Remarks on deformability
by

Slawomir Nowak and Stanislaw Spiez (Warszawa)

Abstract. Suppose that (X, 4) and (P, Q) are pairs of topological spaces and (P, Q) is
homotopically equivalent to a polyhedral pair. We establish shape and cohomological conditions
under which a map f: (X, 4) —~ (P, O) is homotopic to a map ¢: (X, A) - (P, Q) with g(X)C Q.

Using these results, we prove several theorems in the shape theory and the theory of cohomo-
“topy groups. )

The deformation dimension of a topological space X is not greater than »
(def-dimX < n) iff every map f: X — P, where P is a polyhédron, is homotopic
to a map g: X — P with g(X)<P®™. This is one of the most important shape in-
variants and appears in numerous theorems in shape theory.

We generalize this notion to the case of pairs of topological spaces and the
situation where P is replaced by a polyhedral pair (P, Q) belonging toa fixed class C
-of polyhedral pairs.

The main purpose of the present paper is to establish relationships between
the deformation dimension of a pair (X, 4) with respect to a class C and some
homological properties of (X, A).

In the case of the classical deformation dimension of .a topological space these
results were mentioned in [N-S].

Our theorems can be applied in several problems of topology as e.g, the problem
of classification of homotopy classes and the problem of extension of maps with
values in an (n—1)-connected CW complex (see [N]). )

This technique can also be applied to the theory of cohomology groups. -

We shall use the terminology of the book [M-S].

1. Deformability and n-deformability. Suppose that (X, 4) = {(X,, 4., ph. 4}
€ pro-Pol® and that A, is the set of all x € A with & > o, where o, € 4. Suppose
that .2, is the local system of abelian groups on X, induced by pj, and a local
system %, of abelian groups on X, , for every a & Ag. The family & = {Z},c4,
will be called a generalized Cech local system on (X, A) and the. direct limit
H ((X A), &) of the direct system {H"((X,, 4., Z.), (25y*, A} will be called
a Cech cohomology group of (X, 4) with coefficients in & (compare [A-M] p. 22
and [N] p. 21).
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We denote by ¢[(X, 4)] the maximum (finite or infinite) of all integers » such
that there is 2 Cech local system £ on (X, 4) with H'((X, 4), £) # 0.

(1.1) ProposiTioN. Let (X, 4) and (Y, B) be objects in pro-Pol?. If (X, 4)
and (Y, B) are isomorphic in pro-HPol* then c[(X, 4)] = c[(¥, B)].

Suppose that p: (X, 4) — (X, 4) is a polyhedral resolution. Then H"((X, 4), £)
= H"(X, 4), Z) is called a Cech cohomology group of (X, A) with coefficients
in &. We define c[(X, A)] = ¢[(X, A)]. Any two polyhedral resolutions of (X, 4)
are—isomorphic in pro-HPol?, tlmDy Proposition (1.1) the last definition does
not depend on the choice of resolution.

Suppose that C is a subclass of Pol® and that (X, 4) is a pair of topological
spaces. To the pair (X, 4) we assign (compare [N]) the deformation dimension of
(X, A) with respect to C which is an integer > ~1 or co and which equals to the
minimum of n such that any map f: (X, 4) » (P, Q) & C is homotopic to one,
whose image lies in the set @ U P™, To the set A we assign the deformation di-
mension of A in the pair (X, A) with respect to C which equals to the minimum # such
that any map f: (X, 4) = (P, Q) e C is homotopic to a map g: (X, 4) - (P, Q)
with g(4)cpP™. ‘

One can also introduce the notion ot the deformation dimension of a topo-
logical space X with respect to a subclass C of Pol.

Remark. Suppose that C is a subclass of Pol® consisting of at least one
element (P, Q) with P 5 & and that (X, 4) is a pair of topological spaces. Let
C, =Pol (respectively C, < Pol) consist of all polyhedra P such that (P, Q) e C for
some Q€ Pol (respectively (Q,P)e C for some Q€ Pol). If the pair (X, 4) has
the Homotopy Extension Property for the class C,, then the deformation dimension
of 4 in (X, 4) with respect to C is not greater than the deformation dimension
of 4 with respect to C,.

A map f: (K, L) » (P, Q) € Top?, where (K, L) € Pol?, is said to be n-normal
iff f(K*" Q.

A map f: (X, A) -~ (P, Q), where (X, 4) and (P, Q) are pairs of topological
spaces, is called deformable into Q (n-deformable into Q) iff f is homotopic as
a map of pairs to a map g: (X, 4) » (P, Q) with g(X)<= Q (iff there exist a pair
(K, Lye Pol?, an (n+1)-normal map f': (K, L) = (P, Q) and a map g: (X, 4) >
- (K, L) such that the composition f’g is homotopic to f as a map from (X, 4)
to (P, Q).

Suppose that {[p,J}.eat (X, A) = (X, 4) = {(X,, 4,), [pl], A} & pro-Pol* is
an HPol*-expansion of (X, 4) and f: (X, 4) — (P, Q) € HPol? is a map. Clearly,
fis n-deformable into Q iff there exist a € A and a map f: (X, 4,) ~ (P, Q) with
S'p.=f which is (n+1)-normal.

The notion of ‘deformability and »-deformability were introduced by S. T. Hu
(see [Hu;] p. 197 and [Hu,] p. 202).

(1.2) ProrosITION. Suppose that (X, d) is a movable pair of compact Haus-
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dorff spaces and f: (X, A) - (P, 0) e HPol? is a map which is n-deformable into Q
for every n=0,1,2,... Then f is deformable into Q.

Proof. We may assume that (X, 4) = liminv(X, X, 4), where (X,Ad)
= {(X,, 4, %, 4} is an inverse system of pairs of compact polyhedra. Then
there exist o, B, ye A withy > f > « and maps f*: (X, 4,) — (P ), 7: (Xy, 4g)—

(X,, 4,) such that r is a cellular map satisfying plrepf and f'p,~f and
(X,, 4;) is the canonical projection, g(X™)c Q
and m = dimX;. Then feef'pirpygrpy and gip(X) = gr(X,)cg(X™)= Q. The
proof is finished. :

In Proposition (1.2) the hypothesis of movability and compactness of (X, 4)
is essential.

(1.3) ExAmPLE. Let X be an acyclic continuum with an essential map f: X — 3
(see [Ka]). Then f is n-deformable into {s,} for every n = 1, 2, ... and £ is not de-

"formable into {s,}, where s, S5

(1.4) ExaMpLE. B. I. Gray has proved ([Gr] p. 242) that there exists an es- -
sential map f: PC® - S? such that the restriction fp,: P, — S* is an inessential
map for every n = 1, 2, ..., where P, is the n-skeleton of the infinite dimensional
complex projective space PC

Suppose that f: (K, L) - (P, Q) e Top? is n-normal, where (K, L) € Pol?, and
0 is connected and n > 3. By &, we denote for k= n a local system of abelian
groups on K™V L which is induced by the local system IT, = {m(P, @, %)}seq
on Q and the map g: K® VUL — Q defined by the formula

f) =g for xeK"DuUL.
3, we see that there exist a local system IT,(f) on K such that
I(Nlgen-noz = L -

If 7;(Q) = 0, we may assume that n >
system of abelian groups on K.

If we assign to every oriented n-simplex ¢ of K the element (f, 0) & II,(f)
determined by

Since n >

2. In this case IT,(f) is a simple local

fl|a|: (G', a‘f: a) - (P, Qaf(a)) >

where a is a vertex of o, we get an n-cochain ¢"(f) of the pair (X, L) with coefficients
in IT,(f).

It is known ([Hu,] p. 197 and [Hu,] p. 203) that ¢"(f) is a cocycle and its
cohomology class y"(f) = [¢"(f)]e H"(K, L; IL(f)) is equal to O iff there exists
a homotopy ¢: Kx[0, 1] - P such that ¢(x,t) = f(x) for (x,f)eKx{0} L
U K20, 1] and (K™ x {1)<= Q. If g: (K’,L') — (K, L) is a simplicial map,
then y"(fg) = g*(»"())-

I {ptuea: (X, 4) = (X, 4) = {(X,, 4, p%, 4} is a polyhedral resolution of
(X, 4) and f: (X, 4) — (P, Q) e HPol® is a map, where Q is connected and n > 3
or Q is connected and simply connected and # > 2, then one can find a map
1
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ft Koy Ay — (P, Q) such that f'Pap=f and one can define a local system of
abelian groups IT(f'ps,) on X, for every o > ao. It is clear that

ch(f) = {le(fpmo)}u>uo

is a generahzed éech local system on (X, A).

(1.5) PrROPOSITION. Suppose that (P, Q) € HPol? is a pair such that Q is con-
nected (respectively Q-is connected and simply connected) and that f: (X, 4) — (P, Q)
is m-deformable into Q, where m = 2 (respectively m = 1). If H'(X, 4; II,,( f)) =
for every m < n < m, then [ is n-deformable into Q for every n.=0,1,2, ..., m'.

2 Sufflclent conditions for deformability. Suppose that C=Pol®. We say that
(P, Q) e HPol? is a (C, n)-pair if for every maps f: (¥, B) = (P, @), where (X, B)
&Pol?, and g: ¥ — P such that fog rel Y™ (as maps from Y to P) and g(¥)=Q
there exist- maps-a: (¥, B) » (K, L) e ¢ and f': (K, L) = (P, Q) such that fla=~f
as maps from (¥, B) to (P, Q) and f"~g’ as maps from (K, L™) to (P, Q), where
g'(K)=Q. We say that (P, Q) is a C-pair if for every integer m there is an integer
n = m such that (P, Q) is.a (C, n)-pair.

‘ (2.1) TueorEM. Suppose that (P, Q) € HPol? is a pair such that Q is connected
(respectively, Q is connected and simply connected) and that f: (X, Ay = (P, Q)
i map a m-deformable into Q, where m = 2 (respectively mz 1). If H*(X, 4; IL(f))
=0 for every n >'m and the pair (X, A) satisfies one of the following conditions:

(a) (X, A) is movable,

(b) X is movable and there exists a subclass C of Pol? such that (P, Q) is
a C-pair and the deformation dimension of A in (X A) with respect to C is finite,
then f is deformable into Q.

For the proof of Theorem (2.1) we prepare the following lemma.

(2.2) Lemma. Let W, and B< W, be subcomplexes of a CW complex Wy. Sup-
pose that mdps hys Wy — P, hy: (Wi, B) » (P, Q)& Top?, hy: (Wy, W5) — (P, Q)
and homotopy @: W x[0, 1] - P satisfy the conditions

@ o(x, 0) = hy(x), o(x, 1) = hy(x) for xe W,

(b) hy and 113 are homotopic as maps from (Wi, B) to (P, Q). Then there exist
a homotopy Y2 Wy x[0, 1]~ P and a map hy: (W, Wo) ~ (P, Q) with hyczhy
(as maps from (Wl, W) to (P, Q) such that W(x, 1) = ¢(x, t) for (x, ) e Bx [0, 1]
qnd Y(x, 0) = hy(x), ¥(x, 1) = hy(x) for xe Wy.

" Proof. Consider a homotopy £: (Wy, B)x [0, 1] — (P, Q) such that 2(x, 0)
= hy(x), R(x,1) = hz(x) for xe W,. It follows from the homotopy cxtension
theorem “that ° there exist maps fu: (Wy, Wz) - (P, Q) and I Wlx[O 1]—P

which satisfy the conditions
: "Wy x [0, 1IN0, X|n,x[o,1]v= flax0,11
and Do ‘

for xe W, .

100 = By(); 206, 1) = ha(®)
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Consider the space ¥ = W, x {0} U Bx[0, 1] U Wy x{1} and the homotopy
A: Y% [0, 1] - P defined by the conditions: if s € [0, 1] and y = (x, t) eBx[0,1];
then

2 s+1
olx,—1 for 0t —,
s+1 2
My, s) = s+1 . J
f(x, 24+5-2t) for 5 <txl1
and
Ay, ) =hy(x) if sel01]and y= (x,0e W, x{0},

My, 8)=xx;8) if

Observe that A((x, 1), 0) = Ay(x, £) for (x, 1) € ¥, where 1o: W, x[0, 1] P
is defined by the formula

se€[0,1] and y= (x, 1) e W, x {1}.

o(x,2t) . for

_ (x, ) e Wy x[0,4],
Aol 1) = {)’((x,Z—Zt) for .

(xa t)E WIX[%> 1]-

The homotopy extension theorem implies that there exist a homotopy
U (W, x[0, 1% [0, 1) — P such that ¥((x, 1), s) = A((x, ), 5) for (x,?) e ¥ and
0 < 5 < 1. The homotoepy ¥: W, %[0, 1] — P defined by the formula .

|l/(x9 1) =

satisfies the required conditions.

Proof of Theorem (2.1). Let p: (X, 4) — (X, 4) be a polyhedral resolution.
Since H*(X, 4; IT,(f)) = limdirH"((X. 4); II,(f)) = 0 for n > m and f is m-de-
formable, we can deduce that for k = 0,1, 2, ... thare exist a pair (X3, 4,) € Pol?,
a cellular map f;: (Xi, 4,) — (P, @), a simplicial map p}* (Xk.“, Aye1) = (X, A
and a map p;: (X, 4) = (X}, 4;) such that f~f,po, f; = f0 -pyandfork =0, 1,2,
the following conditions are satisfied:

f;‘(X;Em+k))C Q, l,:+1 *(?(m+k+1)(ﬂ)) =0 and

Bl
Srwr 2 i tel Agyy U X(mik v,

If follows that f is n-deformable into Q for every n. Hence, without loss of
generality, we may assume that in the case when (X, A) satisfies (b) the deformation
dimension of 4 in (X, 4) with respect to C is less than m and (P, Q) is
a (C, m=1)-pair.

Since (X, 4) is movable (or, respectively, X is movable), we may assume that
for every k = 2, 3, ... there is a cellular map . (X—1, Ax_1) = (X, 4,) (& cellular
map r: Xiy — Xp) such that pf_,pk*ir, ~pk_, as maps from (X, 4,) to
(Xy—1, Ag—;) (as maps from X; to Xj_). - )

Let s, = pk*t ry, for k=1,2,

P(x,1),1) for (x,t)e Wyx[0,;1]

k1
Pe=Pr  Pr+1s

23

ot i e .o and s, = pi. For every k= —
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—1,0,1, ... we denote by E the set X{"*® U 4, in the case where (X, 4) satis-
fies (2) and the set X{"*¥ in the case when (X, 4) satisfies (b).
We denote also by F for every k = 0, 1,2, ... the set X" U 4, in the case
where (X, A) satisfies (2) and the set X{"**® in the case where (X, 4) satisfies (b).
Since pt*is,., and s, are cellular, it follows that

24 pEis..q, and s, are homotopic as maps from (Xy, B,_;) to (X, Fp).

Applying induction, we shall construct for &k = 0,1, ...
X, — P and a homotopy y;: X;x[0, 1] — P such that

@23 xulx, 0) = fosolx), xx, 1) = gu(x) for xe X, and g(E)=Q and gy=fis,
as maps from (Xy, EJ to (P, Q), 2x-1(%, 1) = xu(x, t) for (x,¢) e Ey_, x
x [0, 1].
Let go = foso and yo: Xy x[0, 1] = P be defined by the formula
Xo(x: t) = fOSO(x) for te [0! 1] .
Suppose that g, and y; are constructed for k < »n. From (2.3), (2.4) and (2.5)
we deduce that g, 8,2/, 00t sy ~fy 415,41 28 maps from (X, E,_;) to (P, O).
Using Lemma (2.2) in the case where W) = W,, W, =E,,., B=E,_,,
@O = Yns hl =f65’o, hz =G and h3 =j;1+lsn+l’ we gCt a hOl’l‘lOtOpy Ana1t Xlx
%[0, 11— P and a map g, Xy — P such that (2.5) is satisfied for k < n+1,
Seeting

a cellular map g,:

xeX; and

O, 1) = gpea(x, 1) if (x,1)e E,x][0,1],

we get a homotopy ¢: X;x[0,1] - P such that ¢(x, ) = foso(x) = fi(x) for
(x,1)e X x{0} uE_;x[0,1] and ¢,(x) = @(x, 1) e Q for every xe X.

Assume that (X, 4) satisfies the condition (a). Then E_ o4, and foufypee
~fopsps = fip1=p.p; as maps from (X, 4) to (P, Q). Since ¢, p,(X)=Q, the
proof is finished.

Assume that (X, 4) satisfies (b). Then E_; = X" and f, ~¢, rel. X~V
as maps from X, to P. Since (P, Q) is a (C, m~—1)-pair and ¢,(X,)=Q, there
exist f{: (K,L) - (P, @) and a: (X, 4;) = (K, L)e C such that fia~f, as maps
from (Xy, 4,) to (P, Q) and f{~g’ as maps from (K,L® ) to (P, Q), where
9'(K)= Q. The deformation dimension of 4 in (X, 4) with respect to C is less than m;
thus there is p: (X, 4) = (K, L) such that p(4)<L™ 1 and p~ap, as maps from
(X, 4) to (K, L). Observe that fof) p, = f{op, >f{p=2g’p as maps from (X, 4) to
(P, Q) and ¢’p(X)=Q. The proof is finished.

3. Some applications. By C" we denote the subclass of Pol* consisting of all
pairs (P, Q)¢ Pol® such that Q is n-connected. Let us observe that if (P, Q) e C",
then (P, Q) is a (C", m)-pair for every m > n and thus (P, Q) is a C"-pair. From
Theorem (2.1) we obtain the following.

(3.1) CorOLLARY. Suppose that (P, Q)€ C"(n > 1) and that f: (X, 4) — (P, Q)
in a map m-deformable into Q, where m > 1. If H'(X, 4; I1(f)) = O for every

icm
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n > m, X is movable and the deformation dimension of A in (X, A) with respect to C"
is finite, then f is deformable into Q.

The deformation dimension of (X, 4) (respectively X) with respect to Pol®
(respectively Pol) will be denoted by def-dim(X, 4) (respectively def-dimX).

From Proposition (1.5) and the Theorem (2.1) one can obtain a cohomological
characterization of the deformation dimension of pairs of spaces (compare [N]
and [N-S]).

(3.2) CorOLLARY. If (X, A) is a pair of spaces such that def-dim (X, 4) is finite
then c[(X, A)] < def-dim(X, 4) < max(2, c(X, 4)). If def-dim(X, 4) is infinite
and (X, 4) satisfies one of the conditions (2) and (b) from Theorem (2.1), then c[(X, A)]
is infinite.

Suppose that F: (X, ) = (¥, ) is a shape morphism of pointed spaces which
induces isomorphism of all homotopy pro-groups. By Theorem (4.3) and Corol-
lary (4.4) of [A-M], pp. 36-37, it follows that F induces isomorphism of the Cech
cohomology groups (in each dimension) for every generalized Cech local system.
Hence ¢[X] = ¢[Y]. Thus, if def-dimX is finite and Y is movable, then def-dim ¥
is finite; also if def-dim ¥ is finite and X is movable then def-dim X is finite (see
Theorem (2.3) [N-S] or Coroflary (3.2)). Hence, by the Whitehead theorem in
shape theory (see for example [M-S], p. 28) we obtain the following corollary due
to J. Dydak ([D,] p. 28).

(3.3) COROLLARY. Suppose that F: (X, ) —» (¥, ) is a pointed shape morphism
between connected spaces such that pro-IT,(F) is an isomorphism for every n. If one
of the following two conditions is satisfied:

(a) def-dim X is finite and Y is movable,

(b) def-dim Y is finite and X is movable,
then F is a shape isomorphism.

The idea of the proof of this corollary is also due to J. Dydak.

4. Cohomotopy groups. Let n be a natural number, s, € S”; define a map
Q: B= S"x{s} U {so}xS"— S" by the formula Q(s,s,) = 5 = (s, ) for
sesS"

7"(X, A) denotes the pointed set of all homotopy classes from a pair (X, 4)
of topological spaces to (S, {so}) with the distinguished element efy, 5, which is
determined by the constant map f: (X, 4) — (5", so) with f(X) = {so}.

Suppose that (X, 4) is a topological pair such that for every two maps o, f:
(X, 4) > (S", {so}) there exists a map y: (X, 4) = (S"xS", {(s0, 50)}} with y(X) =B
and aAB=y (as maps from (X, 4) to (S"xS", {(so, 50)}). We say that (X, 4) is
cohomotopically n-admissible ([B] p. 43) or (X, 4) admits the existence of the nth
cohomotopy group iff the homotopy class of Qy: (X, 4) — (S"{s,}) depends only
on the homotopy classes of « and f and the addition defined by [«]-+[8] = [y]
makes the set 7°(X, 4) into an Abelian group. The element efy, 4, is the trivial element
for this addition. We say that a space X is cohomotopically n-admissible iff the
pair (X, @) admits the existence of the nth cohomotopy group n"(X) = (X, 9).
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If f: X, A — (Y, B) is a shaping, then for every pair (P, Q) € Pol? the shape
morphlsm £ induces the function f& D [(Y, B); (P, Q)] - [(X, 4); (P, O] In thé
case where (P, Q) = (5" {so}) this function is denoted by ="(f). It is clear that
() e, m) = ex, 4

Denote by SC” the full subcategory of the shape category whose objects are
cohomotopxcally n-admissible pairs.

If (X, 4) and (Y, B) are objects of SC” then 7"(f): =n"(Y, B) — n"(X, 4) is
a homomorphism.

(4.1) TuEOREM. 7" is @ contravariant functor from SC" to the category of abelian
groups

Theorem (4.1) in the case of 4 = @ = B has been proved by 5. Godlewski
([Go]). His proof is valid in the relative case too.

K. Borsuk has proved that if 4 is a closed subset of a metric space X with
dimX < 2rn—1, then (X, 4) admits the existence of the nth cohomotopy group.

J. Dydak has showed ([Dy] p. 85) that every topological space X with shape
dimension <2n-1 admits the existence of the mth cohomotopy group.

It is also known ([Hu,]) that every compact pair (X, 4) € Pol* with ¢[(X, ‘A)]
< 2n—1 is cohomotopically n-admissible.

Examining the proofs of the above-mentioned theorems one can observe that
they use only the fact that in all of these cases the deformation dimension of (X, A)
(or X) with respect to a class &, of all pairs (P, {s,}), where P is connected and

"simply connected and s, € P, is less than 2n— 1.

(4.2) THEOREM. Suppose that (X, A) is a pair of compacta and the deformation
dimension of (X, A) with respect to &, is less than 2n—1. Then (X, A) is cohomo-
topically n-admissible.

Using (2.1) and (3.1) we get the following corollaries.

(4.3) COROLLARY. Suppose that (X, 4) is a movable pair of topological spaces
such that H™(X, 4; G) = 0 for every m > 2n—1 and every abelian group G. Then
(X, A) is cohomotopically n-admissible,

(4.4) CoroLLARY. Suppose that X is a movable metrizable space and A is a closed
movable subset of X. Assume also that the pair (X, A) satisfies the following con-
ditions:

(a) Max(n: there exists an abelian group G with H'(A4; G) # 0) < oo,

) H™(X, 4; G)= 0 for every m = 2n~1 and every abeliun group G.

Then (X, A) admits the existence of the n-th cohomotopy group.
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