all but 2 co-ordinates of x are
rational}; ‘

(i) S@) " W.= @. N
Then, S(f¥) n W = & and we may apply the special case (1) above, obtaining
a map j: I - I' such that .

(iv) j closely approximates the embedding I* — ‘I’, and

(v) (fv)] is 1-to-1,

It is clear that o = uj closely approximates f and fx is 1-to-. ,

Remark 3. With assumptions on s in Theorem 3 replaced by f‘s+d1m(f) <n”’
it follows by similar arguments that each map J* — R" is appri);umalollc_l:y maps
&: I' — R" with fx being finite-to-1, e.g. g-to-1 where g = p(s™"—n"")""

Remark 4. The results of this section remgin valid with I’. being repla;l’.ce.d
by any (separable metric) space P of dimension <s. (In this settmg, C(P, R )R:'S
given the limitation topology generated by all balls in supremum-metric on CgP, . )
induced by bounded admissible metrics for R"). A proof follows by considering
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first the case where P is a locally finite polyhedron of dimension <s and then
approximating maps P — R" by compositions P — K — R" with K a polyhedron
as above.

§ 5. A relation to the problem of characterization of Q-manifolds. In this section
all spaces are locally compact and Q = [~1, 1], the Hilbert cube. Q-manifolds
may be characterized using the following properties

(+), any map I"x{1,2} - X is approximable by maps sending I"x {1} and
I"x {2} to disjoint sets;
namely, X is a Q-manifold iff X’'e ANR and X e (), for each n. (See [T] and [E3]).
On the other hand it has been conjectured by J. W. Cannon that the property (),
distinguishes n-manifolds among ANR’s having a finite dimension #>5 and local
homology groups that of R This conjecture has been turned into a theorem by
results of R. D. Edwards (see [E2]) and of F. Quinn [Q]. Returning to Q-manifolds,
no. characterization of Q-manifolds in terms of (x), and local homology groups
is known, although R. D. Daverman and J. Walsh [DW] have characterized them
using (+), and certain homology analogues of (¥),, n3>3. (C.f. also [LW].)
Applying duality-type results (sce [DW], p. 414, for more general statements)
it is easy to see that the Q-manifold analogue of Canmon’s conjecture can
equivalently be formulated in the following way which exhibits directly its
dimensjon-theorethic aspect: )

(C) Let X'e ANR N (%), be such that Hy(X, X\{x}) = 0 for each xe X and
let n>3. Then, any map I” — X is approximable by maps sending I" to finite-
dimensional sets. ) :

In this section we provide a further illustration of this aspect of the characteri-
zation problem by using Theorem 1 in the proof of the following

PROPOSITION 4. Suppose X € ANR n (+),. Then, X is a Q-manifold iff, for
every n, there is a map g: X — Y such that dim Y < o and every fiber 97y, ye Y,
is a z,-set in Y.

Here, we say that a closed set K<X is a z,-set (resp. a Z,-set) in X iff
H(U, UNK) = 0 (resp. n(U, U~K) = 0) for every i <n and every open set UcX.

Proof. We omit some details as our aim is mainly to present some of the
motivation for the results of this paper and for the questions stated in § 6. Fix
Jo: I" = X, embedd standartly I” into R?", and let f* R?" —+ X be a map extending /.
Let g: X — Y be 2 map such that dim ¥ < o and every fiber of g is a z,,-set in X.
Replacing ¥ by ¥xI° and using the property (%), of X it can be achieved that
each fiber of g be a Z,,-set in X. (A closed set X in an ANR-space X has property
Z, iff it bas praperties z, and Z,). We need the following

LEMMA 5. If g is as above then given u: I — X and v: I*" — X, there is a map
w: I*" — X which is as close to v as we wish and satisfies gu({x}) o gw({x} xI")
=@, for each x eI : . ‘
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The proof of the Lemma reduces to constructing I"-preserving maps I"x
xI" - I["x X with images disjoint from K =) {{x} xg~lgu(x): xe1"}. Since
K intersects each fiber {x}x X along a Z,,-set this can be done analogously as
in [Wol. :

Returning to the proof of the Proposition, let & denote the family of all
n-clement subsets of {1, ..., 2n}. For 4 e .o let p,: R** — R* be the projection,
Tet ¥'(4) be a fixed dense countable subset of R* and let ¢, 4: R* - R*" be lingar
sections of p, with U {im(e; 0: ie N} = V({L, ..., 21\A) x R4 Using Lemma 5
and Baire category theorem, or a convergence procedure, we get a map h: R*"— X
which is in the compact open topology as close to f as we wish. and satisfies the
following condition :

() Given A, Be.of we have gh(py (x+0\g;, 4(x)) N gho, (%) = B, for every
x e R* and v € V(B).

Employing (¥), we may also require that h|W be 1-to-1, where
W = {x e R*": at most 2 co-ordinates of x are irratibnal}.
If F = (gh)’i(y) is any fiber of gh then either F is in the Menger-Nobeling set
RENU {im(e;, 0): i€ N, Ae st} 7

and hence dimF<n—1, or elsc F is of the form (gh)~'ghe; «x) for some ie IY,
Ae st and xe R4 In the latter case it follows from (i) that F is contained in
another set

A

-

{01,400} v R¥*™U {p5 (x+0v): ve V(B), Be #})

of the Menger-Nobeling type. Hence in either case dim F<n—1 and by Theorem 1
there is a set K & F,(R*") such that dim(R*\K) <n—1 and gh|K is p-to-1, where
p = dimY. By Hurewicz theorem [E, p. 136] we infer that dim/(K)<oo and so
there is a G,-set L in R*" such that LoK u W and dim/(L) < co. By Lemma 4,'
the inclusion I <» R*" is approximable by maps j with im(j)=L. It is clear that 7/
may serve as the desired approximation to f, having a finite-dimensional image.

§ 6. Some questions. The requirement dim Y <oo in Propositiog.4 is caused
directly by a similar assumption in Theorem 1. As without it Prop‘os?tn’on 4 would
provide a proof of (C), it is of interest to investigate the following “limit” statements
of results of §§ 2, 3 (all spaces are compact and Q = I°):
| ‘I Let f: @ — ¥ be a map with dim(f) = 0, let ne N and in case n> 1 assume
that S(f) is a countable union of Z,-sets. Is then any map I" - Q ap;.)roxm_lable
by maps a: I" -+ Q for which fx(I") is a countable union of finite-dimensional
compacta ? . N

" 2. Is there an 7 € N such that whenever f: X' —» Y and dim(f) = 0, dimX = n,
then there exists a set 4 <X such that dim(X\4) <n—1 and f(4)is a countable
union of finite-dimensional compacta? :
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* Incidentally, if X' = I"x (Cantor set) then a set 4 as above exists, see [Bu].
In 1 and in 2 the words “countable u. of f.d. compacta” could. be replaced by
“weakly infinjte-dimensional” to obtain alternative version of potential interest;
the latter property is assured if f is N,-to-1 on A or on a(I"). )

The problem of exhibiting infinite-dimensional versions of Theorems 1--3 secms
to be interesting also because if there are no such then these theorems could serve,as
guidelines how to assure infinite-dimensionality of. certain decomposition spaces;
E.g. the question whether dimension is preserved by 1-dimensional CE- -maps
(cf. [KW]) is equivalent to; ‘

3. Is there.a CE-map f: I" = ¥ such that dim( f) = ] and any o-compact set
with dim(/"\4) = I intersects a fiber of f in more than n points?

Concexvably, f as above may be comstructed so that.each arc connecting
a given pair of points of I” intersects a fiber of fin at least 2 pomts (n = 5; compare
Theorem 2).

Finally, in connection with Theorem 2 and the problem of - detecting property
(%), in product spaces let us ask the following:

4, Letf I">Ye ANR be a map with dlm(f) =0 and n=dimY>4. Is
the ‘set {we C(I, I"): fo is 1-to- -1} connected and: locally connected ?

References

[B] J. Bryant,.On spaces, Proc. Amer. Math. Soc, 23

(1969), pp. 46-51,

[Bul . W, Bula, 4 selection theorem for mappings of the Cantor bundle, Bull. Polon, Acad. Sci.
31 (1983), Pp. 399-402.

[DW] R.J. Daverman and J. J. Walsh, Cech homology characterizations of [n/‘ nite rlnnemronaf
manzfalds, Amer. J. Math. 103 (1981), pp. 411-435,

[E1l ' 'R.-D. Edwards, Démension theory I, Geom. Topology, Proc. Conf. Park City 1974

.1 Lecture Notes in Math, 438 (1975), pp. 195-211. ' . o

[E2] -~ The topology of manifolds and cell-like maps, Proc. Intv Congress of Math, 1978, Acﬂdn
Sci. Fennica, Helsinki (1980), Pp. 111-]27 ’ ' o

[E31 - — Characterizing iifinite-di ifolds topologically, Sem. Bourbaki Vol. ]978/79

+ - Lecture Notes in Math. 770 (1980), pp. 278—302

[E] R. Engelking, Dimension rheory, North Holland publlshmg Company 1978.

[KW] J. Kozlowski and L Walsh The cell like mapplng problem, Bull. Amer, Math SQC.
2 (1980), pp. 315—316 o

[LW] :“T. L, Lay and J. J. Walsh, Characterizing Hilbert cube mzm(fo[civ by their ImmoIoglcaI

structure, Tapology and Appl 15 (1983), pp. 197-203.

.[M]\ W. S. Massey, Homology and Cohomalogy theory. An approach baged on Alexandeg
cochains, Marcel Dekker i inc, (1978)

Pl  B.A Pasynkov, On dimension and geametry af mappings, Dokl. AN SSSR 221 (1975);

PP 543-546 (in’ Russian), - I !

Q1 F...Quinn, Resolutions of Homalogy Marniifolds, and the topological cliaracterization of
Manifolds, Invent. Math, 12 (1983), pp. 267-284 : . :

bedding . of comy in euclid

icm°

Finite to one restrictions of continuous functions 249

[RC] J. H. Roberts and P. Civin, Sections of continuous collections, Bull. Amer, Math, Soc.
49 (1943), pp. 142-143,

[S] S. Spiez, Hurewicz and Whitehead theorems with compact carriers, Fund. Math., to-
appear. )

(81  Stanko, The embedding of compacta in euclidean spaces, Mat. Sbornik 83 (125) (1970),.
pp. 234-255 [in Russian; a translation in Math. USSR Sbornik 12 (1970), pp. 234%54].

[T] H. Toruiczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds,
Fund, Math. 106 (1980), pp. 31-40. ]

[Wa] J. J. Walsh, Homological embedding properties of the fibers of a map and the dimension
of its image, Proc. Amer, Math, Soc. 85 (1982), pp. 135-138. B

[Wo] R. Y. Wong, Homotopy negligible subsets of bundles, Compositio Math. 24 (1972),
pp, 119~128,

INSTITUTE OF MATHEMATICS
POLISEL ACADEMY OF SCIENCES

Warszawa, Sniadeckich §

Received 10 May 1984


GUEST




