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An ordering of normal ultrafilters
by

Julius B. Barbanel (Schenectady, N. Y.)

Abstract. Suppose # is supercompact, and 4 ;> . Let Nuf,(4) be the collection of all normal
ultrafilters on Py(3). For any Ue Nuf,(2), let i, be the elementary embedding associated with U.

Def. For U, We Nuf,(1), U <4 W iff i,()) < iw(%).

Def. If 4 CNufy(3), then I(4) = {i,(x): Ue 4}

We establish various facts regarding the <, ordering and the mapping J. We show that
I(Nuf,(4)) is cofinal below (24*)* and in particular I{U € Nuf,(1): U is extendible} is cofinal below
2%+, This provides an alternative proof of the theorem of Magidor on the number of extendible
elements of Nuf,(4). In addition, we establish connections between the <, ordering and the degree
of extendibility of elements of Nuf,(4), and we show that an open question concerning the number
of normal ultrafilters on a measurable cardinal which concentrate on nonmeasurable cardinals
is related to questions involving the <, ordering.

0. Introduction. Let % be a supercompact cardinal, and fix a cardinal 1 > .
Solovay, Reinhardt, and Kanamori ([5]) established that there exist 22% many
normal ultrafilters on P (2). In this paper, we examine a natural ordering of this
collection of normal ultrafilters. This ordering is defined in terms of the action of
the elementary embedding associated with each normal ultrafilter.

In Section 1, we standardize our notation and review some of the known results
that we shall need. In Section 2, we define and prove various facts about the ordering.
We also relate the position of a normal ultrafilter in the ordering to its degree of
extendibility, and improve on a result established in [1]. In Section 3, we consider
what happens to the ordering in the special case that 22%% 5 (222)*. This will yield
information about the lower levels of the ordering. Finally, in Section 4, we consider
the top levels of the ordering. This relates to the notion ‘of an extendible normal
ultrafilter.

1. Preliminaries. We work in ZFC throughout. We remind the reader that
a cardinal x is said to be i-supercompact iff there exists an elementary embedding
it V — M where V is the universe of all sets, M/ is‘'an inner model closed under AZ
sequences, » is the first ordinal moved by i, and i(x) > A. x is supercompact iff x is
A-supercompact for all 4 > «.


GUEST


156 J. B.-Barbanel
Equivalently, » is A-supercompact iff there exists a normal ultrafilter on
P4 = {X<=2A: |X| < x}. One goes from the normal ultrafilter characterization
of supercompactness to the embedding characterization by taking ultrapowers
of V with respect to the normal ultrafilter, taking the transitive collapse to get A7,
and composing the associated embeddings to get i This construction will be central
to this paper. For details, we refer the reader to [5].

If U is a normal ultrafilter on P,(4), My denotes the inner model and i, the
elementary embedding associated with U. Thus, iy: ¥V — My.

Throughout the paper, o and § shall be used to denote ordinals, while y, 5,

%, %, and A shall be reserved for cardinals. A% denotes the cardinal sup (17), or,
y<u

equivalently, the cardinal of P,(1). Cardinal exponentiation is always associated
from the top. Thus, for example 22 denotes 2. If IV is a set of ordinals, OT(N)
denotes the order type of N. If I, and I; are sets of ordinals, we shall write I, < I,
to denote the fact that if o € I, and f &I, then « < f. For any set P, |P| denotes.
the cardinality of P.

Next, we develope some notation.

DeFiNiTioN 1a. Nuf,(4) = {U: U is a normal ultrafilter on P,(%)}.
Solovay, Reinhardt, and Kanamori ([5]), p. 92) established that if » is 2%
supercompact for some cardinal A > s, then |Nuf,(})] = 2™

DermuTioN 1b. For 4 = Nuf(2), I(4) = {iy(x): Ue 4},

If % < A<y and We Nuf,(y), then there is a natural way to define W } A e Nuf,(4),
the “restriction” of W to P,(1). This normal ultrafilter is defined by ¥ & W | A
if Y=P,(4) and for some Xe W, Y= {Zn i ZeX}.

There is a natural elementary embedding k: My 1, — My . For the definition
and basic properties of k, the reader is again refered to [5]. A fact which will be
important for us is that the first ordinal moved by & is [(2*%)* 141, . For the proof
of this fact see [4], p. 340. In addition, a straightforward induction establishes that
every set of rank less than [(2*%)*],, . is fixed by k.

DEFINITION ¢, For Ue Nuf(A) and y 2 4, U is yp-extendible if U= W}A
for some W e Nuf(y). Ue Nuf,(4) is extendible if it is y-extendible for every y = A

The notjon of restrictions of normal ultrafilters leads in a natural way to
a certain tree structure on the collection of normal ultrafilters associated with
a supercompact cardinal. This structure is studied in [1],

2. The ordering. We assume from now on, unless otherwise noted, that » is
a fixed supercompact cardinal. In addition, we fix some cardinal A > x.

In this section we consider the elements of Nuf,(1). We shall study the following
ordering on Nuf,(%):

Drermution 2a. For U, We Nuf,(1), U < (W iff iy(x) < (). U=y Wiff
i) = iy ().
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We shall connect this ordering with the notion of the degree of extendibility
of elements of Nuf,(1). Note that J(Nuf,(4)) is simply the set of ordinals associated
with each position in the <, ordering, We shall show that many distinct, non-
overlapping subsets of J(Nuf(1)) can be specified such that normal ultrafilters
associated with different subsets have different degrees of extendibility.

First, we establish. “where” I(Nuf,(1)) is.

Lemma 2b. I(Nuf, () € %) 2%,

Proof. Suppose Ue Nuf,(1). We must show that 2*¢ < iy(x) < (2*)*. Since
My is closed under AS sequences, it follows that [P, (D], = P,(1) and [P(P,(A)]re
= P(P3). Thus, 2 = |P(P,O)] < IP(PuW)larg = 2%y, But, in My, iy(s) is
supercompact and thus inaccessible. Therefore, (2%),;, < iy(%), and it follows
that 2*% < iy(n).

Next, we show that iy(x) < (2*)*. By definition, iy() = OT({f: P,(A) — x}/U).
Thus, [iy(G)| = [{/t PA) = 2}/U| < |{f: PA) = 2}| = #*¥ = 2%, It follows that
() < @, |

Our main lemma is the following:

+ Lemma 2c. If We Nuf,(2'%) for some y 24, k is the usual elementary embedding
k: My = My, and k(x) = y for some ordinal o, then,

a. I{UeNuf(A): U is y-extendible} is cofinal below (2*)*.

b. I{U e Nufy(1) My, ;: U is y-extendible} is cofinal below [(2%) Iy, -

Proof. Suppose W, y, k, and « are as in the statement of the lemma. Assume
by way of contradiction that J{U e Nuf,(4): U is y-extendible} is not cofinal below
(2*)*. Since My, is closed under 2% sequences, Nuf,(y) = My . Suppose U € Nuf,(4).
Then, since Nuf,(y)= My, U is y-extendible if and only if it is y-extendible in M.
Also, since all functions from P,(1) into x are present in My, iy(x) is correctly
computed inside My, . Then, noting that by closure considerations, [(2*%)* 15,
= (2*%)*, we may conclude that My, kJ{Ue Nuf,(4): U is y-extendible} is not
cofinal below (2*%)*, .

Next, we use the elementarity of k: My, — My. .Since %, A< [(2’“~)+]MW ta
it follows that k () = » and k(1) = 1. Then, since k(x) = y, My 1 F I{Ue Nuf (1): U
is a-extendible} is not cofinal below (%)*. Pick B < [(2*)* s, such that
My, I{UeNuf,(A): U is a~extendible} = B. Then, since k(f) = B,

My EI{UeNuf(l): U
is y-extendible} < p.

Using closure considerations as previously, we conclude that (in V),
I{UeNuf,(1): Uis y-extendible} = p. But W } A= (W }y)}Aand thus W U-
is a y-extendible element of Nuf,(Z). Therefore, iy, ) el{UeNuf(): U is
y-extendible} < B < [(2*)* 1y, < iy 20¢)s Where the last inequality follows from
the inaccessibility (in My, ;) of iy 1(%). This is a contradiction and thus parta has
been established. . .

Next, for part b, we note that by part a and by ”closure consxderatxor-ls,
My E T{U e Nuf,(A): U is y-extendible} is cofinal below (2*%)*. By the elementarity
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of k, noting that k(x) = v, it follows that My , F I{U e Nuf,(1): Uis «-extendible}
is cofinal below (2%%)*. Thus, I{U e Nuf,(A) N My, ;: My, F U is a-extendible}
is cofinal below [(2*%)* ]y, 1, We therefore have only to show that if U e Nuf, (1) n
™My, and My, F Ulis o-extendible, then, (in V), U is p-extendible, This follows.
easily though, since, by elementarity, if My, ; F U is a-extendible, then, My, & U s
y-extendible (k(U) = U since rank(U) < [(2%)*1y,,1,). By the closure properties
of My, it follows that (in V), U is y-extendible. @
The following corollary is immediate from part a of the lemma:

CoRrOLLARY 2d. I(Nuf,(2)) is cofinal below (2*)*.

Cardinals y that satisfy the conditions of Lcmn\w 2¢ will be extremely important
for us. Thus we consider

DEFINITION Ze. A cardinal y is (x—2) specifiable if for any W e Nuf(2"%),
k() =7 tor some ordinal @, where k is the usual clementary embedding,
ki My, — My.

As an example, let y be the ™ inaccessible cardinal above 1, where 8 is some
ordinal with § < 2*° (Assume, for this example, that such a cardinal exists). We
claim that 1y is (x—A) specifiable. Let W be any element of Nuf,(2'%) and let
k: My, — My be the usual elementary embedding, By .closure considerations,
My Fy is the fth inaccessible cardinal above A. Thus, M, F There exists a fth
inaccessible cardinal above A. By elementarity, since k(B) = B and k(1) = A,
My, F There exists a fth inaccessible cardinal above A, Pick & such that My 5 F o
is the Bth inaccessible cardinal above A. Then, it clearly follows from the elementarity
of k that k(x) = y.

This example suggests the following:

Dermvrrion - 2f. A cardinal y has property A(x—2) if there is a formula
(%, Xy, X3, ... X,) and ordinals oy, ¢y, ..., o, < 2% such that given any inner model M
which is closed under 2'% sequences, M Fy is the unique set y such that
Sy, oy, g, ... &)

LemMa 2g. If a cardinal y has property A(x--1), it is (n—A) specifiuble.

Proof. Suppose y has property A(x—2), and ¢(x, x;, x5, ... X))y Ogy Oy ees Oy
are as in the definition. Pick any W e Nuf,(2%). Then, My F y is the unique set y
such that ¢(y, ay, @y, ... ). Thus, My, F there is a unique ordinal y such that
B (P gy gy onn &), Since oy, oy, ..o, < 2%, k: My s — My fixes cach of these
ordinals. Then, by the elementarity of k, My 5 F there is a unique ordinal y such
that ¢(y, oy, &, ... 0,,). Pick « such that My 0k ¢ (@, g, oy, .. ), Then, it clearly
follows from the elementarity of & that k(x) = y. B ‘

Property 4 (x—1) provides a simple means of showing that many cardinals
which can be. described in a “reasonable” way (loosely speaking, this means that
they can be specified using ordinals less than or equal to 2"y are (- 4) specifiable,
For the most part, we shall be directly using the (x—.1) specifiability of certain
cardinals. ' : . } )
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Tt is notllmrcl to see, using property A(x~1) and Lemma 2g that for each
ordinal o € 2%, xt’he ath cardinal bigger than J is (x— 2) specifiable. Also, for example,
for each o < 2*%, the ath cardinal bigger than A which is the limit of strong limit

cardinals is (3 — 1) specifiable. Thus,

LEMMA 2h, The order type of the set of all cardinals which are (x—A) specifiable
is strictly greater than 2%,

As we shall see later, this set will have order type strictly between 2% and %,

We shall soon identify a subset of I(Nuf,(%)) with each cardinal which is (e—2)
specifiable. First though, we must develop some additional notation.

DEFINITION 2§, For each cardinal y > 1, we define U(x—4,7) to be some
y-extendible element of Nuf,(4) having the property that U (e=2,7) <o W for any
W e Nuf, (1) which is y-extendible.

There is no claim that there is a unique way to choose U(—A, y). We think
of U(x—2A,v) as a minimal (with respect to <,) y-extendible element of Nuf, (A):

The subsets of /(Nuf,(4)} that we will be interested in will be subsets of the
form I(4,), for A, given as follows: .

DERINITION 2j. For each cardinal y which is (x—A) specifiable,

4,

I

{U e Nuf,(d) N Myp—y,20%y: U is y-extendible} .

Lemma 2k. For any eardinal y which is (x—A) specifiable, I(4,) is cofinal béiow
(™) gy =127 ‘

Proof. This is. immediate from Lemma 2c, part:b. B .

THROREM 21. Suppose y is a cardinal which is (x—21) specifiable, Then

a. for ecach Ue A,, U is y-extendible, but not 2%_extendible,

b. [7(4,)] = 2%,

c. |4, = 2%, : , :
The proof of Theorem 21 requires the following lemma, the proof of which can be
found in [3], p. 190. ' ‘

LeMMA 2m. If U, U” & Nuf, (A and U'e My, then U <, U,

Proof of Theorem 2I. Fix Ue A,. By the definition of 4,, U is y-extendible,
Also by the definition of 4,, U € Myg—3,2v%). Thus, by Lemma 2m, U <, U(x—1,2%),
Then, by the definition of U(x—A,2"), U is not 2"%-extendible. This establishes
part a, '

Next, for part b, we first note that by Lemma 2k, J(4,) is cofinal below
(%) Imryges 2ve, But cleatly A, € Myg-;.2vs) and thus Mye_; 0e E I(4,) s
cofinal below (222)*. But, since M- ;. 20x F (225)" is 8 vegular cardinal, it follows
that Myp s, b [I(A)] = 2*)*. Thus, (in 7)),

AN = 1 v 2] -

CLAIM. |[(2)'5)+]MU(%"1, 2v:)! = ,2}'5.

5 — Fundamenta Mathematicae CXXV. 2
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Proof of Claim. Since My -1,2v2y i closed under 2% sequences, it follows
that P(P,(D)) = [P(P(A))|myce-1,27- Thus 2% < [22]urpq, -5 205, and we have 24
< X Iuee-2,20 2y < [ Iotygems, 292y < Tugems,205(6) < (22", where the last in-
equality follows from Lemma 2b, and the second to last inequality follows from
the inaccessibility, in My, 5, 5023, Of Fyg,—3,20%)(%). This establishes the claim, which
in turn establishes part b of the theorem.

Clearly [4,] > |I(4,)] = 2*%. Since

A, & Nuf (D) n Mﬁ(n-a,zv:',) = [Nuf, (D ]he-1,27%)

we may conclude that |4,] < [[ZZAtJMU(u—A.Zvﬁ)l = 2*%, The last equality can be
established in the same manner as the previous claim was established. Thus |A
= 2% This establishes part ¢ of theorem. B
+ This theorem yields subsets of J(Nuf,(4)), each of size 2*, such that the as-
sociated elements of Nuf,(1) have certain specified degrees of extendibility.
. -The following corollary establishes that the I(4,) “usually” do not overlap.
COROLLARY 2n. For cardinals y and n, both (—2). specifiuble with 2'¢ < g,
I(4,) < I(4,).
Proof. Pick U, e 4, and U, € 4,. We must show that U, <y Uy- By Lemma 2k,
Ty, () < [2*)*Itgea 2z BUL, by the inaccessibility, in
Tuge~-2,2v2y(%), it follows that

il

Myemg,amy  of

it o
(%) Iy, 202y < ipgms,20200) 5

and thus U, <, U(x~4, 2'%). But, it follows from the definition of UQe—1, 279
and the fact that U, is n-extendible (and therefore 2"%-extendible) that U\ (e—4, 2%)
<o U,. Thus, U, <; U,. B

Of course, if the GCH holds, it follows immediately from Corollary 2n that
if cardinals y and # are (x—J4) specifiable and Y <, then I(4,) < I(4,).

What emerges is a picture of the set of ordinals I(Nuf,(2)) with the following
structure: ' :

We distinguish a certain collection of cardinals y, those which are (x—4)
specifiable. The order type of this collection is strictly greater than 2*%, Each such y
yields a distinct ordinal [(2"5)'*]MU(K_ 2,207 This will give us a sequence of ordinals
below (2*)* of order type strictly greater than 2+%. Each such ordinal (R * Taty e, 2o
has the property that there is a set 4, of normal ultrafilters on P,(4) such that each
element of A, is y-extendible, but not 27 extendible, and I{4,) is cofinal below
(%) Irtyem1, 202y

We do not have the answer to the following:

OPEN  QUESTION 20: For a cardinal y which is (—2) specifiable, is I(4,)

a subinterval of I(Nuf,(1))?

In other words, can we have U, U'e A, such that for some We Nuf,(4),
U<oW<o U, but W, U” for any U'ed,?

icm°®
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In section 4, we shall deal with the question of how high in the I(Nuf,(2))
order the I(4,) go, for (1) specifiable cardinals p. This, of course, relates to the
question of how many (x—4) specifiable cardinals there are.

Before closing this section, we consider two special cases of Lemma 2c and
Theorem 2l For the following corollary, we do not assume that x is fully super-
compact.

COROLLARY 2p, If x is 2" supercompact, then I{U: U is a normal ultrafilter on %
(in the measurable cardinal sense)} is cofinal below (2%)*.

Proof. Clearly » is (x—#x) specifiable. Then, Corollary 2d implies that
I(Nuf, (%)) is colinal below (2%)*, But »¥ = » since x is inaccessible, and, as far
as the associated clementary embeddings are concerned, normal ultrafilters on
P, () are equivalent to normal ultrafilters on » (see, e.g., [5], p. 89). B

In [I], we proved that for cardinals A > » which are “specifiable” from 2
(a notion which. is close to what we would presently call ( —x) specifiable), there
exist 22*° many elements of Nuf,(2) which are not 22*°_ extendible. Wealso showed
that for any A 2= %, there exists (at least) one element of Nuf,(l) which is not
2*. extendible, We improve this last result using our present methods.

COROLLARY 2q. For any cardinal L = %, there exist (at least) 2** many elements
of Nuf, () which are not 2*5-extendible.

Proof. Since A is certainly (1) specifiable, it follows from Theorem 21”that
14, = 2% and if Ue 4,, then U is an element of Nuf,(1) which is not 2*-ex-
tendible, & .

Of course, if the GCH holds, then we have shown that there are 24 = A"
many clements of Nuf,(4) which are not extendible at all.

We have not completely answered the question of the ny}mber»of elements
of Nuf,(4) which are not 2*%-extendible. We still have the follxowing:

OPEN QUESTION 2r. Can it be shown that there exist 22* (or (2%5)™) many
elements of Nuf,(1) which are not 2**-extendible, and, if 80, is the set of ordinals
obtained by applying I to this collection cofinal below @*%5*?

3. The bottom of the ordering and connections with a result of Laver. }3y Corol-
lary 2d, |I(Nuf,(4)] = (2*¥)*. As noted in Se?tion 1, [Nuf ()] = 22*. In this
section, we consider the situation in which 2%*° > (2*%)*. For technical reasons,
we shall want ¢f(22*%) > (2)*. _

First, we consider the question of consistency. Assume that x is supercom&act,
A2 x and n > 22 is regular. Let H = {f: f is a partial function frg:n Wy
into 2 and |f] < 2*}. Then, fotcing with H yields 2 model in .which 22 j«"' Ig
addition, since H is bf’(z‘ﬁ)-closed, no new subsets of any cardinal y <, of (2%) ‘ar'e
added. It follows that in the forcing extension, x is y-supercompact for e-ach. cardi-
nal y satisfying y% = |P,()| < ¢f(2"). By Konig’s theorem, this inequality is true
for y = A. Thus, the forcing extension satisfies that x is A-supercompact.

B
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. It turns out that something much stronger is possible. In [2], Laver established
the following:

THEOREM 3a. If x is supercompact, then there is a % c.c. partial ordering Q with
|Q| = = such that in V2, x is supercompact, and remains supercompact upon ‘f'(il‘(‘fl’lg
with any x-directed closed partial ordering.

The partially ordered set H defined above is a x-directed closed partial ordering,
Thus, Laver’s theorem yields the following:

CoroLLARY 3b. Con (ZFC-+x is supercompact) implies Con (ZEC+x is super-
compact + for some cardinal A > x, cf (2233) > (2’15)"‘),

. We assume for the remainder of this section that » is supercompact and
o (2% > (2K*,

By the first paragraph of this section, the following is immediate:

THEORBM 3¢. For some ordinul o with 2% < a < (2", 4 = {Ue Nuf,(1):
iy() = a} has cardinality 2%*°,

Thus, for any U, Wed, U=y W. Also note that by the definition of A,
I(4) = {o}.

One consequence of Theorem 3¢ is that since, by Lemma 2m, if U =, W,
then U ¢ My, the ordering given by “U 1 Wiff Ue My, (see [5], p. 92) is not a linear
ordering. We do not know whether this ordering can be lincar it 22* = (22%)*.

Next, we show how' the assumption that ¢/(2**) > (2%)* implies that a result
similar to Theorem 3¢ holds inside a certain model. This will have certain conse-
quences for the “bottom™ of the J(Nuf,(1)) ordering.

THEOREM 3d. For some ordinal B with 2% < p < [(2"5)+]MU(,,_,-,,;;,3),
B ={UeNuf,(2): iyG) =B and U is not 2‘5-e.xrc~‘ndible} has cardinality at
least 2*%,

Proof. Fix W e Nuf,(2*%) such that U(¢—4, 248y = W | A. Since My is closed
under 2*%-sequences, Nuf(A) € My, and thus Nuf,(l) = [Nuf,(Mary, € My, Let
A be as in the statement of Theorem 3c. Then, since each iy(x) for U e Nuf(l) is
correctly computed in My, it follows (by the axiom of separation) that 4 e My,
Thus, My & For some ordinal f with 2** < § < (2%)* and some set C & Nuf,(A)
with 2% < |C] < 22, 1(C) = {B}. By the clementarity of k: Myeems, i = My,
it follows that My, 2.z F for some ordinal § with 24 < § < (2%%)*, and some
set C< Nuf () with 22 < |C € 2%, 1(C) = {B}. Fix a specific ordinal f and
aspecific set C nguf,‘(A) suchthat Ce My, nzanand Mye, ) qauk 2 < < QMY
2% < || < 2*%, and I(C) = {B}. Itfollows that (in V), 24 <« < [(2*3)"“]1.“,(,,4 2850
and |C| = 2*Z (this last equality can be established in a manoer similar to the él,aium
in the proof of Theorem 21). Finally, we note that for U e Nl (A) N My, 222),
it follows frofn Lemma 2m that U <o U4, 2*%) and then, by the definition of
U(x~2,2%), it follows that U is not 2%-extendible, The theorem follows by
noting that if B is as in the statement of the theorem, then C< B, B
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. We note that we cannot hope, by our present methods, to improve Theorem 3d
to “|B| = 22*% ince ](2243)6[“”%2%‘ = 2%,

By the theorem, we have a 215-way tie, somewhere near the bottom (i.e., beforé
(2% Ty, 200 of T(NuL ). -

OpiN  QuusTION 3e. Can this tic ocour on the bottom level ? [n other words,
can the i of Theorem 3d be the least clement of /(Nuf,(1))?

An affirmative answer to this question would relate to a major topic in the
study of normal ultrafilters, as shown by the following:

COROLLARY 3L, Jf the B of the thearem is the least element of I(Nuf (), then

a. there exist (at least) 2% many elements U of Nuf,(4) such that My E % is not
A=supercompact, and

b. in particular, if A = s, there exist (at least) 2 many normal ultrafilters on
which concentrate on non-measurable cardinals.

Proof. For part a, assume that § is the least element of Nuf,(1), and B is as
in the statement of the theorem. It follows from Lemma 2m that if UeB and
W e Nuf,(A), then W¢ M, and thus My E There are no normal ultrafilters on
P,(%). Hence, My k3 is not A-supercompact.

For part b, we note that if A = «, then, by the above, for any Ue B, My k2
is not x-supercompact. Thus, My k x is not measurable, and it follows that U con-
centrates on non-measurables. Finally, we note that |B] = 2% = 2¢ = 2, ®

4. The top of the ordering and connections with a result of Magidor. We begin
this section by considering the question of how high in J(Nuf, (1)) the I(4,) go,
for y-a (% —A) specifiable cardinal. We have already pointed out that the order type
of the (x—2) specifiable cardinals is strictly greater than 2%,

TaRoREM 4a. U{I(4,): y is a (x—A) specifiable cardinal} is bounded strictly
below (225", Equivalently, the order type of the (x— 1) specificble cardinals is strictly
less than (22%)*,

Note. The equivalence expressed in the theorem follows from Theorem 21,
part b, and Corollary 2n.

Before beginning the proof, we establish the following:

CLAM, There exists a U Nuf(A) such that U is extendible.

Proof of Claim. Suppose by way of contradiction that no Ue Nuf,(1) is
extendible. Then, for cach U e Nuf,(1), let §, be the least cardinal § such that U is
not d-extendible, Since Nuf,(2) is a set (of cardinality 22%%), sup{8y: Ue Nuf, ()}
is a cardinal, Pick any n bigger than this cardinal. Then no U e Nuf,(1) is #-ex-
tendible. But, since % is supercompact, we can pick some W e Nuf,(i). Then
W b % e Nul,(A) is n-extendible. This is a contradiction, and we have established
the claim.

Proof of Theorem 4a. By the claim, suppose U e Nuf, (%) is extendible,
and assume by way of contradiction that the collection of (% — 1) specifiable cardinals
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has order type (2*9)*. By the discussion following the proof-of Corollary 2n, it
follows that {[(2'%)* Iuyge—1, 202 7 is (x—A) specifiable} is cofinal below (22, Since
ip() < (27%)*, we can pick some (x—2) specifiable cardinal y such that iu(s)
< [(2*%)* sy, 202y By the inaccessibility of fy(x-2, 2056 N Myyee g, 20,0 it Follows
that iy(x) < fgp—;,200(%). Then, by the definition of U(x—2,2%), we conclude
that U is not 2*%-extendible. Contradiction. H

We next show that {U e Nuf,(): ‘U is extendible} is cofinal in the <, ordering
or, equivalently, that /{U e Nuf (4): U is extendible} is cofinal below (24",

First, in order to avoid what appears to be a possible source of confusion, we
point out that Theorem 4a does not tell us that if Ue Nu [(2) is above (in the <,
ordering) every element of cvery A, for y a (x—4) specifiable cardinal, then U is
extendible. For a fixed (—1) specifiable cardinal 7, it is not hard to see, using the
definition of U(x—2, 2"¥) and reasoning as in the prool of Theorem 4a, that for
any U e Nuf,(4), if i50¢) < [(2*) " Imgsg—s, 202y then U is not 2*-extendible. On the
other hand, we do not know whether there cxist Ue Nuf, (1) such that i,(x)
> [(2}"’“‘)+]Mu(x- nawn and U'is not 2% extendible. This is related to Open Questions
20 and 2r,

Turorem 4b. I{Ue Nuf,(A): U is extendible} is cofinul below @**.

Proof. As in the proof of the claim in Theorem 4a, for each U e Nuf,(4) which
is not extendible, let &y, be the least cardinal & such that U is not d-extendible. Let
1 be any strong limit cardinal which is bigger than sup{dy: Ue Nuf(1) and U is
not extendible}. Pick a minimal We Nuf,(2"), ILe., pick W e Nuf,(2"%) such that
for any Ue Nuf,(2"%), W<, U. Since My is closed under 2"¢ sequences Ay, Fx
is -supercompact. By the minimality assumption on W, it follows (by Lemma 2n)
that My k % is not 2"™-supercompact. In addition, we note that for any cardinal §
with # < 8 < 1, My F % is 253‘-511percompact. This is true since n is a strong limit
cardinal and thus 2% < #. It follows that M, k y is the least cardinal & such that
% is §-supercompact but not Zﬁg-supercompact.

Next, consider the ‘elementary embedding k: M, pa— My Since My ko is
not supercompact, it follows that My 2 F % is not supercompact. Thus, for some
ordinal ¢, er 2 Fois the least cardinal such that x is a-supercompact but not
2“5-supercompact. By elementarity, we must have k(o) == 1,

We have shown that the hypotheses of Lemma 2¢ have been satisfied, By part
a of the lemma, I{Ue Nuf,(A): U is n-extendible} is cofinal below (24", But,
by the choice of #, if Ue Nuf,(2) is 7-extendible, then U is extendible. Thus,
I{UeNuf,(3): U is extendible} is cofinal below Nt m

We point out that minimality was used in the proof of Theorem 4b on a different

“level” than previously, In particular, it need not be true that for W as in the theorem,
Wb A= Ule—A, 2%, .

As a corollary, we get an alternate proof of a theorem due to Magidor ([3);
p. 191).
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COROLLARY de. There are (at least) @*)* many elements of Nuf, (1) which are
extendible.

Proof. It follows immediately from the theorem and the regularity of (2%%)*
that [/{Ue Nuf(1): U is extendible}| = @*)*. Thus {UeNuf(1): U is ex-
tendible}| = (2%)*. m

We conclude by asking whether Corollary 4c can be improved.

OPEN QUESTION 4d. Can it be shown that there exist 22% many elements
of Nuf,(4) which are extendible?
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