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On the Baire order problem for a linear lattice of functions
by

Takeshi Ohno (Shizuoka)

Abstract. Let a be a linear lattice of real valued functions containing the constant functions
and By(a) be the first Baire class of functions generated by a. Denote by A the smallest complete
ordinary function system containing a. Then it follows immediately that a @ 4 < Bi(a) [3]. Here
we show that (1) the condition (x) given by Mauldin in (13], Th. 4.1) is a necessary and sufficient
condition for Bi(a) = B;(Bl(n)), and (2) 4 = Bi(a) iff 4 satisfies D-condition.

1. Introduction.” Let X be a nonempty set and R¥ be the set of all functions
from X into the set R of real numbers, forming the lattice ordered R-algebra
structure under operations defined pointwise. Let H<R¥. Then B;(H) (the first
Baire class of H) is the family of all functions in R* which are pointwise limits
on X of sequences from H, B,(H)= B,(B,(H)) and in general if «>0 is an ordinal
then B,(H) is the family of pointwise limits of sequences from |J ByH). If o is

p<a

the first uncountable ordinal then B(H)= B,,(H)= B, (H), and B(H) is
called the Baire class generated by H. H, denotes the family of ail functions in RX
which are uniform limits on X of sequences from H, LS(H) (resp. US(H)) the
family of all fe R¥ which are pointwise limits of increasing (resp. decreasing)
sequences from H and H, the subset of H consisting of bounded functions.

A subspace H of R¥ is called an ordinary function system if it is both a linear
lattice and algebra which contains the constant functions, and which is closed under
inversion (if fe H and f>0, then 1/fe H). An ordinary function system H is
called complete if it is also closed under uniform limits. If A is a linear lattice con-
taining the constants, then B,(H) is a complete ordinary function system (See [3]).
In [3] Mauldin proved the following.

TreorREM ‘1.1, Let a=RX be a linear lattice containing the constants and A be
the smallest complete ordinary function system containing a. Then the Sfollowing hold:

(1) aca, = (LS(@) n US(a))=4<By(a) = By(d).

@) (@)y=dy = (LS(@ n US (@)

For a discussion of Baire functions see Mauldin [2] and [3}.

Let HcRX be a linear lattice containing the constants, and Let E} denote
the dual space of linear space H, with the norm ||f]| = sug 1f(x)|. Let g Hy. Then

x€
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@ is net additive if for every decreasing net {f,} < .H, with f, | 0 pointwise, |¢|(f,) =0,
and it is countably additive if for every decreasing sequence {f,}<=H, with f, | 0
pointwise, [o|(f,) = 0. A positive linear functional ¢ is a lattice homomorphism
if o(fve) = o(Nvelg) for f, g€ H,.

For fe RX, the zero-set is Z(f) = {x € X: f(x) = 0} and cozero-set is CZ(f)
=X\Z(f). f H is a subset of R¥, then Z(H) = {Z(f): fe H}; CZ(H)
= {CZ(f): fe H}.

2. Baire order and topologies. Let ¢ R¥ be a linear lattice containing the
constants. In this section we give some of the necessary and sufficient conditions
for the Baire order of a to be no more than 1.

We begin with the simple preliminaries. Let X be the decomposition of X
obtained by identifying the stationary sets of a, and n: X — X be the natural
mapping. For each x € X, £ denotes the image n(x) in X and [x] the equivalence
class containing x, i.e., £ = n(x) e X and

[ = n7'@®) = N {re X: f0) = f(). fear} =X

For f in a, define a function f on X by f(£) = f(x), £ X, and set 4, = {f:fe ap}.
Then 4, is a function system on X which separates the points of X and forms
a normed linear lattice with respect fo the norm || +||3. Let X, be the set of all lattice
homomorphisms on 4, which maps 1 into 1. Then X, is a closed subset of the unit
ball in 47, equipped with w*-topology, and hence compact by the Alaoglu theorem.
For each £ € X, define 85 by 85(f) = f(%), fed,. Tt is clear that 85 € X,. Since 4,
separates the points of X, the map £ — J3 is an injection of X into X, . In the sequel,
we will identity X with its image under this injection and that treat X as a subset
of X,.

Let C(X,) be the space of all continuous real valued functions on X,,. For each f
in &, define a function f* on X, by f(p) = p(f), p e X,, and set af = {f*: fea,).
Then af is a linear sublattice of C(X,) which contains the constants and separates:
the points of X,. Hence, as is well-known, the uniform closure of «f in C(X,) is
identical with C(X,). It is clear that (2;), = (4), on X, and by [2], (&), is an SW-
algebra ([16]). Since each fin (4,), is the uniform limit of a sequence {f.} from &,,
each p in X, can be uniquely extended to (4,), preserving lattice-operations by’
the obvious definition: p(f) = limp(f,). Hence we may assume that each p in

n

X, is a lattice homomorphism defined on (8,),. It then follows from ([5], Th. 1),
that p € X, if and only if p is a positive linear algebra homomorphism on (4,), which
maps 1 into 1. Furthermore, using the argument given by Kirk ({6], Th. 1.1), it
follows immediately that X is dense in X, with‘respect to o (X}, 4,)-topology. Thus
every f in (4,), has the unique continuous extension f* from X to X, by f*(p)
- =p(f), peX,, and (&), is algebraically, topologically and lattice isomorphic to
C(X,) under f — *. When we treat X as a topological space, its topology will mean
the weak topology induced by the functions of a,. K
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We need the following lemma which is similar to a lemma of Nagami [8].

Lemma 1. If f e B(a), then there is a sequence {f,} of functions from a such that
F&) = f(») whenever f(x) = f,(») for all n.

Proof. Use the argument given in ([8], Lemma).

Now we obtain the following result which extends the theorem given by
Mauldin in ([3], Th. 4.1).

TrEOREM 2. The following are equivalent:

(A) For each ¢ € a3, there is a countable subset {x,} of X and a sequence {o,}
from 1Y such that o(f) = ¥, a,f(x,) for all fea(x).

(B) (1) X is a compact space (not necessarily Hausdorff).

(2) The Baire order of a is no more than 1; i.e., B,(a) = B(a).

(3) For each fe B(a), the image set f(X) is countable.

(©) () X is a compact space (not necessarily Hausdorff).

(2) For each fea,, the image set f(X) is countable.

(D) X, is a totally disconnected compact space without perfect subsets.

Proof. (A) — (B): (1) By assumption (A) it is easy to see that every ¢ eal
is net additive. Hence by ([4], (14) Th.), it is immediate that X is compact (not
necessarilly Hausdorff). (2) Let f be a function in B(a). Then by Lemma 1 there is
a sequence {f;} from a such that f(x) = f(») whenever f(x) = fi(») for all 7. Let
{f:;}5=1 be a sequence from a, converging pointwise to each f;. Let a, be a norm
closed and separable subalgebra of (a,), spanned by {f;}i%;-1, and let ao contain
constants. Then it is clear that , is a closed subspace of C(X);. Let X be the quotient
of X obtained by identifying the stationary-sets of a,, and = be the quotient map
of X onto X. Denote by % the image n(x) in X. For each g € a, define a function
jonX by §(®) = g(x), x€ %, and set @, = {J: g € ao}. Then from the~result of (1),
X is compact, and by the above preliminaries it follows that X,, = X and C(X,,)
= d,. Hence C(X,,) is separable with respect to the sup norm, From this, it follows
that X,, is a compact metrizable. Let ¢ be a tunctional in C(X,.)*, and define
a functional ¢ in a% by @(g) = §(g) for all g€ ap. Since a5=(a,),=C(X)y, bY
Hahn Banach Theorem there is a bounded linear functional & on (4,), which
coincides with ¢ on ag. Then by assumption (A) there is a countable subset {x,}
of X and a sequence {,} from./' such that

(@) #@) = ¥ a,g(x,) for all geaq,

Since each g in (a,); is the uniform limit of a sequence {g,} of functions from a,,,
® has the same form (i) on {a,),, and particulary, it follows that

() ®(g) = o(g) = Y. 0,g(x,) for all g € ao.

Hence & has also the same form (ii). This means that X, is almost discrete
space (See [9]) and by Babiker ([9], Cor. 4.3), X,, is at most countable. Hence it
follows by Mauldin ([2], Th. 12) that B,(C(X,,)) = RXw, Define a function f on X""
by f(%) = f(x) for all % € X,,. Since f(x) = f(») whenever f;(x) = f3,(y) for all i, j,
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F is well-defined on X,, and fe B,(C(X,,). Let {g,} be a sequence from C(X,,)
converging pointwise to f. Then it is clear that g,(x) = §,(n(x))€a, and g,(x)
— f(x) (n = o). Hence f € By(a). Thus we have B(a) = B(a,) = B,(a). (3) Finally,
since X, is at most countable, it follows immediately that f(X) is countable.

(B) = (C): Since a,=B(a), (2) is obvious from (3) of assumption (B).

(C) » (D): From (1) of assumption (C), it is clear that X = X, and X, is
a compact Hausdorff. Let X be a closed connected subset of X, and p be a point
of K. If g € K\{p}, then there is a continuous function f on X, such that f(p) = 0,
fl@ =1 and 0<f<1 on X,. Since (z/z:),, = C(X}) it follows from (2) of as-
sumption (C) that f(X,) is countable. Let a ¢ f(X,) for some 0 <o < 1, and define
a function g by g = 0 on [0, ) and g = 1 on («, 1]. It is clear that & = g-f is
continuous on X,. Let Fy; = KA h™*(0) and F, = K~ h~Y(1). Then Fy, F, are
closed subsets of K, and it follows that pe Fy, g€ F,, K= F, U F, and F; n F,

= . But this is a contradiction, and hence X = {p}. Thus X, is totally disconnected,
and by Gillman and Jerison ([10}, 16.17), X, has a base of clopen sets. Next, suppose
that X, contains a nonempty perfect set P and let {P,, P,} be a partition of P where
Py, Py are relatively clopen infinite subsets of P. Since Py, P, are open in P, it follows
immediately that Py, P, are perfect. Since X, has a base of clopen sets, there are
clopen subsets X, and X; of X, such that PycX,, P;cX;, XonX; = & and
Xo v X; = X,. Repeating the above reasoning, and using the argument given
by Pelczynski and Semadeni in ([7], Lemma 2), we have a continuous function 7
from X, onto the Cantor discontinuum C. Then it is clear that f = f-n e g, and
J(X) = C. But this contradicts the fact that f(X) is countable. Hence X, contains
no perfect nonempty subset.

(D) = (A): Let ¢ be a bounded linear functional on a,. Without loss of
generality, we suppose that ¢ > 0. Define #(p) by £(¢)(4) = @(¢-n) for all e ay,
and let 0< & be a extension of #(¢p) on C(X,) = (a,),. Since X, is compact space
without perfect subsets, by Rudin ([11], Th. 6), there is a countable subset {x,} of X,
and a sequence {,} from I* such that &(f) = Y «,7(,) for all e C(X,). Hence

n

it is immediate that o(f) = Y a,f(x,) for fea,, and the proof is complete.

. n

As an obvious corollary of Theorem 2, we have;

CorOLLARY 3. Let X be a completely regular space. Then the following are
equivalent: ¢

(A) For each ¢ € C*(X), there is a countable subset {x.} of X and a sequence
{o} from I* such that ¢ (f) = Y o, f(x,) for all fe C(X),.

n !

B) (1) X is a compact Hausdorff space.

(2) The Baire order of C(X) is no more than 1.

(3) If fe B(C(X)), then f(X) is countable.

(© (1) X is a compact Hausdorff space.

@) If fe C(X), then f(X) is countable.

(D) X is a totally disconnected compact space without perfect subsets.

icm
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3. Dominant condition. We first need some preliminary. Two functions f and g
of RX are disjoint if [f|Alg]l =0, and a digjoint system {f;} of R¥ is a pairwise
disjoint collection of nonnegative functions f; of R*. .

Let H be a linear sublattice of R*. H is o-laterally complete if the ordered
supremum of every disjoint sequence of H exists, and ¢-complete if every countable
subset of H with an upper bound in H has a ordered supremum in H.

A sequence {f;} of R¥ is uniformly bounded if there is a constant function «
such that |f;| <« for all #. A linear sublattice H is said to be bounded o-closed
in RX if every uniform bounded sequence of H has its pointwise supremum in H.
If H is boundedly o-closed in RX, then it follows easily that H, is ¢-complete.
But its converse is in general false. A sequence {f,} of H order-converges to fin H
if there is a decreasing sequence {u,} of H with Au, = 0in H and |f,—f|<u,

n

for all n. A sequence {f,} of H is order-Cauchy if there is a decreasing sequence
{1} of H with Au, = 0in H and |f,+,—/ful Su, for all m, n. A linear sublattice H
n

is said to be order-Cauchy complete if every order-Cauchy sequence in H order-
converges in H to some element of H. '

Let o be a linear sublattice of R¥ containing the constants and Zs(a) be the
family of all countable intersections of zero sets in Z(a). Let 4 denote the smallest
complete ordinary function system containing a. Then it follows by Mauldin ([3],
Th. 3.3), that 4 is the set of all functions f of RX such that f~*(F) € Z,(a) for every
closed subset F of R. In the sequel, we shall suppose that linear sublattice « contains
the constants and separates points of X. This is no restriction for our considerations,
since if @ does not separate points of X, as observed in Section 2, we may consider
the quotient of X obtained by identifying the points of X not separated by a, and
obtain a function system which has the same structure as a. Let X denotes the
set of all nonzero lattice (algebra) homomorphismis of 4, onto R. Let 7, be the
telative ¢(4}, 4,)-topology on X embedded into X . Since 4, is an SW-algebra,
it follows that X, is the compactification of (X, 7, for which fe Cy(X, 74) has
a continuous extension f* on X, if and only if fe4,. However, in general,
Ay # Cy(X, 7)) and A # C(X, 1) (See [6]).

DEFINITION. We shall say that A satisfies D-condition if it satisfies the
following: (D) for each g € LS(a) there is an fye 4 such that f;>g¢ on X.

Since LS(a)=B,(a) <= US(LS(a)) (See [3]), A satisfies D-condition if and only
if for each g € B,(a) there is an f € 4 such that f> g. We can now prove the follow-
ing result.

TugoreMm 4. Let A be the smallest complete ordinary function system contain-
ing a. Then the following are equivalent:

" (A) A satisfies D-condition.

(B) (1) 4 is o-laterally complete.

) A4 is o-complete.

(©) (1) X is P-space, i.e., aspdce in which every G; set: is open.

@) A4 is o-complete.


GUEST


214 Takeshi Ohno

(D) A is bounded o-closed.

(B) A is closed under pointwise convergence of sequences; A = By(d) = B,(a)..

Proof. (A) - (B): (1) Let {f,} be a disjoint sequence of 4, and let g = )’ uf,.

n
It is clear that g e B,(a). Since A satisfies D-condition there is a function fe 4
such that f>g and f> 1. It then follows that for every n,p>1,
n+p n+p n+p
) Zﬂfk-f‘1 <, z”(k/n)fk-f—1< lnand 3 fif ted.

k=n+1

Let h = Y f,-f*. Since 4 is uniformly closed, it is immediate that s e 4, and
S f,=hfed. Hence 4 is o-laterally complete. (2) Since C(X,) = 4,4,

it is clear that every disjoint sequence of C(X,) with an upper bound has its ordered
supremtum in C(X,). Hence it follows from ([12], Prop. 2) and ([10], 3N) that C(X,)
is o-complete, This means that 4, is o-complete. Let £(x) = x/(14-|x[) on R.
If £, f,e A and f,<f for all n, then it is clear that h-f,, h-fe 4, and h-f,<h-f.
Since 4, is' o-complete, it follows immediately that g = \"/h~f,, € Ayc 4. Hence

Vf, =h"t-g = g/(1—|g]) e 4, and it follows that 4 is o-complete.

(B) = (C): (1) It is sufficient to show that every point in X is a P-point (See
[10], 4L). If p € X'is not a P-point, then there is a G,-set G of X containing p such
that for a sequence {U,} of open neighborhoed of p in X,, G = X n (N U,) is

"

not neighborhood of p. Let Z(f*) be a zero set of X, such that Z(f*)= ) U, and

n
PeZ(f*) n X<=G, where fe 4, and 0<f<1. Let G, = {xeX: f(x)>1/n} and
Z, = {xeX: f(x) > 1/n}. Then for each n there is an f, € 4, such that f, =1 on
Zyi NGy =0 o0 Z,_; U (X\G,y,) and 0<f, <L Let gy = Y nf3,-0 92

n
=Y nfs,—y and gz =Y nfs,. Since {afs,_,;} {nfas-1} and {nfs,} are disjoint
n n

sequences of A, it follows from (1) of assumption (B) that g,e 4 for each
i=1,2,3. It then is not difficult to verify that each g; is continuous with respect
to the topology (X, 7). Let g = g, Vg, Vygs. Since ge 4 and g(p) = 0, there is
a neighborhood W of p such that g(x) <1 for all xe W. Since Z(f*) n X is not
neighborhood of p, it follows that (X\Z,) n WAZ(f®) O for all n. Hence for
every x € (X\Zs,-p) 0 WAZ(}17), (%) = ¢,(*) Vg4(x) v g2(x) = n. But this contra-
dicts the fact that g(x) <1 on W. Hence X is P-space. (2) of (C) is immediate from
(2) of (B).

(C) - (D): We first show that pointwise monotone convergence in 4 is equiva-
lent to monotone order convergence in A. It is clear that pointwise monotone con-
vergence implies order convergence. Let {u,} be a decreasing sequence u, | in 4
with /} 4, = 0 in 4, and suppose there is an x, € X and & > 0 such that u,(xo) > ¢

for all n. By Theorem 1.1, (2) there is an f, € @ such that 0 <f, <u, and f,(xo) > ¢
for all n. Let Z, = {xe X: f(x)>¢} and Z = ) Z,. By (1) of assumption (C),

icm
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Z is an open zero set contéining Xo, and ZeZ(A). Let h be a function in 4,
such that h(xe) = &/2, h=0 on X\Z and 0<h<¢/2 on X. Then it follows
that u, > f, = h # 0 for all n. But this is a contradiction, and hence {u,} converges
pointwise to 0. From this, if f,& 4 and f,4fe 4 in order convergence, then it follows
that f is the pointwise limit of {/,}. Let {f,} be an uniformly bounded sequence
in A. Then by (2) of assumption (C) and the argument above it is simple to verify
that \n/ f, = supf(x) = fe 4. Thus A4 is bounded o-complete.
n

(D) -» (E): Since A is uniformly closed, it is clear that Zy(a) = Z(4). Let fe 4
and y, be the characteristic function of CZ(f). Since (n|f)A1<1 for all n, it
follows from assumption (D) that x, = sup (m|f)Al = V@l fh)aled and also

1—y,€A. Hence CZ(A) = Z(4) and Z(4) is o-algebra. Let g € LS(4) and {f,}

be a increasing sequence from A converging to g. Then, for every real number 7,

{(xeX: gx) >y} = U {xeX: f,(x) >y} eZ(4). Also, if he US(4) and {f,} is
n

a decreasing sequence from 4 converging to A, then

{xeX: h(x)=v} = ﬂ{xeX: [ =yreZ(4).

This means that LS(4) u US(4)=4, and hence B;(a) = B,(4) = LS(US(4)) n
N US(LS(A))=4. Thus it follows that 4 = B,(4) = By(a).

(E) — (A): This is obvious, and the proof is complete.

As a corollary of Theorem 4, we have;

COROLLARY 5. If A satisfies D-condition, then A is order Cauchy complete.
Proof. It is immediate from the argument given in (D) and (E) of Th. 4.
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Polyhedral-shape concordance implying
homeomorphic complements

by

Vo Thanh Liem

Abstract. If two compacta X and Y satisfy the inessential loops condition in the interior of
a piecewise linear m-manifold M, m > 6, and are shape concordant in M, and if X has the shape
of a compact k-polyhedron, k¥ < m—3, then M— X is homeomorphic to M— Y.

A compact subset X of a manifold N satisfies the inessential loops- condition
(abbreviated ILC) if for each neighborhood U of X, there is a neighborhood ¥
of X such that each loop in ¥—X which is null homotopic in ¥ is null homotopic
in U~X. Throughout the paper, I = [0, 1].

Two compacta X, and X, (satisfying ILC) in the interior of a manifold M is
said to be (ILC) shape’ concordant if there is a compactum Z (satisfying ILC) in
MxI such that X;x{i} =Zn (Mx{i))c-Z is a shape equivalence for -each
i = 0, 1. Similarly, if X, X and Z are polyhedra in the corresponding PL manifolds,
we can define the notion of polyhedral concordance. ’

Sher has proved in [S] that “If X and Y are ILC compacta in a PL manifold
M™ (@M = @ and m > 6) and ILC shape concordant in M by Z, and if X has the
shape of a k-polyhedron (k <m-—3), then M— X< M— Y.” In this note, we will
show that if X and ¥ satisfy ILC in M and are shape concordant, then M—X is
still homeomorphic to M~ Y without assuming that Z satisfies ILC in Mx[I
(Theorem 3.4).

For standard notions and notations in piecewise linear - (abbreviated PL)
topology as: simplicial collapse, PL homeomorphism, ambient isotopy, singular
set S(f) of a PL map f, derived neighborhood, boundary 9Q of a PL manifold @,
Fio N, Intg N, ..., we refer to [Hd). Given an open subset W of 8Q, by an open
collar of W in O, we mean the image of a2 PL open embedding .h: Wx[0,1) > Q
such that A(x,0) = x for all xe W. If Q is a PL manifold, { denotes Q—aQ.

We will suppress the base points from our notations of homotopy groups.
If (X, A)=(Y, B), the homomorphism m,(X, A) — n(Y. B) will be the inclusion-
induced one if it is mot specified otherwise. :

We assume that the reader is familiar with the fundamentals of shape [B] and
ANR-systems [M-S].
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