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On the existence of measures on o¢-algebras
by’

Andrzej Pelc (Warszawa) and Karel Prikry * (Minneapolis)

Abstract. We investigate the problem whether the existence of measures ona family of sub-
algebras of an algebra &/ implies the existence of measures on & itself, Some relationships between
various methods of constructing regularizing families for ultrafilters are also discussed in this
context. .

0. Introduction. Our main object is to study the problem whether the existence
of non-trivial measures on a family of subalgebras. of an algebra o/ implies the
existence of a non-trivial measure on & itself. The actual questions. we consider
are motivated by the following problem of Banach [1]. Are there two countably
generated o-algebras on the interval [0, 1] which both carry a non-trivial ¢-additive
measure but the o-algebra generated by their union has no such measure.

This problem was answered by Grzegorek who constructed such a_lgebra.s
in [5]. Galvin suggested to us to consider the following more general problem.
Does there exist a family of » a-algebrag such that every A of them generate an
algebra carrying a non-trivial o-additive measure and every ¢ of them generate
an algebra without such measure. We construct such families of algebras for some
infinite values of the cardinal parameters and some further cases, in particular
those involving finite values, are discussed in a forthcoming paper by the first
author. ’ :

There is some similarity between the problems we are considei'ing and the
so called marginal problem (cf. e.g. {7]): given a family of algebras F,: o < % of
subsets of a fixed set X and for each « < % a probability measure #z, defined on F,,
under what conditions will there exist a common extension of all measures 11,
defined on an algebra F containing U F,. However the difference is that in the

A<y .
Banach-type problems we are interested in the existence of any measure on the
large algebra, whereas in the marginal problem the object is to extend a particular
family of measures. \ )
Some of our results deal with measures that are only finitely additive. One
of these results also sheds some light on the relationship between several techniques

* The second author received partial support from the NSF Gtrants. MCS 78-01525 and
81-02700. .
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for establishing the regularity of ultrafilters on @, — see Prikry [8], Benda, Ke-
tonen [2] and Laver [6].

The main tool we use are matrices of sets. Hence an entire section of the paper
is devoted to this topic. For most of our results we need either the continuum hypo-
thesis or the axiom of constructibility.

1. Notation and terminology. We use standard set theoretic notation. Ordinals
are identified with the set of their predecessors, cardinals with initial ordinals.
% and J always denote infinite cardinals. 2(X) is the set of subsets of X, [X]* and
[X]1°* denote the family of subsets of X of cardinality » and <x respectively, . is
an ideal on X" means that elements of  are subsets of X, An ideal & is %-complete
focd, || <% ) sf e 5. Fis uniform on » means that [x]**< &, A family o
of subsets of X is -almost disjoint if for distinct 4, Be o¢, 4 n Be 5. AP (X)
is %-almost disjoint if it is .#-almost disjoint for & = [X]°* An ideal # on X is
x-saturated if there is no #-almost disjoint family o =2 (X) such that o N £
= @ and || = . If £ is an ideal on X then S denotes the family 2 (X)N\F
and s* denotes the family {X\d: 4 e #}. J* is also called the dual filter. An
ultrafilter % on »'is regular if there is a family &/ <%, || = % such that for any
Beld]”, N B = B. Such a family o is then called regularizing for . It is clear
how to relativize these notions to any algebra o <2 (X ), e.g. an ideal S/ is
uniform if it contains all sets of cardinality < |X | belonging to <.

If o/ is an algebra of subsets of X and # is a measure defined on &, p is called
a probability measure if (X = 1 and a diffuse measure if 4 vanishes on atoms of &7.

2. Matrices of sets. In this section we prove the existence of matrices of sets
with various combinatorial properties, They will provide an important tool for
getting our main results. The first theorem works only for ¢ (or for strongly in-
accessible cardinals).

TeEOREM 2.1. (a) There exist sets X, , e [0]® (@e2° =ux, ne ), such that:
() Vo Vny,nolny #n, 5 X, 0 X,,, = O

(ll) V'l VOC, ﬁ [“ 7é :B - IXu.n [} Xﬂ,nl < a)];

(i) U Xen = o, for all o;

rew
(iv) for every Se[x]°° and every one-to-one fr S —=w, N X, s € 0]
ees

(b) There exist sets X, 5e [w]®, (2, fe2® = %) such that:
() for all a, the family {X, ,: Bex} is almost disjoint,
Gi) for all P, the family {Xop: v e} is almost disjoint,
(iii) for every Se[x]°° and every one-to-one Ji 8w, N X re € [0]%
11 . el
Proof. (a) Let F, = {f: f: P(n)—>2"}, F = | F,. Since |F| = w, it suffices

new
to construct the desired matrix on F rather than on . Let

Xom=U{feF:fann=m} for acw, mew.
new
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() and (i) are obvious. To check (ii), let fe F,,,. a#b and feX,, 0 X.’,,,,,,,

hence f(a nn) = f(b A n) = m. Since f is 1-1, this can hap;?en only for ‘ﬁmtely

many 1, and since all F, are finite, we get (ii). Finally, to get (iv), let a;: j§1 be

distinct subsets of w and m;: j <1 'distinlct 1natural numbers. Then for sufficiently

large new, there is a function f: P(n)—=2" such that Vj < 1f(¢; nn) = my.

This shows that [} Xj, ., is infinite and hence the constructed sets have all required
i<l

properties. s
(b) Let F, = {f: f: P()—>P @)}, F = | F,. Again we use F as the under-
lying set instead of w. We define for a, bcw, Xop=U{feF:flann)=bn n}.

BEW

It is easy to check as before that the sets X,,; have all required Propcrties‘.

This type of result can be extended to an uncountable cardinal A using ;-

TuEoREM 2.2. Let ) be uncountable regular and >, hold. Then there exist sta-
tionary sets X, g<h (%, B e2* = %) such that:

G) for all o, the family {X, 5> Bex} is A-almost‘c{z‘s{'oint,

(i) for all B, the family {X,, ;: @ €%} is A-almost disjoint, ) .

(iii) for every Se [x]°* and every one-to-one f: S — x, EDSX,, s@ IS stationary.

Proof. For a < A, let S, = {{dy g, bu ) B < 0 ap distinet subsets of a, b, s
distinct subsets of «} be a , sequence, i.e. for every sequence {Lag, by, <0< 4,
ay distinct subsets of 1, b, distinct subsets of A}, the set

{fa<d: VB<anblagynabyna)y= {55 ba,p)}

is stationary.
Now define, for a,bci,

Xp={fe<idp<alana,bne) = {853 bep)} -

(i)- and (i) are straighttorward. To check (iii), let 8 <A and ¢ (€ <6) dZstinct
b, (¢ < 0) distinct. a € ﬂoX,,ﬁ,,,{ iTVE < 03B, <ala;na,byno)=<d,p, D
£<

hence we get that the set (| X, s, 18 stationary, in view of ;.
£<o

Using the continuum hypothesis one can get the following o x o, matrix of
subsets of w;:
TurorEM 2.3. Assume CH. There exists a matrix of subseis A, (@€ wy,ne @)
of wy such that:
() Vaew; U 4,,, = 01,

new
(i) Vacw, Yn,meo [n#m - |4, 0 dgul < o),
(i) Vneo Vo, Bew; [o# B = Ay, N Agl S.a)], .
(iv) for all sequences {{e;,n;y: j€ w} such that ji # jo = 0y, # Oy My # 1y,
and such that o\{n;: je€ @} is inﬁnite,jﬂ Agyny IS uncountable.
EQ
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Proof. Let {ty: e g)i} be an enumeration of all sequences as in (iv) s.t. every
sequence is repeated @, times. Fix an infinite o <w;. Define ¢,: a 1—:;(0 as follows
) . onto "

Let t, = {{u;, n): jew} If {o;: jeo}ca and o\{o;: je w} is infinite let

Lo

1
Yo onfoy: jew} —>oN\{n: jew}

onto

be arbitrary, and put

': n; if p=gq ‘
‘P“(ﬁ)j : {lﬁu(ﬂ) if  pean{o: jew}.

If a\{o;: je w} is finite or {o;: jew}da then let ¢,: oc:*"—r‘;w be arbitrary.
Now define A4, = {a: n = @ B)} v (B+1).
It is easy to check than (i)-(iv) are satisfied,
In order to get matrices of larger size, we use Kurepa’s Hypothesis.

THEOREM 2.4. Assume Kurepa’s Hypothesis. Then there are sets X, (€M € wy)
such that X, ,cw;x2° and "

@) for all & and all distinct n,,n, there is G€w st Xy O Xy, cax2®

(i) for all n and all distinct &, &, there is o€ w, s.t. X;l ],l,'r\ Xg‘”zcocx?‘”

- (ii)) for all Sefw,]®, all one-to-one f: S ~ w, and all suﬁ?ci;’mly l(z;;z' o°EW ,
|0 Xoso 0 ()29 = 20 B

Proof. Let #" be a Kurepa family on w;: Let F, = {f: :}i’roci'_:;%'roa}
and X, = U {feF,: flana) =bna}, a,bei Since A} « is countable for

XEWY
every o, we can regard X, , as subsets of o, x 2% It i [ i)~(iit
: , 1 . It is easy to check that (i)~
are satisfied. Y O
‘ Assumir}g both Kurepa’s Hypothesis and <>, we can get an X w, matrix
which combines some of the properties of previously constructed matrices.

o THEOREM.2.5. Assume O and let A <[0,] |X b el € o Jor every a e w,.
hen there exists a matrix {4, ,: ae A, ne w} of subsets of w,, such that:
() Vae ot Vm,newlm #n = Ay 0 A, = D],
@iy Ymew Ya,be Ala# b~ |4y, N Ayl < 0],
(i) Yae A ) 4,, = oy,
. neow
(iv) for every sequence {apnp:jew, aje i, €W} st Jy # fo o by # g
ny, # ny, and o\{n;: je w} is infinite, the set () Aay,n, 15 stationary.
Jew
Proof. = i ‘
distiool. For. xewy, let S, = Wy po a3t jE®, Gy o, 1y g €D, Qg gy My, s
& s J varies .and w\.{n,,, 5+ J€ o} infinite} be a ¢-sequence, i.e. for every
quence {{a;, n;):j € } as in (iy), the set {x e w;: YVie o {ay v o, myy = {aay 1 1y 19}

; . T . it .
§ stationary. Let @0 A} oeN{a,,;: jew}—>w\{n,;: jew} be arbitrary. Put

119
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t, =S, U p,. Now we define the matrix 4, (ae A, new):

Aoy={0ew;: ana,nyet}.

(i)~(iv) are easy to check.
Various matrices with further properties of the type we discussed so far can

‘be considered. We conclude this section by pointing out a related problem which

seems to be open: Do there exist sets X, ;=2° (e (@), f2°) s.t.
@) for all o, {X, z: Be2°}
is a disjoint family.
(i) for all B, {X, ;i ce (29"}
is 2”-almost disjoint. .
(i) for all S e [(22)*]%** and for all oné-to-one f: S = 2%, | () Xyl = 2%
xeS

3. Measures and filters on o-algebras. The following theorem provides an answer
to a question of Woodin.

TueorEM 3.1, There is a compact Fow® such that

() for every emimerable EcF there is a 0, 1-valued finitely additive diffuse
measure on @ such that for every f€ E, f is constant on a set of measure 1.

(i) if HcF, |H| = w,and pis any finitely additive diffuse probability measure
on w, then there is some f € H suich that f is not constant on any set of positive measure.

Remark, In fact, the theorem remains valid if (if) is replaced by the following
statement : .

(ii"y If HcF, |H| = o, cnd J is an w,-saturated uniform ideal on - then there
is some fe H such that f is not constant on eny set in R
Other results of this type also follow.

. Proof. We use the matrix constructed in Theorem 2.1. a). Since for every
a e 29, the family {X, ,: n e o} is a partition of @, we can associate with it a func-
tion. g, defined by g, (m) = n i me X,.

Let F = {g,: «&2°}. It follows from the definition of the sets X, ,, that F is
a compact subset of @®. .

Let E = {g,,: ne o} be a countable subset of F.

In view of property (iv) in Theorem 2.1, the family {X,x: n€®} can be ex-
tended to a uniform ultrafilter on w, hence (i) of Theorem 3.1. follows. To get (i)
which implies (i), let H = {g%: ¢ e w,} be an uncountable subset of F. Suppose
(i)’ is false. Let S be an o;-saturated uniform ideal on w, such that every g, is
constant on a set from £+, This means that for every & € w, there is nz€ @, such
that X, .6 S L ' :

Mg is the same for uncountably many &, hence we get a contradiction with
,-saturation. This finishes the proof.

A similar result can be obtained for uncountable cardinals using - Theorém 22.
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THEOREM 3.2. Assume >. There exists a fomily Fewf* such that |F| = w, and

(@) for every E€[F]°* there is a countably complete filter on w, such that each
feE is constant on a set from the filter.

(ii) for every He[F]** and every w,-saturated uniform ideal ., there is on
feH, such that f is not constant on any set in S,

Proof. We take the matrix X, , (&, f € 2°*) which exists in view of Theorem 2.2.
{for 4 = o). Consider only the sets X, , (x€2*, few,). Since every family
{X..5: Bew} is w;-almost disjoint and X, , are all stationary, we can disjointise
them and then proceed exactly as in the proof of the proceeding theorem.

We now turn our attention to Banach’s problem mentioned in the introduction.

Problem of Banach: Do there exist two countably generated o-algebras oAy
and o/, of subsets of [0, 1] such that both of them carry o-additive probability
measures vanishing on atoms, but the o-algebra generated by o7, U &, does not
carry any such measure?

It is not obvious whether every countably generated o-algebra which does
not carry c-additive diffuse’ probability measures cannot be generated by ¢-al-
gebras o£; and &, as above. The next theorem provides an example of an algebra
which strongly fails to have this property.

THEOREM 3.3. Assume that the union of <2° meager subsets of ®® is not w®.
Then there exists a countably generated c-algebra of of subsets of [0, 1] such that

no countably generated o-algebra sf,csf carries a o-additive diffuse probability
measure.

Proof. The following lemma follows from a result of Darst [3].
LemMA 3.4. For every sequence {B,: n e w} of Borel subsets of [0, 1] and every

o-additive probability Borel measure u, there exists a set S<2% s.t. 1(S) =1 and
U NS)B, is meager. (0B = B, 1B = [0, 1\B).

feSnew
The following lemma is due to Rothberger [9].

LemMA 3.5. Assume that the union of <2 meager subsets of w® is not w®. Then
every set of cardinality <2° has strong measure 0.

Proof. L-et X.= {%t 0 <%}, % < 2% and let &, > 0, new. Let 1, (jew)
enumerate rational intervals s.t. the length of Ljis <e. Put U= | I, s for
naw

every few® The set D, = {f: xe U,} is dense open. Hence Y Dy, 5 B, 1t
<
follows that X< ) 1, s, hence X has strong measure 0. ~
new
) Under the assumption of the theorem there exists a set .22 < 10, 1] of cardinality
27 such that for every meager set M, |.% ~ M| < 2°. Tt suffices to show that the
algebia of Borel subsets of % has the required properties.

Suppose not. Hence there are Borel sets B,(new) st. {B,n Z: ne w} gener-
ates a ¢-algebra carrying a ¢-additive diffuse pr obability measure v, The measure j

icm
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defined by p(S) = v(U NSM)(B, n £) is clearly a Borel measure on 2% Take S
JeS neo '
as in Lemma 3.4. Then C = {J ) f(n)(B, n &) is a meager subset of %, hence

JeS nee
|C| < 2° and v(C) = 1. This, in view of Lemma 3.5. gives a contradiction, hence

our theorem is proved. Let us remark that another proof of Theorem 3.3 can be
obtained using Theorem 1, § 3, Chapter II of Sierpinski [10].

The next two theorems give positive answers to a generalization of Banach’s
problem.

THEOREM 3.6. Assume CH. There exists an increasing sequence &, (d < @y)
of countably generated o-algebras of subsets of [0, 1] such that every sf, carries
a o-additive diffuse probability measure, but the a-algebra |} 4, does not carry any

aEwy
such measure.

.Proof. We use Theorem 2.3. Fix « € w,. For each f < o pick a different even
ngew. Then {(B,ng): B < a} is as in (iv) from Theorem 2.3., hence Ap (B < )
are c-independent, which shows that there is a o-additive diffuse probability
measure on the o-algebra o7, generated by {4 .1 f < a,new}. A well known
argument of Ulam [11] shows that there is no o-additive diffuse probability measure
on the o-algebra generated by {4,,: ® € ®;, new}. This finishes the proof.

Remark. After having read the above proof J. Cichon (unpublished) eliminated
the assumption of CH via a different argument.

THEOREM 3.7. Assume Kurepa’s Hypothesis and >. Then there exists a sequence
o, (@€ w,) of countably generated c-algebras of subsets of [0, 11, s.t. the union
of every countable subcollection generates a o-algebra carrying a o-additive diffuse
probability measure, but the union of every uncountable subcollection generates
a o-algebra which does not carry any such measure.

Proof. In view of Kurepa's Hypothesis we can take the family " from
Theorem 2.5. with cardinality w,. Define o/, as being generated by

{dynt eCpnew},

where C, countable and « & C,. The family {«,: & < w,} is as required.

The last result of this section deals with the regularity of ultrafilters, and is
of the same type as above. A large collection of algebras is shown to have the
property that algebras gemerated by small unions carry non-regular uniform
ultrafilters, but algebras generated by large unions contain regularizing families
for every unitorm ultrafilter.

Regularity of ultrafilters was previously discussed e.g. by Prikry [8], Benda,
Ketonen [2] and Laver [6]. In all these papers matrices of sets were constructed
under various additional assumptions, providing regularizing families tor ultra-
filters e.g. on my. In [8] and [6] these matrices had size w,, in [2] under the as-
sumption of Kurepa’s Hypothesis a matrix of size e, is constructed and for every
uniform ultrafilter some initial segment of it provides a regularizing family.
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Our result shows (under the assumption of KH and ¢>) that this method
cannot be improved by considering any initial segment of a Kurepa matrix (used
in [2]), for the algebra generated by every initial segment carries a non-regular
uniform ultrafilter.

THEOREM 3.8. Assume Kurepa’s Hypothesis and <. There are algebras
oyt 6 <y of subsets of w, such that the algebra generated by the union of any o,
of them carries a non-regular uniform ultrafilter, but every uniform ultrafilter on the
algebra generated by the union of w, of them is regular.

Proof. We use the matrix from Theorem 2.5. with the family 4 of cardi-
nality o, given by Kurepa’s Hypothesis. The algebras o7, (o€ w,\w,) are defined
using sets 4, , (f < a,new). It is enough to consider « = w,. Let s, be the
o-algebra generated by the sets 4, , (« € ¢, n € w). Define o, = |} {a#,: t € [0,]°°}.
o, is an algebra since the family of &, is a directed system of algebras. By the
argument of Benda, Ketonen [2] every ultrafilter is regular on the algebra gener-
ated by {4,,: « < w,, new} hence the last statement of the theorem follows.
It is enough to show the existence of a non-regular ultrafilter on «7,,,. (for any union
of w, algebras 7, the proof is similar.) . ‘

Let % be a uniform wltrafilter on w. We define by induction ultrafilters %"
on " (new). For Xcw"', Xe®"* ' iff {sew": {k: s"keX}e ¥} e¥". Now
for each re[w,]°%, let 4" be the ultrafilter on w' obtained as follows: let
o < . < oy enumerate 7. Define p: ol - o' by (p())(@) =5, seoll,
j<[f and @' = o(%"). Let %, be the ultrafilter on o, cbnsisting of sets of the
form ) N A, @, (X", It is not hard to see that if t<v then %,=%,. Hence

. seX aet

% =U {#:: telw]*} is an ultrafilter on . Clearly % is uniform. We show
that % is non-regular. Claim: If Y, e % (x € w,) then there is an infinite Scao,
such that () {¥,: «e S} is stationary.

Proof of the claim. For ¢ach « e w, let s,€ [w,]°® be such that ¥, e &,..
Without loss of generality we may assume that |s,| = n for all ¢ < W, zmzd
that the sets 5, form a A-system with kernel 5. Let X, %™ be sach that
Y, = ggx "Qu Ao We may assume that s is the initial segment of all s,. Let

Xi={geo” {he ™™ g UheX,} e u™},

Since X, € %, X, belongs to %,. Hence there is f, & X, such that £, is one-to-one.
The same f must occur as f, for an uncountable sst / of a’s. Fbr ael, let X
{he o™ fUheX,}). Hence (by the definition of f). X! & %™, Let ?:
= U N Ayene Zo€ Ugs. Clearly N Ay ron 0 Zy= Yy

nes

heX;l NESEN\S

1

Let o,: ne o be the least « clements of 1. Since Z,, & %, <,, we can pick in-

. . 1-1
ductively functions. f,: s,\s — @, so that N A{dpum: Bes, s}z, and
mng(f,) < w\(max rng(f) QJU mg(f}+1). Let g =fu U f,, then g is one-to-
<n

new
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one and wN\ingg is infinite. It follows that () Aggme< Y., Hence by
pedomg new .
property (iv) of the matrix, the set () ¥, is stationary. This proves the claim
new

and finishes the proof of the theorem.
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