

Finite-to-one restrictions of continuous functions (*)

by

H. Toruńczyk (Warszawa)

Abstract. It is shown that if $f: X \to Y$ is a map of locally compact metric spaces and $p = \dim Y < \infty$, then there exists a set $A \subset X$ such that $\dim A \leq \sup\{\dim f^{-1}(y): y \in Y\}$ and no fiber $f^{-1}(y), y \in Y$, contains more than p points of $X \setminus A$. A connection between this result and the problem of characterization of Q-manifolds is indicated.

Let $f: X \to Y$ be a map of a locally compact metric space X. In this note we consider the question whether the structure of f can be significantly simplified by passing to a restriction $f|X\setminus A$, where A is an appropriately chosen subset of X of dimension comparable to $\dim(f) = \sup \{\dim f^{-1}(y): y \in Y\}$. In §§ 1-3 we show that if $\dim Y < \infty$ then this is in fact so. Specifically, we prove:

THEOREM 1. Let $f: X \to Y$ be a σ -closed map of separable metric spaces such that $k = \dim(f)$ and $p = \dim Y$ are finite. Then, there is a set $A \subset X$ such that $\dim A \leq k$ and $f \mid X \setminus A$ is p-to-1.

COROLLARY 2. In notation of Theorem 1 there is a set $B \subset X$ such that $\dim B \le k + E(p/2)$ and $f(X \setminus B)$ is 1-to-1.

Here, we denote by E(x) the integer part of x and we say that a map $f: X \to Y$ is p-to-1 if no fiber $f^{-1}(y)$, $y \in Y$, contains more than p points.

The above results are applied in § 4 to give certain conditions under which maps $[0, 1]^s \to R^n$ may be approximated by maps whose images are transverse, in a very vague sense, to all fibers of a given map $f: R^n \to Y$.

The statements of §§ 3, 4 may be viewed as selection type results, with Corollary 2 providing a certain lower bound for the maximal dimension of closed subsets of Y over which f admits a continuous selection. (In case f is open, a classical result on sections of f is given in [RC]).

The considerations of this note have been motivated by the problem of characterization of Hilbert cube manifolds. A dimension-theoretic approach to this problem naturally leads to questions concerning the possibility of improving properties of a map by neglecting a "small" subset of its domain; however in contrast

BANTO O CHARLEST MARKET STEELING BANKS OF

of this note have been obtained during a visit/to the University of Oklahoma at Norman.

to Theorem 1 the range of the map may be of infinite dimension. We formulate some of these questions in § 6 and we preceed this by showing in § 5 how Theorem 1 can be applied to derive a characterization of Q-manifolds. We note that, although formally new, this characterization can be derived from a result of R. D. Daverman and J. Walsh [DW] and yet another dimension-theoretic result, due to J. Walsh [W]. Nevertheless, we sketch a proof of it to indicate the approach alluded to above and to illustrate the connection between a problem concerning Q-manifolds and results, or questions, in dimension theory.

Notation. All spaces are assumed to be separable and topologized by a fixed metric which we denote by ϱ . We say that $f\colon X\to Y$ is σ -closed if X is the union of countably many closed sets X_i such that each restriction $f|X_i\colon X_i\to F(X_i)$ is a closed map. Closed maps with compact fibers are called proper.

Remark 1. By a lemma of I. A. Vainstein ([E], p. 139) if $f: X \to Y$ is closed then there is an open set $U \subset X$ such that $f|X \setminus U$ is proper and f(U) is a countable set.

We say that a family of sets is of size ε if the diameter of each of its members is $<\varepsilon$. The boundary of a set A is denoted by ∂A . We write N (resp. R) for the set of integers (resp. real numbers) and I for the segment [0, 1]. Undefined notions have the meaning of [E].

§ 1. 0-dimensional maps. In this section we demonstrate Theorem 1 in the special case where $\dim(f) = 0$. We need two lemmas.

LEMMA 1. Let $f\colon X\to Y$ be a closed map with $\dim(f)=0$ and let $\epsilon>0$. Then, there is an open cover $\mathscr W$ of Y with the property that whenever $\{U\}$ refines $\mathscr W$ and $\overline{V}\subset \operatorname{int} U$ then there are discrete families $\mathscr D$ and $\mathscr E=\{E(D)\colon D\in\mathscr D\}$ of open subsets of X such that:

- (a) if $D \in \mathcal{D}$ then diam $(D \cup E(D)) < \varepsilon$ and $E(D) \subset f^{-1}(U \setminus \overline{V})$;
- (b) \mathcal{D} covers $f^{-1}(\overline{V})$ and E(D) is a neighbourhood of ∂D , for each $D \in \mathcal{D}$;
- (c) if $x_1, x_2 \in \bigcup \mathcal{E}$ and $f(x_1) = f(x_2)$ then $\varrho(x_1, x_2) < \varepsilon$.

Proof. For each $y \in Y$ there is a neighbourhood G(y) of $f^{-1}(y)$ in X which is the union of a discrete collection $\mathscr{G}(y) = \{G_1(y), G_2(y), ...\}$ of open sets of size ε . Since f is closed we have $f^{-1}(W(y)) \subset G(y)$ for some neighbourhood W(y) of y. Let $\mathscr{W} = \{W(y): y \in Y\}$. If $\overline{V} \subset \operatorname{int} U$ and $U \subset W(y)$ then let $F_0, F_1, ...$ be open neighbourhoods of \overline{V} satisfying $F_0 \subset U$ and $\overline{F}_{i+1} \subset F_i$ for each i. Write

$$\mathscr{D} = \{D_i : i \in N\}$$
 where $D_i = G_i(y) \cap f^{-1}(F_{4i})$,

and

$$E(D_i) = G_i(y) \cap f^{-1}(F_{4i-1} \setminus \overline{F}_{4i+1}), i \in N.$$

Conditions (a) and (b) are clearly met. Also, $f(E(D_i) \cap f(E(D_j)) = \emptyset$ which coupled with (a) yields (c).

DEFINITION. We say that $g: A \to B$ is a (p, ε) -map if each point-inverse $g^{-1}(b), b \in B$, is a union of p sets of size ε .

LEMMA 2. Let $\varepsilon > 0$, let $f: X \to Y$ be a closed map with $\dim(f) = 0$ and $\dim Y = p < \infty$ and, for i = 1, 2, ..., l, let K_i and L_i be closed disjoint subsets of X_i . Then, there are open subsets E_i of X separating X between K_i and L_i and such that $f|E_i \cup ... \cup E_i$ is a (p, ε) -map.

Proof. Take closed sets S_1, \ldots, S_l so that S_i separates X between K_i and L_i ; we may require that the metric ϱ of X is such that $\varrho(K_i \cup L_i, S_i) > \varepsilon$ for each $i \leq l$ (otherwise replace $\varrho(x_1, x_2)$ by $\varrho(x_1, x_2) + \sum\limits_{i \leq 1} |\lambda_i(x_1) - \lambda_i(x_2)|$ for suitably chosen maps $\lambda_1, \ldots, \lambda_l$). Let $\mathscr W$ be a cover of Y assured by Lemma 1. By a result of Morita there is a locally finite open cover $\mathscr U$ of Y such that $\{\partial U: U \in \mathscr U\}$ is of order p-1 and $\mathscr U$ refines $\mathscr W$; see [E], p. 229. Let $\{V(U): U \in \mathscr U\}$ be a closed shrinking of $\mathscr U$ such that $\{U \setminus V(U): U \in \mathscr U\}$ is of order p-1, and for $U \in \mathscr U$ let $\mathscr D(U)$ and $\{E(D): D \in \mathscr D(U)\}$ be families provided by Lemma 1 for the pair $\{U, V(U)\}$. We write

$$\begin{split} \mathscr{D}_i &= \{D \in \bigcup \, \{\mathscr{D}(U) \colon \, U \in \mathscr{U}\} \colon \, D \cap S_i \neq \varnothing \} \,, \\ T_i &= \bigcup \, \{\partial D \colon \, D \in \mathscr{D}_i\} \quad \text{and} \quad \widetilde{E}_i &= \bigcup \, \{E(D) \colon \, D \in \mathscr{D}_i\} \,. \end{split}$$

Then, T_i contains the boundary of a neighbourhood of S_i in $X \setminus (K_i \cup L_i)$ and hence separates X between K_i and L_i . Let $B = \widetilde{E}_1 \cup ... \cup \widetilde{E}_i$. To show that f | B is a (p, ε) -map fix $x \in B$ and let $\mathscr{U}_0 = \{U \in \mathscr{U} : f(x) \in U \setminus V(U)\}$; then $\operatorname{card} \mathscr{U}_0 \leqslant p$. We have

$$(f|B)^{-1}f(x)\subset f^{-1}f(x)\cap\bigcup\{E(D)\colon D\in\mathcal{D}(U)\text{ and }U\in\mathcal{U}_0\},$$

and for each $U \in \mathcal{U}_0$ the set $f^{-1}f(x) \cap \bigcup \{E(D) : D \in \mathcal{D}(U)\}$ is of size ε , by property (c) of $\{E(D) : D \in \mathcal{D}(U)\}$. Thus $(f|B)^{-1}f(x)$ is a union of p sets of size ε and we may let E_i to be any neighbourhood of T_i whose closure is contained in E_i .

PROPOSITION 1. Let $f: X \to Y$ be a σ -closed map with $\dim(f) = 0$ and $\dim Y = p < \infty$. Then, there is a set $A \in F_{\sigma}(X)$ such that f|A is p-to-1 and $\dim(X \setminus A) = 0$.

Proof. Let $X_1 \subset X_2 \subset ...$ be closed subsets of X such that $\bigcup X_i = X$ and each $f|X_i$ is a closed map. Let $\{A_i, B_i \colon i \in N\}$ be closed subsets of X such that $A_i \cap B_i = \emptyset$ and both $\{A_i \colon i \in N\}$ and $\{X \setminus B_i \colon i \in N\}$ are bases of neighbourhoods of X. With $p = \dim Y$ we shall construct relatively open subsets U_i^n and V_i^n of X_n , $i \le n$, so that

- (a) $\overline{U}_i^n \cap \overline{V}_i^n = \emptyset$ and $U_i^n \supset X_n \cap A_i$, $V_i^n \supset X_n \cap B_i$;
- (b) $U_i^{n+1} \supset \overline{U}_i^n$ and $V_i^{n+1} \supset \overline{V}_i^n$;
- (c) $f \mid \bigcup_{i=1}^n X_n \setminus (U_i^n \cup V_i^n)$ is a (p, 1/n)-map

The inductive construction. Suppose $\{U_i^n, V_i^n: i=1,...,n\}$ are known. We write $U_{n+1}^n = \emptyset = V_{n+1}^n$ and

$$K_i = A_i \cap X_{n+1} \cup \overline{U}_i^n$$
, $L_i = B_i \cap X_{n+1} \cup \overline{V}_i^n$ for $i \le n+1$

Lemma 2 applied to $f|X_{n+1}$ readily implies the existence of the required sets $\{U_i^{n+1}, V_i^{n+1}: i \le n+1\}$. (The first step is analogous). Write

$$T_i^n = X_n \setminus \bigcup \{U_{ij}^k \cup V_i^k \colon k \in N\};$$

then T_i^n is a closed set separating X_n between A_i and B_i . Thus $A = \bigcup \{T_i^n : i, n \in N\}$ is an F_σ -set in X such that $\dim(X_n \setminus A) = 0$ for each n, yielding $\dim(X \setminus A) = 0$ by the countable sum theorem. Finally, condition (c) shows that $f | \bigcup \{T_i^n : i, n \le k\}$ is a (p, ε) -map for each $k \in N$ and $\varepsilon > 0$, whence no fiber of f | A contains p+1 points.

§ 2. Restrictions that lower a map's dimension.

PROPOSITION 2. Let $f: X \to Y$ be a σ -closed map with $\dim(f) = k$ and $\dim Y < \infty$. Then for each l < k there exists a set $X_l \in F_{\sigma}(X)$ such that $\dim X_l \le l$ and $\dim(f|X \setminus X_l) \le k - l - 1$.

Proof. If X_{k-1} is constructed then it suffices to require for l < k-1 that X_l be an F_σ -set in X_{k-1} with $\dim X_l \leqslant l$ and $\dim (X_{k-1} \setminus X_l) \leqslant k-l-2$. The existence of X_{k-1} in turn follows routinely from Remark 1 and the following

LEMMA 3. Let $f: X \to Y$ be a proper map with $\dim(f) = k < \infty$ and $\dim Y < \infty$, and let A and B be disjoint closed subsets of X. Then, there is a closed set T in X such that $\dim T \le k-1$ and, for each $y \in Y$, T separates $f^{-1}(y)$ between A and B.

Proof. Let $\mathscr{F} = \bigcup \{N^k \colon k \ge 0\}$, the set of all finite sequences of integers. For $i \in \mathscr{F}$ define the integer |i| by the requirement that $i \in N^{|i|}$. We angree that * is the element of N^0 and if $i \in \mathscr{F}$, $p \in N$, then (i, p) is the naturally defined member of $N^{|i|+1}$. We shall construct sets F(i), U(i), V(i) so that the following conditions are satisfied for each $i \in \mathscr{F}$:

- (a) F(i) is closed in Y and U(i) and V(i) are open sets in X with $\overline{U}(i) \cap \overline{V}(i) = \emptyset$;
 - (b) F(*) = Y and $U(*) \supset A$, $V(*) \supset B$;
- (c) for each $p \in N$ we have $U(i, p) \supset U(i) \cap f^{-1}(F(i, p))$ and $V(i, p) \supset V(i) \cap f^{-1}(F(i, p))$;
 - (d) $F(i) = \bigcup \{F(i, p): p \in N\} \text{ and } \operatorname{diam} F(i) < 1/|i|;$
- (e) the set $E(i) = f^{-1}(F(i)) \setminus (U(i) \cup V(i))$ admits an open cover of size 1/|i| and order k-1;
- (f) in notation of (e), the family $\{E(i,p)\colon p\in N\}$ is discrete in X. Assuming the above sets to be constructed write

$$T_n = \bigcup \{E(i): |i| = n\}$$
 and $T = \bigcap \{T_n: n \ge 0\}$.

If $y \in Y$ then, by (d), there are $i_1, i_2, ... \in N$ such that

$$y \in F(i_1) \cap F(i_1, i_2) \cap \dots$$

and we have $f^{-1}(y) \setminus T = U(y) \cup V(y)$, where the set

$$U(y) = f^{-1}(y) \cap \bigcup \{U(i_1, ..., i_p): p \in N\}$$

and the analogously defined set V(y) form the necessary partition of $f^{-1}(y) \setminus T$. To show that $\dim(T) \leq k-1$ we notice that, by (e), each set T_n is closed and admits an open cover of size 1/n and order k-1. Thus compacta in T are of dimension $\leq k-1$ and $\dim T \leq k-1$ in case X is compact. In the general case we infer that, at least, each fiber of f|T is of dimension $\leq k-1$. Moreover, $f|T = \beta \alpha$, where $\alpha: T \to N^{\infty}$ and $\beta: \dim(\alpha) \to Y$ are defined by the requirements that

$$t \in E(i_1) \cap E(i_1, i_2) \cap ...,$$
 where $(i_1, i_2, ...) = \alpha(t)$,

and

$$\beta(i_1, i_2, ...) \in \bigcap_{p=1}^{\infty} F(i_1, ..., i_p).$$

Both α and β are continuous, c.f. (d) and (f), and so $f|T = \beta \alpha$ implies that α is proper and $\dim(\alpha) \leq \dim(f|T) \leq k-1$. Therefore $\dim T \leq k-1$ by a classical theorem of Hurewicz ([E], p. 136).

It remains to construct the sets satisfying (a)—(e), which is done by induction on |i|. Assume that F = F(i), U = U(i) and V = V(i) are constructed so that (a) and (b) hold. Write $q = \dim Y$ and let $W_1, ..., W_q$ be disjoint open subsets of X such that each of them separates X between \overline{U} and \overline{V} . For $l \leq q$ and $y \in F$ let $P_l(y)$ be a closed set separating $f^{-1}(y)$ between \overline{U} and \overline{V} and such that $\dim P_l(y) < \dim f^{-1}(y) \leq k$ and $P_l(y) \subset W_l$. Let $Q_l(y)$ be a neighbourhood of $P_l(y)$ in W_l which admits an open cover of size $(n+1)^{-1}$ and order k-1. Since f is closed it follows that there is a neighbourhood G(y) of y in F such that $f^{-1}(\overline{G}(y)) \cap Q_l(y)$ separates $f^{-1}(\overline{G}(y))$ between \overline{U} and \overline{V} , for each $l \leq q$. By a result of Ostrand ([E], p. 228) there is an open cover \mathscr{G} of F which refines $\{G(y): y \in F\}$ and is the union of its discrete sub-families $\mathscr{G}_1, ..., \mathscr{G}_q$. Then, for each $G \in \mathscr{G}$ there are open subsets U(G) and V(G) of X, with disjoint closures, such that

$$U(G)\supset f^{-1}(G)\cap U,\ V(G)\supset f^{-1}(G)\cap V,$$

and if $G \in \mathcal{G}_l$ then

$$f^{-1}(G)\setminus (U(G)\cup V(G))\subset Q_l(y)$$
 for some $y\in F$.

Let $\{F(G): G \in G\}$ be a closed shrinking of \mathscr{G} of size 1/|i| and let

$$E(G) = f^{-1}(F(G)) \setminus (U(G) \cup V(G))$$

for $G \in \mathcal{G}$. Each of the families $\{E(G): G \in \mathcal{G}_l\}$ is discrete and for $G \in \mathcal{G}_l$ and $H \in \mathcal{G}_m$ we have $E(G) \cap E(H) \subset W_l \cap W_m = \emptyset$. Thus $\{E(G): G \in \mathcal{G}\}$ is discrete. With G_1, G_2, \ldots being an enumeration of \mathcal{G} we may thus write

$$F(i, p) = F(G_p), \quad U(i, p) = U(G_p), \quad V(i, p) = V(G_p)$$

to get the desired sets satisfying conditions (a)-(e). This concludes the proof of the Lemma and of Proposition 1.

Remark 2. In case X is compact Proposition 2 can also be proved using a theorem announced by B. A. Pasynkov in [P]. Conversely, Pasynkov's theorem

can be extended to σ -closed maps and derived as a consequence of Proposition 2: COROLLARY 1 (C. f. [P]). Assume $f: X \to Y$ is σ -closed and $\dim(f) = k < \infty$, dim $Y < \infty$. Then, there exists a map $g: X \to I^k$ such that $\dim(f \times g) = 0$.

Proof. By Proposition 2 there is a set $A \in F_{\sigma}(X)$ such that $\dim A = 0$ and $\dim(f|X \setminus A) \leq k-1$. Take a map $u: X \to I$ such that f|A is 1-to-1; then $\dim(f \times u) \leq k-1$ and the result follows by induction on k.

§ 3. Proof of Theorem 1 and of Corollary 2. Assume notation of Theorem 1. By Proposition 2 there is a set $P \subset X$ such that $\dim P \leqslant k-1$ and $\dim(f|X \setminus P) = 0$. By a well-known theorem of Tumarkin ([E], p. 45) there is a G_{δ} -set \tilde{P} in X such that $\tilde{P} \supset P$ and $\dim \tilde{P} \leqslant k-1$. Then, $f|X \setminus \tilde{P}$ is σ -closed any by Proposition 1 there is a set $Q \in F_{\sigma}(X \setminus \tilde{P})$ such that $\dim(X \setminus \tilde{P} \setminus Q) = 0$ and f|Q is p-to-1. We let $A = X \setminus Q$ to get the desired set.

Proof of Corollary 2. We consider first the case where $\dim(f) = 0$. Take sets $Y = Y_p \supset Y_{p-1} \supset \dots$ so that $\dim Y_i = i$ and $\dim(Y_i \setminus Y_{i-1}) = 0$ for $i = 0, 1, \dots$, p. (Simply require that Y_{i-1} be the union of the boundaries of all members of an appropriate basis of the topology of Y_i). Let $Y_q = Y$ if q > p and

$$X_i = f^{-1}(Y_{2i+1} \setminus Y_{2i-1}), \quad j = 0, 1, ..., r+1,$$

where r is such that $2r+1 \le p$ and 2r+3 > p.

Applying Theorem 1 to $f|X_j\colon X_j\to Y_{2j+1}\setminus Y_{2j-1}$ we get sets $A_j\subset X_j$ such that $\dim A_j=0$ and $f|X_j\setminus A_j$ is 1-to-1. We let $A=X_{r+1}\cup A_0\cup\ldots\cup A_r$; then $f|X\setminus A$ is 1-to-1 and it follows easily that $\dim A\leqslant E(p/2)$. (Observe that $\dim X_{r+1}\leqslant \dim(f)+\dim(Y\setminus Y_{2r+1})\leqslant 0$). This proves the Corollary under the additional assumption k=0. The general case now follows easily from Proposition 2, c.f. the proof of Theorem 1.

§ 4. Cells general positioned with respect to a map. In this section we fix $f: R^n \to Y$ where $p = \dim Y < \infty$. Our goal is to approximate maps $I^s \to R^n$, $s < n - \dim(f)$, by maps with images intersecting each fiber of f in finitely many points or, possibly, in sets of cardinality ≤ 1 . If $s \geq 2$ then the results are obtained under a global assumption on f stating that the singular set of f,

$$S(f) = \{x \in I^s : f^{-1}f(x) \neq \{x\}\}\$$

is tamely embedded, in sense of Štanko demension theory ([E1], [Š]). We write $C(I^s, R^n)$ for the space of all maps $I^s \to R^n$ (compact-open topology).

Theorem 2. If $\dim(f) \leq n-2$ then $\{\alpha \in C(I, \mathbb{R}^n): f\alpha \text{ is } p\text{-to-}1\}$ is dense in $C(I, \mathbb{R}^n)$.

Addendum. If $\dim(f)+E(p/2) \leq n-2$ then $\{\alpha \in C(I, \mathbb{R}^n): f\alpha \text{ is } 1\text{-to-1}\}$ is dense in $C(I, \mathbb{R}^n)$.

Proof. Let $E = C(I, R^n)$ and

$$G(\varepsilon) = \{ \alpha \in E : f\alpha \text{ is a } (p, \varepsilon)\text{-map} \},$$

$$G = \{ \alpha \in E : f\alpha \text{ is } p\text{-to-1} \} = \bigcap \{ G(\varepsilon) : \varepsilon > 0 \}$$

(In the case of the Addendum replace p by 1 in these definitions). We omit the verification that each $G(\varepsilon)$ is open in E. By the Baire category theorem it remains to prove that whenever $\alpha \in E$ and $\varepsilon > 0$ are given then $\alpha \in \overline{G}(\varepsilon)$.

Fix r>0 and take $\delta\in(0,r)$ so that if $|t-s|\geqslant \varepsilon/2$ then $\varrho(\alpha(s),\alpha(t))>3\delta$. Let $\mathscr J$ be a triangulation of I with $\operatorname{diam}\alpha(J)<\varepsilon$ for $J\in\mathscr J$. By § 3, there is a set $A\subset R^n$ such that $\operatorname{dim} A\leqslant n-2$ and $f|R^n\setminus A$ is p-to-1. There is no loss of generality in assuming that $\alpha(\partial J)\subset R^n\setminus A$ for $J\in\mathscr J$ and

if
$$\alpha^{-1}\alpha(x) \neq \{x\}$$
 then $\operatorname{card} \alpha^{-1}\alpha(x) = 2$ and $x \in \bigcup \{\partial J : J \in \mathscr{J}\}$.

Let $\{U(J): J \in \mathscr{J}\}$ be a collection of pair-wise disjoint open connected sets in \mathbb{R}^n such that $U(J) = \alpha(J \setminus \partial J)$ and diam $U(J) < \delta$. It follows from Mazurkiewicz theorem ([E], p. 80) that there are continua C(J) such that $\alpha(\partial J) = C(J)$ and $C(J) = \alpha(\partial J) = C(J) = C(J)$. A for each $J \in \mathscr{J}$. Then, $C = \bigcup \{C(J): J \in \mathscr{J}\}$ is a compact set in $\mathbb{R}^n \setminus A$ and thus there is a neighborhood V of C such that $f \mid V$ is a (p, δ) -map. With $S = \bigcup \{\alpha(\partial J): J \in \mathscr{J}\}$ we may use the Hahn-Mazurkiewicz theorem to get for each J an arc $\beta_J \subset V \cap U(J) \setminus f^{-1}f(S) \cup \alpha(\partial J)$ having $\alpha(\partial J)$ as end-points, and we define $\beta \in E$ so that $\beta(J) = \beta_J$ for all $J \in \mathscr{J}$. Then, $\mathrm{im}(\beta) \subset V$ and

- (a) $\rho(\beta, \alpha) < \delta < r$;
- (b) if $y \in Y$ then $f^{-1}(y) \cap V$ is a union of p sets size δ ;
- (c) if $K \subset \operatorname{im}(\beta)$ is a set of size δ then $\operatorname{diam} \beta^{-1}(K) < \varepsilon$.

(In fact, (a) implies that $\beta^{-1}(K) = \alpha^{-1}(\tilde{K})$ where diam $\tilde{K} < 3\delta$). Thus $\beta \in G_*$ and $\varrho(\beta, \alpha) < r$; by the arbitrareness of r this shows that $\alpha \in \bar{G}(\varepsilon)$.

It is convenient to quote now the following

LEMMA 4. Let A be a subset of R^n such that every map $(l^2, \partial l^2) \to (R^n, R^n \setminus A)$ is relative ∂l^2 approximable by mappings with images missing A. Let $s \in N$ satisfy $s + \dim A < n$.

- (i) If A is σ -compact then $\{\beta \in C(I^s, R^n): \operatorname{im}(\beta) \cap A = \emptyset\}$ is dense in $C(I^s, R^n)$;
- (ii) If $\alpha: \partial I^s \to R^n$ satisfies $\operatorname{im}(\alpha) \cap A = \emptyset$ then there is a compact set $C \subset R^n \setminus A$ such that α is null-homotopic in every neighbourhood N of C in R^n .

Comment. Part (i) needs to be shown for compacta only and follows by induction on s, using Alexander duality and Hurewicz theorem. Se [§], [B], [E1]. Part (ii) follows in a similar but more delicate manner, using Sitnikov duality [M] for non-closed subsets of R^n and Hurewicz theorem in Borsuk's weak shape theory. For a proof see the recent paper [S] of S. Spież.

PROPOSITION 3. If $s \le n - \dim(f)$ and $n \ge 5$ then $\{\alpha \in C(I, \mathbb{R}^n) : \dim(f\alpha) = 0\}$ is dense in $C(I^s, R^n)$.

Proof. If s = 2 then it follows using Theorem 2 that the set

$$H = \{ \alpha \in C(I^2, R^n) : f\alpha | W \text{ is } p\text{-to-1} \},$$

where

$$W = \{(s, t) \in I^2: \text{ either } s \text{ or } t \text{ are rational}\},$$

is dense in $C(I^2, R^n)$. If $\alpha \in H$ then each fiber of $f\alpha$ meets W in finitely many points whence $\dim(f\alpha) = 0$.

If s > 2 we fix embeddings $\alpha_i : I^2 \to R^n$ such that $\dim(f\alpha_i) = 0$ for each $i \in N$ and $\{\alpha_i: i \in N\}$ is dense in $C(I^2, \mathbb{R}^n)$.

CLAIM. There is a set $A \in F_{-}(R^n)$ such that

- (i) $\dim A \leq \dim(f) 1$ and $\dim(f|R^n \setminus A) = 0$, and
- (ii) $A \cap \{ \} \{ \operatorname{im}(\alpha_i) : i \in N \} = \emptyset.$

Assuming the claim it follows from Lemma 4 that

$$G = \{\alpha \in C(I^s, R^n) : \operatorname{im}(\alpha) \cap A = \emptyset\}$$

is dense in $C = C(I^s, R^n)$. By Baire category theorem $G \cap H$ is dense in C, where $H = \{ \alpha \in C : \dim(\alpha) = 0 \}$. Evidently, $\dim(f\alpha) = 0$ for $\alpha \in G \cap H$.

The proof of the claim can be repeated after that of Proposition 2, except that the set T of Lemma 3 has to be constructed so that $T \cap \text{im}(\alpha_i) = \emptyset$, for each i. To assure this we require that the sets inductively constructed in the proof of that Lemma satisfy, in addition to conditions (a)-(f),

(g)
$$E(i) \cap \operatorname{im}(\alpha_{|i|}) = \emptyset.$$

The previous construction works in this setting for the sets $K(y) = \operatorname{im}(\alpha_{ij}) \cap$ $\cap f^{-1}(y)$ being 0-dimensional it follows that the sets $S_i(y)$ separating A from B in $f^{-1}(y)$ may be taken to be disjoint from K(y).

THEOREM 3. Assume that any map $I^2 \to R^n$ is approximable by maps with images missing S(f), the singular set of f. If $s+\dim(f)+E(p/2) < n$ then the set $\{\alpha \in C(I^s, R^n): f\alpha \text{ is } 1\text{-to-}1\}$ is dense in $C(I^s, R^n)$.

Proof. We consider two cases

(1) dim(f) = 0. Fix $\beta: I^s \to R^n$ and $\varepsilon > 0$; we shall construct an $\alpha: I^s \to R^n$ such that $dist(\alpha, \beta) < \varepsilon$ and $\alpha \in G(\varepsilon)$, where

$$G(\varepsilon) = \{ \alpha \in C(I^s, R^n) : \alpha \text{ and } f | \operatorname{im}(\alpha) \text{ are } (1, \varepsilon)\text{-maps} \}.$$

The assertion will then follow by Baire category theorem.

The construction of α . Let \mathcal{F} be any triangulation of I^s which is so fine that any set $\beta(\sigma)$, $\sigma \in \mathcal{F}$, is contained in an open ball $U(\sigma)$ in \mathbb{R}^n of radius a/2. Let

 $\{\varphi_i\colon I^2\to R^n\backslash S(f)\}$ be a dense subset of $C(I^2,R^n)$ consisting of embeddings. By induction and Baire category theorem we may assume that β is such that

- (a) $f\beta||\mathcal{J}^{s-1}|$ is 1-to-1, and
- (b) $\beta(|\mathcal{F}^{s-1}|) \cap \bigcup \{\operatorname{im}(\varphi_i) : i \in N\} = \emptyset$,

By Corollary 1 there is a σ -compact set $A \subset S(f)$ such that $\dim A = E(p/2)$ and $f|R''\setminus A$ is 1-to-1. Write

$$B = A \cup f^{-1} f \beta(|\mathcal{F}^{s-1}|) \setminus \beta(|\mathcal{F}^{s-1}|)$$

We have $\dim f^{-1}f\beta(|\mathcal{F}^{s-1}|) \leq \dim(f) + s - 1$ and so $\dim B \leq \max(E(p/2), s - 1)$ < n-s (we are using assumptions on s and results in [E], pp. 136 and 43).

By Lemma 4 there are compacta $C(\sigma) \subset U(\sigma) \setminus B$, $\sigma \in \mathcal{T} \setminus \mathcal{T}^{s-1}$, such that $\beta|\partial\sigma$ is null-homotopic in every neighbourhood of $C(\sigma)$ in R^n . With C $= \{ \{ C(\sigma) : \sigma \in \mathcal{T} \setminus \mathcal{T}^{s-1} \}$ it is transparent that $f \mid C$ is 1-to-1. By compactness of C there is a neighbourhood N of C in R" such that f|N is a $(1, \epsilon)$ -map; the properties of $C(\sigma)$'s then allow us to construct a map $\alpha: I^s \to R^n$ such that $\alpha(\sigma)$ $\subset U(\sigma) \cap N$ and $\alpha | \partial \sigma = \beta | \partial \sigma$, for each $\sigma \in \mathcal{F} \setminus \mathcal{F}^{s-1}$. By general position we may additionally require that α be an embedding and hence a desired member of $G(\varepsilon)$ with dist $(\alpha, \beta) < \varepsilon$. (Here, property (b) and Lemma 2 are used to construct α so that $\alpha(|\sigma| \setminus |\partial \sigma|) \cap \beta(|\mathscr{T}^{s-1}|) = \emptyset$, for every $\sigma \in \mathscr{T} \setminus \mathscr{T}^{s-1}$.

(2) The general case. We embedd I^s standardly in I^t , where $t = n - \dim(f)$. and extend a given $\beta: I^s \to \mathbb{R}^n$ to a map $u: I^t \to \mathbb{R}^n$. Using Proposition 3 and assumptions on S(f), along with Baire theorem, we get a map $v: I^t \to R^n$ which is as close to u as we wish and satisfies the following conditions:

- (i) $\dim(fv) = 0$;
- (ii) $v(W) \cap S(f) = \emptyset$, where $W = \{x \in I^t : \text{ all but 2 co-ordinates of } x \text{ are } x \text{ a$ rational):
 - (iii) $S(v) \cap W = \emptyset$.

Then, $S(fv) \cap W = \emptyset$ and we may apply the special case (1) above, obtaining a map $j: I^s \to I^t$ such that

- (iv) j closely approximates the embedding $I^s \rightarrow I^t$, and
- (v) (fv)j is 1-to-1.

It is clear that $\alpha = vi$ closely approximates β and $f\alpha$ is 1-to-1.

Remark 3. With assumptions on s in Theorem 3 replaced by " $s + \dim(f) < n$ " it follows by similar arguments that each map $I^s \to R^n$ is approximable by maps $\alpha: I^s \to \mathbb{R}^n$ with $f\alpha$ being finite-to-1, e.g. q-to-1 where $q = p(s^{-1} - n^{-1})^{-1}$.

Remark 4. The results of this section remain valid with I's being replaced by any (separable metric) space P of dimension $\leq s$. (In this setting, $C(P, R^n)$ is given the limitation topology generated by all balls in supremum-metric on $C(P, R^n)$ induced by bounded admissible metrics for R^n). A proof follows by considering first the case where P is a locally finite polyhedron of dimension $\leq s$ and then approximating maps $P \to R^n$ by compositions $P \to K \to R^n$ with K a polyhedron as above.

- § 5. A relation to the problem of characterization of Q-manifolds. In this section all spaces are locally compact and $Q = [-1, 1]^{\infty}$, the Hilbert cube. Q-manifolds may be characterized using the following properties
- (*)_n any map $I^n \times \{1, 2\} \to X$ is approximable by maps sending $I^n \times \{1\}$ and $I^n \times \{2\}$ to disjoint sets;

namely, X is a Q-manifold iff $X \in ANR$ and $X \in (*)_n$ for each n. (See [T] and [E3]). On the other hand it has been conjectured by J. W. Cannon that the property $(*)_2$ distinguishes n-manifolds among ANR's having a finite dimension $n \ge 5$ and local homology groups that of R^n . This conjecture has been turned into a theorem by results of R. D. Edwards (see [E2]) and of F. Quinn [Q]. Returning to Q-manifolds, no characterization of Q-manifolds in terms of $(*)_2$ and local homology groups is known, although R. D. Daverman and J. Walsh [DW] have characterized them using $(*)_2$ and certain homology analogues of $(*)_n$, $n \ge 3$. (C.f. also [LW].)

Applying duality-type results (see [DW], p. 414, for more general statements) it is easy to see that the Q-manifold analogue of Cannon's conjecture can equivalently be formulated in the following way which exhibits directly its dimension-theorethic aspect:

(C) Let $X \in ANR \cap (*)_2$ be such that $H_*(X, X \setminus \{x\}) = 0$ for each $x \in X$ and let $n \ge 3$. Then, any map $I^n \to X$ is approximable by maps sending I^n to finite-dimensional sets.

In this section we provide a further illustration of this aspect of the characterization problem by using Theorem 1 in the proof of the following

PROPOSITION 4. Suppose $X \in ANR \cap (*)_2$. Then, X is a Q-manifold iff, for every n, there is a map $g: X \to Y$ such that $\dim Y < \infty$ and every fiber $g^{-1}(y)$, $y \in Y$, is a z_n -set in Y.

Here, we say that a closed set $K \subset X$ is a z_n -set (resp. a Z_n -set) in X iff $H_i(U, U \setminus K) = 0$ (resp. $\pi_i(U, U \setminus K) = 0$) for every i < n and every open set $U \subset X$.

Proof. We omit some details as our aim is mainly to present some of the motivation for the results of this paper and for the questions stated in § 6. Fix $f_0: I^n \to X$, embedd standardly I^n into R^{2n} , and let $f: R^{2n} \to X$ be a map extending f_0 . Let $g: X \to Y$ be a map such that dim $Y < \infty$ and every fiber of g is a z_{2n} -set in X. Replacing Y by $Y \times I^5$ and using the property $(*)_2$ of X it can be achieved that each fiber of g be a Z_{2n} -set in X. (A closed set K in an ANR-space X has property Z_p iff it has properties Z_p and Z_2). We need the following

LEMMA 5. If g is as above then given $u: I^n \to X$ and $v: I^{2n} \to X$, there is a map $w: I^{2n} \to X$ which is as close to v as we wish and satisfies $gu(\{x\}) \cap gw(\{x\} \times I^n) = \emptyset$, for each $x \in I^n$.

The proof of the Lemma reduces to constructing I^n -preserving maps $I^n \times X^n \to I^n \times X$ with images disjoint from $K = \bigcup \{\{x\} \times g^{-1}gu(x): x \in I^n\}$. Since K intersects each fiber $\{x\} \times X$ along a Z_{2n} -set this can be done analogously as in [Wol.

Returning to the proof of the Proposition, let $\mathscr A$ denote the family of all n-element subsets of $\{1, ..., 2n\}$. For $A \in \mathscr A$ let $p_A \colon R^{2n} \to R^A$ be the projection, let V(A) be a fixed dense countable subset of R^A and let $\varphi_{i,A} \colon R^A \to R^{2n}$ be linear sections of p_A with $\bigcup \{\operatorname{im}(\varphi_{i,A}) \colon i \in N\} = V(\{1, ..., 2n\} \setminus A) \times R^A$. Using Lemma 5 and Baire category theorem, or a convergence procedure, we get a map $h \colon R^{2n} \to X$ which is in the compact open topology as close to f as we wish and satisfies the following condition

(i) Given A, $B \in \mathscr{A}$ we have $gh(p_B^{-1}(x+v) \setminus \varphi_{i,A}(x)) \cap gh\varphi_{i,A}(x) = \varnothing$, for every $x \in R^A$ and $v \in V(B)$.

Employing $(*)_2$ we may also require that h|W be 1-to-1, where

 $W = \{x \in \mathbb{R}^{2n}: \text{ at most 2 co-ordinates of } x \text{ are irrational}\}.$

If $F = (gh)^{-1}(y)$ is any fiber of gh then either F is in the Menger-Nöbeling set

$$R^{2n} \setminus \bigcup \{ \operatorname{im}(\varphi_{i,A}) : i \in \mathbb{N}, A \in \mathcal{A} \}$$

and hence dim $F \le n-1$, or else F is of the form $(gh)^{-1}gh\varphi_{i,A}(x)$ for some $i \in N$, $A \in \mathcal{A}$ and $x \in R^A$. In the latter case it follows from (i) that F is contained in another set

$$\{\varphi_{i,A}(x)\} \cup (R^{2n} \setminus \bigcup \{p_B^{-1}(x+v): v \in V(B), B \in \mathscr{A}\})$$

of the Menger-Nöbeling type. Hence in either case $\dim F \leqslant n-1$ and by Theorem 1 there is a set $K \in F_{\sigma}(R^{2n})$ such that $\dim(R^{2n} \setminus K) \leqslant n-1$ and gh|K is p-to-1, where $p = \dim Y$. By Hurewicz theorem [E, p. 136] we infer that $\dim h(K) < \infty$ and so there is a G_{σ} -set L in R^{2n} such that $L \supset K \cup W$ and $\dim h(L) < \infty$. By Lemma 4, the inclusion $I^n \subset R^{2n}$ is approximable by maps j with $\dim(j) \subset L$. It is clear that hj may serve as the desired approximation to f_0 having a finite-dimensional image.

- § 6. Some questions. The requirement dim $Y < \infty$ in Proposition 4 is caused directly by a similar assumption in Theorem 1. As without it Proposition 4 would provide a proof of (C), it is of interest to investigate the following "limit" statements of results of §§ 2, 3 (all spaces are compact and $Q = I^{\infty}$):
- 1. Let $f \colon Q \to Y$ be a map with $\dim(f) = 0$, let $n \in N$ and in case n > 1 assume that S(f) is a countable union of Z_2 -sets. Is then any map $I^n \to Q$ approximable by maps $\alpha \colon I^n \to Q$ for which $f\alpha(I^n)$ is a countable union of finite-dimensional compacta?
- 2. Is there an $n \in N$ such that whenever $f: X \to Y$ and $\dim(f) = 0$, $\dim X = n$, then there exists a set $A \subset X$ such that $\dim(X \setminus A) \le n-1$ and f(A) is a countable union of finite-dimensional compacta?

Incidentally, if $X = I^n \times$ (Cantor set) then a set A as above exists, see [Bu]. In 1 and in 2 the words "countable u. of f.d. compacta" could be replaced by "weakly infinite-dimensional" to obtain alternative version of potential interest; the latter property is assured if f is s_0 -to-1 on A or on $\alpha(I^n)$.

The problem of exhibiting infinite-dimensional versions of Theorems 1-3 seems to be interesting also because if there are no such then these theorems could serve as guidelines how to assure infinite-dimensionality of certain decomposition spaces, E.g. the question whether dimension is preserved by 1-dimensional CE-maps (c.f. [KW]) is equivalent to:

3. Is there a CE-map $f: I^n \to Y$ such that $\dim(f) = 1$ and any σ -compact set with $\dim(I^n \setminus A) = 1$ intersects a fiber of f in more than n points?

Conceivably, f as above may be constructed so that each arc connecting a given pair of points of I^n intersects a fiber of f in at least 2 points ($n \ge 5$; compare Theorem 2).

Finally, in connection with Theorem 2 and the problem of detecting property $(*)_2$ in product spaces let us ask the following:

4. Let $f: I^n \to Y \in ANR$ be a map with $\dim(f) = 0$ and $n = \dim Y \ge 4$. Is the set $\{\alpha \in C(I, I^n): f\alpha \text{ is } 1\text{-to-}1\}$ connected and locally connected?

References

- [B] J. Bryant, On embedding of compacta in euclidean spaces, Proc. Amer. Math. Soc. 23 (1969), pp. 46-51.
- [Bu] W. Bula, A selection theorem for mappings of the Cantor bundle, Bull. Polon. Acad. Sci. 31 (1983), pp. 399-402.
- [DW] R. J. Daverman and J. J. Walsh, Cech homology characterizations of infinite dimensional manifolds, Amer. J. Math. 103 (1981), pp. 411-435.
- [E1] R. D. Edwards, Demension theory I, Geom. Topology, Proc. Conf. Park City 1974, Lecture Notes in Math. 438 (1975), pp. 195-211.
- [E2] The topology of manifolds and cell-like maps, Proc. Int. Congress of Math. 1978, Acad. Sci. Fennica, Helsinki (1980), pp. 111-127.
- [E3] Characterizing infinite-dimensional manifolds topologically, Sem. Bourbaki Vol. 1978/79, Lecture Notes in Math. 770 (1980), pp. 278-302.
- [E] R. Engelking, Dimension theory, North Holland publishing Company 1978.
- [KW] J. Kozlowski and J. J. Walsh, The cell-like mapping problem, Bull. Amer. Math. Soc. 2 (1980), pp. 315-316.
- [LW] T. L. Lay and J. J. Walsh, Characterizing Hilbert cube manifolds by their homological structure, Topology and Appl. 15 (1983), pp. 197-203.
 [M] W. S. Maccon, F.
- [M] W. S. Massey, Homology and Cohomology theory. An approach based on Alexander cochains, Marcel Dekker inc. (1978).
 [P] B. A. Pasyukawa, C. H. H. G. W. H. L. W. C. W. H. L. W. C. W. H. L. W. C. W. C. W. L. W. C. W. C.
- [P] B. A. Pasynkov, On dimension and geometry of mappings, Dokl. AN SSSR 221 (1975), pp. 543-546 (in Russian).
- [Q] F. Quinn, Resolutions of Homology Manifolds, and the topological characterization of Manifolds, Invent. Math. 12 (1983), pp. 267-284.

[RC] J. H. Roberts and P. Civin, Sections of continuous collections, Bull. Amer. Math. Soc. 49 (1943), pp. 142-143.

- [S] S. Spież, Hurewicz and Whitehead theorems with compact carriers, Fund. Math., to appear.
- [5] Štanko, The embedding of compacta in euclidean spaces, Mat. Sbornik 83 (125) (1970), pp. 234-255 [in Russian; a translation in Math. USSR Sbornik 12 (1970), pp. 234-254].
- [T] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), pp. 31-40.
- [Wa] J. J. Walsh, Homological embedding properties of the fibers of a map and the dimension of its image, Proc. Amer. Math. Soc. 85 (1982), pp. 135-138.
- [Wo] R. Y. Wong, Homotopy negligible subsets of bundles, Compositio Math. 24 (1972), pp. 119-128.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Warszawa, Śniadeckich 8

Received 10 May 1984

. .