

208

[18] J. B. Quigley, An exact sequence from the n-th to the (n-1)st fundamental group, Fund. Math. 77 (1973), pp. 195-210.

[19] R. B. Sher, Property SUV[∞] and proper shape theory, Trans. Amer. Math. Soc. 190 (1974), pp. 345-356.

UNIVERSITÄT-GESAMTHOCHSCHULE SIEGEN FACHBEREICH MATHEMATIK Hölderlinstrasse 3 5900 Siegen RFN

Received 8 November 1983; in revised form 4 June 1984

On the Baire order problem for a linear lattice of functions

by

Takeshi Ohno (Shizuoka)

Abstract. Let a be a linear lattice of real valued functions containing the constant functions and $B_1(a)$ be the first Baire class of functions generated by a. Denote by A the smallest complete ordinary function system containing a. Then it follows immediately that $a \in A \subseteq B_1(a)$ [3]. Here we show that (1) the condition (*) given by Mauldin in ([3], Th. 4.1) is a necessary and sufficient condition for $B_1(a) = B_1(B_1(a))$, and (2) $A = B_1(a)$ iff A satisfies D-condition.

1. Introduction. Let X be a nonempty set and R^X be the set of all functions from X into the set R of real numbers, forming the lattice ordered R-algebra structure under operations defined pointwise. Let $H \subset R^X$. Then $B_1(H)$ (the first Baire class of H) is the family of all functions in R^X which are pointwise limits on X of sequences from H, $B_2(H) = B_1(B_1(H))$ and in general if $\alpha > 0$ is an ordinal then $B_\alpha(H)$ is the family of pointwise limits of sequences from $\bigcup_{\beta < \alpha} B_\beta(H)$. If α_1 is

the first uncountable ordinal then $B(H) = B_{\omega_1}(H) = B_{\omega_1+1}(H)$, and B(H) is called the Baire class generated by H. H_u denotes the family of all functions in R^X which are uniform limits on X of sequences from H, LS(H) (resp. US(H)) the family of all $f \in R^X$ which are pointwise limits of increasing (resp. decreasing) sequences from H and H_b the subset of H consisting of bounded functions.

A subspace H of R^X is called an ordinary function system if it is both a linear lattice and algebra which contains the constant functions, and which is closed under inversion (if $f \in H$ and f > 0, then $1/f \in H$). An ordinary function system H is called complete if it is also closed under uniform limits. If H is a linear lattice containing the constants, then $B_1(H)$ is a complete ordinary function system (See [3]). In [3] Mauldin proved the following.

THEOREM 1.1. Let $a \subset R^X$ be a linear lattice containing the constants and A be the smallest complete ordinary function system containing a. Then the following hold:

- (1) $a \subset a_u \subset (LS(a) \cap US(a)) \subset A \subset B_1(a) = B_1(A)$.
- $(2) (a_u)_b \subset A_b = (LS(a) \cap US(a))_b.$

For a discussion of Baire functions see Mauldin [2] and [3].

Let $H \subset R^X$ be a linear lattice containing the constants, and Let H_b^* denote the dual space of linear space H_b with the norm $||f|| = \sup_{x \in H_b} |f(x)|$. Let $\varphi \in H_b^*$. Then

 φ is net additive if for every decreasing net $\{f_a\} \subset H_b$ with $f_a \downarrow 0$ pointwise, $|\varphi|(f_a) \to 0$, and it is countably additive if for every decreasing sequence $\{f_n\} \subset H_b$ with $f_n \downarrow 0$ pointwise, $|\varphi|(f_n) \to 0$. A positive linear functional φ is a lattice homomorphism if $\varphi(f \lor g) = \varphi(f) \lor \varphi(g)$ for $f, g \in H_b$.

For $f \in R^X$, the zero-set is $Z(f) = \{x \in X : f(x) = 0\}$ and cozero-set is $CZ(f) = X \setminus Z(f)$. If H is a subset of R^X , then $Z(H) = \{Z(f) : f \in H\}$; $CZ(H) = \{CZ(f) : f \in H\}$.

2. Baire order and topologies. Let $a \subset R^X$ be a linear lattice containing the constants. In this section we give some of the necessary and sufficient conditions for the Baire order of a to be no more than 1.

We begin with the simple preliminaries. Let \hat{X} be the decomposition of X obtained by identifying the stationary sets of a_b and $\pi\colon X\to \hat{X}$ be the natural mapping. For each $x\in X$, \hat{x} denotes the image $\pi(x)$ in \hat{X} and [x] the equivalence class containing x, i.e., $\hat{x}=\pi(x)\in\hat{X}$ and

$$[x] = \pi^{-1}(\hat{x}) = \bigcap \{ y \in X : f(y) = f(x), f \in a_b \} \subset X.$$

For f in a_b define a function \hat{f} on \hat{X} by $\hat{f}(\hat{x}) = f(x)$, $\hat{x} \in \hat{X}$, and set $\hat{a}_b = \{\hat{f}: f \in a_b\}$. Then \hat{a}_b is a function system on \hat{X} which separates the points of \hat{X} and forms a normed linear lattice with respect to the norm $||\cdot||_{\hat{x}}$. Let X_a be the set of all lattice homomorphisms on \hat{a}_b which maps 1 into 1. Then X_a is a closed subset of the unit ball in \hat{a}_b^* , equipped with ω^* -topology, and hence compact by the Alaoglu theorem. For each $\hat{x} \in \hat{X}$, define $\hat{a}_{\hat{x}}$ by $\hat{a}_{\hat{x}}(\hat{f}) = \hat{f}(\hat{x})$, $\hat{f} \in \hat{a}_b$. It is clear that $\hat{a}_{\hat{x}} \in X_a$. Since \hat{a}_b separates the points of \hat{X} , the map $\hat{x} \to \hat{a}_{\hat{x}}$ is an injection of \hat{X} into \hat{x}_a . In the sequel, we will identify \hat{X} with its image under this injection and that treat \hat{X} as a subset of X_a .

Let $C(X_a)$ be the space of all continuous real valued functions on X_a . For each \hat{f} in \hat{a}_b define a function f^β on X_a by $f^\beta(p) = p(\hat{f}), p \in X_a$, and set $a_b^\beta = \{f^\beta: \hat{f} \in \hat{a}_b\}$. Then a_b^β is a linear sublattice of $C(X_a)$ which contains the constants and separates the points of X_a . Hence, as is well-known, the uniform closure of a_b^β in $C(X_a)$ is identical with $C(X_a)$. It is clear that $(\hat{a}_b)_u = (\hat{a}_u)_b$ on \hat{X} , and by [2], $(\hat{a}_b)_u$ is an SW-algebra ([16]). Since each \hat{f} in $(\hat{a}_b)_u$ is the uniform limit of a sequence $\{\hat{f}_n\}$ from \hat{a}_b , each p in X_a can be uniquely extended to $(\hat{a}_b)_u$ preserving lattice-operations by the obvious definition: $p(\hat{f}) = \lim p(\hat{f}_n)$. Hence we may assume that each p in

 X_a is a lattice homomorphism defined on $(\hat{a}_b)_u$. It then follows from ([5], Th. 1), that $p \in X_a$ if and only if p is a positive linear algebra homomorphism on $(\hat{a}_b)_u$ which maps 1 into 1. Furthermore, using the argument given by Kirk ([6], Th. 1.1), it follows immediately that \hat{X} is dense in X_a with respect to $\sigma(X_a, \hat{a}_b)$ -topology. Thus every \hat{f} in $(\hat{a}_b)_u$ has the unique continuous extension f^{β} from \hat{X} to X_a by $f^{\beta}(p) = p(\hat{f})$, $p \in X_a$, and $(\hat{a}_b)_u$ is algebraically, topologically and lattice isomorphic to $C(X_a)$ under $\hat{f} \to f^{\beta}$. When we treat X as a topological space, its topology will mean the weak topology induced by the functions of a_b .

We need the following lemma which is similar to a lemma of Nagami [8]. Lemma 1. If $f \in B(a)$, then there is a sequence $\{f_n\}$ of functions from a such that f(x) = f(y) whenever $f_n(x) = f_n(y)$ for all n.

Proof. Use the argument given in ([8], Lemma).

Now we obtain the following result which extends the theorem given by Mauldin in ([3], Th. 4.1).

THEOREM 2. The following are equivalent:

- (A) For each $\varphi \in a_h^*$, there is a countable subset $\{x_n\}$ of X and a sequence $\{\alpha_n\}$ from l^1 such that $\varphi(f) = \sum \alpha_n f(x_n)$ for all $f \in a_b (*)$.
 - (B) (1) X is a compact space (not necessarily Hausdorff).
 - (2) The Baire order of a is no more than 1; i.e., $B_1(a) = B(a)$.
 - (3) For each $f \in B(a)$, the image set f(X) is countable.
 - (C) (1) X is a compact space (not necessarily Hausdorff).
 - (2) For each $f \in a_u$, the image set f(X) is countable.
 - (D) X_a is a totally disconnected compact space without perfect subsets.

Proof. (A) \rightarrow (B): (1) By assumption (A) it is easy to see that every $\varphi \in a_h^*$ is net additive. Hence by ([4], (14) Th.), it is immediate that X is compact (not necessarilly Hausdorff). (2) Let f be a function in B(a). Then by Lemma 1 there is a sequence $\{f_i\}$ from a such that f(x) = f(y) whenever $f_i(x) = f_i(y)$ for all i. Let $\{f_{ij}\}_{j=1}^{\infty}$ be a sequence from a_b converging pointwise to each f_i . Let a_0 be a norm closed and separable subalgebra of $(a_n)_b$ spanned by $\{f_i\}_{i,i=1}^{\infty}$, and let a_0 contain constants. Then it is clear that a_0 is a closed subspace of $C(X)_b$. Let \tilde{X} be the quotient of X obtained by identifying the stationary sets of a_0 , and π be the quotient map of X onto \tilde{X} . Denote by \tilde{x} the image $\pi(x)$ in \tilde{X} . For each $g \in a_0$ define a function \tilde{g} on \tilde{X} by $\tilde{g}(\tilde{x}) = g(x)$, $x \in \tilde{x}$, and set $\tilde{a}_0 = \{\tilde{g} : g \in a_0\}$. Then from the result of (1), X is compact, and by the above preliminaries it follows that $X_{a_0} = \tilde{X}$ and $C(X_{a_0})$ $= \tilde{a}_0$. Hence $C(X_{a_0})$ is separable with respect to the sup norm. From this, it follows that X_{a_0} is a compact metrizable. Let $\tilde{\varphi}$ be a functional in $C(X_{a_0})^*$, and define a functional φ in a_0^* by $\varphi(g) = \tilde{\varphi}(\tilde{g})$ for all $g \in a_0$. Since $a_0 \subset (a_u)_b \subset C(X)_b$, by Hahn Banach Theorem there is a bounded linear functional Φ on $(a_u)_b$ which coincides with φ on a_0 . Then by assumption (A) there is a countable subset $\{x_n\}$ of X and a sequence $\{\alpha_n\}$ from l^1 such that

(i) $\Phi(g) = \sum_{n} \alpha_{n} g(x_{n})$ for all $g \in a_{b}$

Since each g in $(a_u)_b$ is the uniform limit of a sequence $\{g_n\}$ of functions from a_b , Φ has the same form (i) on $(a_u)_b$, and particularly, it follows that

(ii) $\Phi(g) = \varphi(g) = \sum \alpha_n g(x_n)$ for all $g \in a_0$.

Hence $\widetilde{\Phi}$ has also the same form (ii). This means that X_{a_0} is almost discrete space (See [9]) and by Babiker ([9], Cor. 4.3), X_{a_0} is at most countable. Hence it follows by Mauldin ([2], Th. 12) that $B_1(C(X_{a_0})) = R^{X_{a_0}}$. Define a function \widetilde{f} on X_{a_0} by $\widetilde{f}(\widetilde{x}) = f(x)$ for all $\widetilde{x} \in X_{a_0}$. Since f(x) = f(y) whenever $f_{ij}(x) = f_{ij}(y)$ for all i, j,

 \tilde{f} is well-defined on X_{a_0} and $\tilde{f} \in B_1(C(X_{a_0}))$. Let $\{\tilde{g}_n\}$ be a sequence from $C(X_{a_0})$ converging pointwise to \tilde{f} . Then it is clear that $g_n(x) = \tilde{g}_n(\pi(x)) \in a_0$ and $g_n(x)$ $\rightarrow f(x)$ $(n \rightarrow \infty)$. Hence $f \in B_1(a)$. Thus we have $B(a) = B_1(a) = B_1(a)$. (3) Finally, since X_{a0} is at most countable, it follows immediately that f(X) is countable.

(B) \rightarrow (C): Since $a_u \subset B(a)$, (2) is obvious from (3) of assumption (B).

(C) \rightarrow (D): From (1) of assumption (C), it is clear that $\hat{X} = X_a$ and X_a is a compact Hausdorff. Let K be a closed connected subset of X_a and p be a point of K. If $q \in K \setminus \{p\}$, then there is a continuous function \hat{f} on X_q such that $\hat{f}(p) = 0$, $\hat{f}(q) = 1$ and $0 \le f \le 1$ on X_a . Since $(\hat{a}_a)_b = C(X_a)$ it follows from (2) of assumption (C) that $\hat{f}(X_a)$ is countable. Let $\alpha \notin \hat{f}(X_a)$ for some $0 < \alpha < 1$, and define a function g by g=0 on $[0,\alpha)$ and g=1 on $(\alpha,1]$. It is clear that $h=g\cdot\hat{f}$ is continuous on X_a . Let $F_1 = K \cap h^{-1}(0)$ and $F_2 = K \cap h^{-1}(1)$. Then F_1, F_2 are closed subsets of K, and it follows that $p \in F_1$, $q \in F_2$, $K = F_1 \cup F_2$ and $F_1 \cap F_2$ $=\emptyset$. But this is a contradiction, and hence $K=\{p\}$. Thus X_n is totally disconnected, and by Gillman and Jerison ([10], 16.17), X_n has a base of clopen sets. Next, suppose that X_a contains a nonempty perfect set P and let $\{P_0, P_1\}$ be a partition of P where P_0, P_1 are relatively clopen infinite subsets of P. Since P_0, P_1 are open in P, it follows immediately that P_0 , P_1 are perfect. Since X_a has a base of clopen sets, there are clopen subsets X_0 and X_1 of X_a such that $P_0 \subset X_0$, $P_1 \subset X_1$, $X_0 \cap X_1 = \emptyset$ and $X_0 \cup X_1 = X_a$. Repeating the above reasoning, and using the argument given by Pelczynski and Semadeni in ([7], Lemma 2), we have a continuous function \hat{f} from X_a onto the Cantor discontinuum C. Then it is clear that $f = \hat{f} \cdot \pi \in a$, and f(X) = C. But this contradicts the fact that f(X) is countable. Hence X_a contains no perfect nonempty subset.

(D) \rightarrow (A): Let φ be a bounded linear functional on a_h . Without loss of generality, we suppose that $\varphi \ge 0$. Define $\hat{\pi}(\varphi)$ by $\hat{\pi}(\varphi)(\hat{g}) = \varphi(\hat{g} \cdot \pi)$ for all $\hat{g} \in \hat{a}_{h}$, and let $0 \le \Phi$ be a extension of $\hat{\pi}(\varphi)$ on $C(X_a) = (a_u)_b$. Since X_a is compact space without perfect subsets, by Rudin ([11], Th. 6), there is a countable subset $\{x_n\}$ of X_n and a sequence $\{\alpha_n\}$ from l^1 such that $\Phi(\hat{f}) = \sum \alpha_n \hat{f}(\hat{x}_n)$ for all $\hat{f} \in C(X_a)$. Hence it is immediate that $\varphi(f) = \sum \alpha_n f(x_n)$ for $f \in a_b$, and the proof is complete.

As an obvious corollary of Theorem 2, we have;

COROLLARY 3. Let X be a completely regular space. Then the following are equivalent:

- (A) For each $\varphi \in C^*(X)_b$ there is a countable subset $\{x_n\}$ of X and a sequence $\{\alpha_n\}$ from l^1 such that $\varphi(f) = \sum \alpha_n f(x_n)$ for all $f \in C(X)_b$.
 - (B) (1) X is a compact Hausdorff space.
 - (2) The Baire order of C(X) is no more than 1.
 - (3) If $f \in B(C(X))$, then f(X) is countable.
 - (C) (1) X is a compact Hausdorff space.
 - (2) If $f \in C(X)$, then f(X) is countable.
 - (D) X is a totally disconnected compact space without perfect subsets.

3. Dominant condition. We first need some preliminary. Two functions f and a of R^X are disjoint if $|f| \wedge |g| = 0$, and a disjoint system $\{f_i\}$ of R^X is a pairwise disjoint collection of nonnegative functions f_i of R^X .

Let H be a linear sublattice of R^{X} . H is σ -laterally complete if the ordered supremum of every disjoint sequence of H exists, and σ -complete if every countable subset of H with an upper bound in H has a ordered supremum in H.

A sequence $\{f_n\}$ of R^X is uniformly bounded if there is a constant function α such that $|f_n| \leq \alpha$ for all n. A linear sublattice H is said to be bounded σ -closed in R^{X} if every uniform bounded sequence of H has its pointwise supremum in H. If H is boundedly σ -closed in \mathbb{R}^X , then it follows easily that H_h is σ -complete. But its converse is in general false. A sequence $\{f_n\}$ of H order-converges to f in H if there is a decreasing sequence $\{u_n\}$ of H with $\bigwedge u_n = 0$ in H and $|f_n - f| \le u_n$ for all n. A sequence $\{f_n\}$ of H is order-Cauchy if there is a decreasing sequence $\{u_n\}$ of H with $\langle u_n = 0 \text{ in } H \text{ and } | f_{n+m} - f_n | \leq u_n \text{ for all } m, n. \text{ A linear sublattice } H$ is said to be order-Cauchy complete if every order-Cauchy sequence in H orderconverges in H to some element of H.

Let a be a linear sublattice of R^{X} containing the constants and $Z_{\delta}(a)$ be the family of all countable intersections of zero sets in Z(a). Let A denote the smallest complete ordinary function system containing a. Then it follows by Mauldin ([3], Th. 3.3), that A is the set of all functions f of \mathbb{R}^X such that $f^{-1}(F) \in \mathbb{Z}_s(a)$ for every closed subset F of R. In the sequel, we shall suppose that linear sublattice a contains the constants and separates points of X. This is no restriction for our considerations. since if a does not separate points of X, as observed in Section 2, we may consider the quotient of X obtained by identifying the points of X not separated by a, and obtain a function system which has the same structure as a. Let X_A denotes the set of all nonzero lattice (algebra) homomorphisms of A_b onto R. Let τ_A be the relative $\sigma(A_b^*, A_b)$ -topology on X embedded into X_A . Since A_b is an SW-algebra, it follows that X_A is the compactification of (X, τ_A) for which $f \in C_b(X, \tau_A)$ has a continuous extension f^{β} on X_A if and only if $f \in A_b$. However, in general, $A_b \neq C_b(X, \tau_A)$ and $A \neq C(X, \tau_A)$ (See [6]).

DEFINITION. We shall say that A satisfies D-condition if it satisfies the following: (D) for each $g \in LS(a)$ there is an $f_g \in A$ such that $f_g \geqslant g$ on X.

Since $LS(a) \subset B_1(a) \subset US(LS(a))$ (See [3]), A satisfies D-condition if and only if for each $g \in B_1(a)$ there is an $f \in A$ such that $f \geqslant g$. We can now prove the following result.

THEOREM 4. Let A be the smallest complete ordinary function system containing a. Then the following are equivalent:

- (A) A satisfies D-condition.
- (B) (1) A is σ -laterally complete.
- (2) A is σ-complete.
- (C) (1) X is P-space, i.e., a space in which every G_{δ} set is open.
- (2) A is σ-complete.

(D) A is bounded σ-closed.

(E) A is closed under pointwise convergence of sequences; $A = B_1(A) = B_1(a)$. Proof. (A) \rightarrow (B): (1) Let $\{f_n\}$ be a disjoint sequence of A, and let $g = \sum nf_n$.

It is clear that $g \in B_1(a)$. Since A satisfies D-condition there is a function $f \in A$ such that $f \geqslant g$ and $f \geqslant 1$. It then follows that for every n, p > 1,

$$\sum_{k=n+1}^{n+p} f_k \cdot f^{-1} \leqslant \sum_{k=n+1}^{n+p} (k/n) f_k \cdot f^{-1} \leqslant 1/n \text{ and } \sum_{k=n+1}^{n+p} f_k \cdot f^{-1} \in A.$$

Let $h = \sum_{n} f_n \cdot f^{-1}$. Since A is uniformly closed, it is immediate that $h \in A$, and $\sum_{n} f_n = h \cdot f \in A$. Hence A is σ -laterally complete. (2) Since $C(X_A) \cong A_b \subset A$, it is clear that every disjoint sequence of $C(X_A)$ with an upper bound has its ordered supremum in $C(X_A)$. Hence it follows from ([12], Prop. 2) and ([10], 3N) that $C(X_A)$ is σ -complete. This means that A_b is σ -complete. Let h(x) = x/(1+|x|) on R. If $f, f_n \in A$ and $f_n \leqslant f$ for all n, then it is clear that $h \cdot f_n$, $h \cdot f \in A_b$ and $h \cdot f_n \leqslant h \cdot f$. Since A_b is σ -complete, it follows immediately that $g = \bigvee_{n} h \cdot f_n \in A_b \subset A$. Hence $\bigvee_{n} f_n \in A_b \subset A$ and it follows that A is σ -complete.

(B) \rightarrow (C): (1) It is sufficient to show that every point in X is a P-point (See [10], 4L). If $p \in X$ is not a P-point, then there is a G_h -set G of X containing p such that for a sequence $\{U_n\}$ of open neighborhood of p in X_A , $G = X \cap (\cap U_n)$ is not neighborhood of p. Let $Z(f^{\beta})$ be a zero set of X_A such that $Z(f^{\beta}) \subset \bigcap U_n$ and $p \in Z(f^{\beta}) \cap X \subset G$, where $f \in A$, and $0 \le f \le 1$. Let $G_n = \{x \in X : f(x) > 1/n\}$ and $Z_n = \{x \in X: f(x) \ge 1/n\}$. Then for each n there is an $f_n \in A_n$ such that $f_n = 1$ on $Z_{n+1} \setminus G_n$, $f_n = 0$ on $Z_{n-1} \cup (X \setminus G_{n+2})$ and $0 \le f_n \le 1$. Let $g_1 = \sum n f_{3n-2}$, g_2 $=\sum nf_{3n-1}$ and $g_3=\sum nf_{3n}$. Since $\{nf_{3n-2}\}\{nf_{3n-1}\}$ and $\{nf_{3n}\}$ are disjoint sequences of A, it follows from (1) of assumption (B) that $g_i \in A$ for each i=1,2,3. It then is not difficult to verify that each a_i is continuous with respect to the topology (X, τ_A) . Let $g = g_1 \vee g_2 \vee g_3$. Since $g \in A$ and g(p) = 0, there is a neighborhood W of p such that g(x) < 1 for all $x \in W$. Since $Z(f^{\beta}) \cap X$ is not neighborhood of p, it follows that $(X \setminus Z_n) \cap W \setminus Z(f^{\beta}) \neq \emptyset$ for all n. Hence for every $x \in (X \setminus Z_{3n-2}) \cap W \setminus Z(f^{\beta})$, $g(x) = g_1(x) \vee g_2(x) \vee g_3(x) \ge n$. But this contradicts the fact that q(x) < 1 on W. Hence X is P-space. (2) of (C) is immediate from (2) of (B).

(C) \rightarrow (D): We first show that pointwise monotone convergence in A is equivalent to monotone order convergence in A. It is clear that pointwise monotone convergence implies order convergence. Let $\{u_n\}$ be a decreasing sequence $u_n \downarrow$ in A with $\bigwedge_n^n u_n = 0$ in A, and suppose there is an $x_0 \in X$ and $\varepsilon > 0$ such that $u_n(x_0) > \varepsilon$ for all n. By Theorem 1.1, (2) there is an $f_n \in a$ such that $0 \leqslant f_n \leqslant u_n$ and $f_n(x_0) > \varepsilon$ for all n. Let $Z_n = \{x \in X : f_n(x) \geqslant \varepsilon\}$ and $Z = \bigcap Z_n$. By (1) of assumption (C),

Z is an open zero set containing x_0 , and $Z \in Z(A)$. Let h be a function in A_b such that $h(x_0) = \varepsilon/2$, h = 0 on $X \setminus Z$ and $0 \le h \le \varepsilon/2$ on X. Then it follows that $u_n \ge f_n \ge h \ne 0$ for all n. But this is a contradiction, and hence $\{u_n\}$ converges pointwise to 0. From this, if $f_n \in A$ and $f_n \uparrow f \in A$ in order convergence, then it follows that f is the pointwise limit of $\{f_n\}$. Let $\{f_n\}$ be an uniformly bounded sequence in A. Then by (2) of assumption (C) and the argument above it is simple to verify that $\bigvee_n f_n = \sup_n f_n(x) = f \in A$. Thus A is bounded σ -complete.

(D) \rightarrow (E): Since A is uniformly closed, it is clear that $Z_{\delta}(a) = Z(A)$. Let $f \in A$ and χ_f be the characteristic function of CZ(f). Since $(n|f|) \land 1 \leqslant 1$ for all n, it follows from assumption (D) that $\chi_f = \sup (n|f|) \land 1 = \bigvee (n|f|) \land 1 \in A$ and also

 $1-\chi_f \in A$. Hence CZ(A)=Z(A) and Z(A) is σ -algebra. Let $g \in LS(A)$ and $\{f_n\}$ be a increasing sequence from A converging to g. Then, for every real number γ , $\{x \in X: g(x) > \gamma\} = \bigcup_n \{x \in X: f_n(x) > \gamma\} \in Z(A)$. Also, if $h \in US(A)$ and $\{f_n\}$ is

a decreasing sequence from A converging to h, then

$$\{x \in X \colon h(x) \geqslant \gamma\} = \bigcap \{x \in X \colon f_n(x) \geqslant \gamma\} \in Z(A).$$

This means that $LS(A) \cup US(A) \subset A$, and hence $B_1(A) = B_1(A) = LS(US(A)) \cap US(LS(A)) \subset A$. Thus it follows that $A = B_1(A) = B_1(a)$.

(E) \rightarrow (A): This is obvious, and the proof is complete.

As a corollary of Theorem 4, we have;

COROLLARY 5. If A satisfies D-condition, then A is order Cauchy complete.

Proof. It is immediate from the argument given in (D) and (E) of Th. 4.

References

[1] F. Hausdorff, Set theory, Chelsea, New York 1957.

[2] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, Fund. Math. 68 (1970), pp. 51-59.

 [3] — Baire functions, Borel sets, and ordinary function systems, Advances Math. 12 (1974), pp. 418-450.

[4] J. S. Pym, Positive functionals, additivity, and supports, Jour. London Math. Soc. 39 (1964), pp. 391-399

[5] A. J. Ellis, Extreme positive operators, Quart. Jour. Math., Oxford (2), 15 (1964), pp. 342-344.

[6] R. B. Kirk, Algebras of bounded real-valued functions. I, Indag. Math. 34 (1972), pp. 443-451.

[6] R. B. Kirk, Algebras of bounded redividued functions, i, Hields, intensity of Eq. (12) A. Pełczyński and Z. Semadeni, Spaces of continuous functions (II) (The space $C(\Omega)$)

for Ω without perfect subsets), Studia Math. 18 (1959), pp. 211-222.

[8] K. Nagami, Baire sets, Borel sets, and some typical semicontinuous functions, Nagoya Math. J. 7 (1954), pp. 85-93.

[9] A. G. A. Babiker, On almost aiscrete spaces, Mathematika 18 (1971), pp. 163-167.

[10] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. 216

Takeshi Ohno

- [11] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), pp. 39-42.
- [12] A. I. Veksler and V. A. Geiler, Order and disjoint completeness of linearly partially ordered spaces, Siberian Math. J. 13 (1972), pp. 30-35.
- [13] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, 1953.

DEPARTMENT OF MATHEMATICS FACULTY OF LIBERAL ARTS SHIZUOKA UNIVERSITY Shizuoka 422, Japan

Received 2 January 1984

Polyhedral-shape concordance implying homeomorphic complements

by

Vo Thanh Liem

Abstract. If two compacts X and Y satisfy the inessential loops condition in the interior of a piecewise linear m-manifold M, $m \ge 6$, and are shape concordant in M, and if X has the shape of a compact k-polyhedron, $k \le m-3$, then M-X is homeomorphic to M-Y.

A compact subset X of a manifold N satisfies the inessential loops condition (abbreviated ILC) if for each neighborhood U of X, there is a neighborhood V of X such that each loop in V-X which is null homotopic in V is null homotopic in U-X. Throughout the paper, I=[0,1].

Two compacta X_0 and X_1 (satisfying ILC) in the interior of a manifold M is said to be (ILC) shape concordant if there is a compactum Z (satisfying ILC) in $M \times I$ such that $X_1 \times \{i\} = Z \cap (M \times \{i\}) \subset Z$ is a shape equivalence for each i = 0, 1. Similarly, if X_0, X_1 and Z are polyhedra in the corresponding PL manifolds, we can define the notion of polyhedral concordance.

Sher has proved in [S] that "If X and Y are ILC compacta in a PL manifold M^m ($\partial M = \emptyset$ and $m \ge 6$) and ILC shape concordant in M by Z, and if X has the shape of a k-polyhedron ($k \le m-3$), then $M-X \cong M-Y$." In this note, we will show that if X and Y satisfy ILC in M and are shape concordant, then M-X is still homeomorphic to M-Y without assuming that Z satisfies ILC in $M \times I$ (Theorem 3.4).

For standard notions and notations in piecewise linear (abbreviated PL) topology as: simplicial collapse, PL homeomorphism, ambient isotopy, singular set S(f) of a PL map f, derived neighborhood, boundary ∂Q of a PL manifold Q, $\operatorname{Fr}_Q N$, $\operatorname{Int}_Q N$, ..., we refer to [Hd]. Given an open subset W of ∂Q , by an open collar of W in Q, we mean the image of a PL open embedding $h\colon W\times [0,1)\to Q$ such that h(x,0)=x for all $x\in W$. If Q is a PL manifold, Q denotes $Q-\partial Q$.

We will suppress the base points from our notations of homotopy groups. If $(X, A) \subset (Y, B)$, the homomorphism $\pi_q(X, A) \to \pi_q(Y, B)$ will be the inclusion-induced one if it is not specified otherwise.

We assume that the reader is familiar with the fundamentals of shape [B] and ANR-systems [M-S].