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Proof. For oriented M and N this follows from the commutative diagram

H—L s M XN, Ex ENA]

\\
1|2 @) Q
AN

Ze—— [MxXN, E]

in which the right vertical bijection is induced by the homotopy equivalence
"h: Ex ENA — E, defined by h(x,y) = y—x, / is the bijection of Theorem 1 and W
the bijection of the Hopf classification theorem. In the unoriented case we have
a similar diagram. ’
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Products of normal spaces with LaSney spaces
by

Takao Hoshina (Ibaraki)

Abstract. In this paper the equivalence of normality and countable paracompactness will
be established for the product of a countably paracompact normal space with a LaSnev space.
This extends Morita, Rudin and Starbird’s theorem.

1. Introduction. All spaces considered in this paper are assumed to be Haus-
dorff and all maps-continuous and onto. Closed images of metric spaces were
characterized by La¥nev [7], and are called Lasnev spaces. Leibo [8, 9] applied
Lagnev spaces to extend the well-known Katetov-Morita coincidence theorem and
other properties of metric spaces in dimension theory (ses [4]).

Let X be a countably paracompact normal spacé. It follows from the results
of Morita [13] (for the proof see [5]) and Rudin and Starbird [18] that for a metric
space Y the product space X x Y is normal if and only if X'x ¥ is countably para-
compact. However, no condition on ¥ other than metrizability seems to be known,
under which the above equivalence is true. Indeed, in case Y is a paracompact
M-space Rudin and Starbird [18] shows that the normality of X x ¥ implies the
countable paracompactness of X'x ¥, but the converse does not hold in general
even if ¥ is compact. The aim of this paper is to show that the above is true in case
of Y being Lasnev. We prove the following theorems:

THEOREM 1. Let X be a normal space and Y a Lagnev space. If X x Y is countably
paracompact, then X x Y is normal.

THEOREM 2. Let X be a space and Y a non-discrete Lasney space. If X x Y is
normal, then X x Y is countably paracompact.

THEOREM 3. Let X be a normal and countably paracompact space and Y a Lasnev
space. Then X'x Y is normal iff Xx Y is countably paracompact.

We note that in case Y is metrizable Theorems 1 and 2 are proved by Morita
[13] and Rudin and Starbird [18] respectively. Also, our results will be applied to
prove that if the product X'x ¥ of a paracompact (resp. collectionwise normal)
space X with a Ladnev space Y is normal then X x Y is paracompact (resp. col-
lectionwise normal). This extends an analogous result for a metrizable space Y,
implied by the results of Morita [12], Okuyama [17] and Rudin and Starbird [18].
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In § 3, the above equivalence from Theorem 3 will be proved also for a normal
P-space (in the sense of Morita [11]) X and a paracompact o-space Y. It is known
that every LaSnev space is a paracompact o-space.

2. Proofs of Theorems 1 and 2. Let N denote the set of positive integers. The

following lemma. is useful to prove Theorem 1, but the proof is easy and omitted:

LemMA 2.1, Let X be-a countably paracompact space, and let E and F be a pair

of disjoint subsets. Suppose that F is closed and there exist apen sets U, ne N such

that Ec (\ U, and (YCIU, N F = @. Then E and F are separated by open sets.
n ¥

I
Let Y be a La¥nev space, and let Z be a metric space and f: Z — ¥ a closed
map. By Lafnev [6] Y can be expressed as ¥ = igﬂ Y;, where for cach izl Y; is

a discrete closed subset and Y; n ¥, = @, and for' each y & Yo £~ () is compact,
Let 4, = {G,| xeQ,} be a locally finite open cover of Z such that &,,,
refines %,, each element of %, has diameter <1/2" .

Let & = lyxfi XxZ — XX Y be the product map.

This notation will be used throughout this section.

Our proofs are based on the idea used by Rudin and Starbird [18].

Proof of Theorem 1. We shall use the following fact: if A and K arc
disjoint subsets of a space S and {U}| ie N} and {V| i e N} are collections of open
sets in S such that Hc (J U; and K< |J ¥; and for each ie N, ClU; N K = @

1 1

and Hn ClV; = @, then H and X are separated by open sets.
To prove the theorem, suppose that X is normal and X'x ¥ is countably para-
compact. The proof is done by two claims.

CramM 1. Let A and B be any closed sets in X% 'Y such ﬂmt AcXx Y, and
BaXx(\J Y)). Then A and B are separated by open sets.

izl
To see this, first we note that for each i1 X'x ¥; is a zero-set of X x Y since
Y is perfectly normal. Hence by Lemma 2.1 there exists an open set U; of X'x ¥

suqh that 4=U; and ClU; n(XxY) = &. Then we have 4= () U; and

121
N ClU;n B = &, and consequently by Lemma 2.1 4 and B are separated by
i>1
open sets.

CLaM 2. Let C and D be any pair of disjoint “losed sets of X x Y, both ummuml
in Xx Y, Then C and D are separated by open sets.

For a moment let us assume Claim 2 and prove the normality of X'x ¥,

Let £ and F be a pair of disjoint closed sets of X'x ¥, Let iz 1. Since X'x Y}
is normal, there exist disjoint zero-sets Z; and Zj of X'x ¥; such that £ n (X'x Y))
=Z;and Fn (X'x Y)<Z]. Since Y is paracompact and ¥; is closed and discrete,
by [14, Theorem 4] X'x ¥; is C-embedded in X' x ¥ and is a zero-set of X'x Y.
Hence, Z; and Z] are zero-sets of Xx ¥, and Z,nF= @, ENnZ, = . By
Lemma 2.1 there exist open sets U; and ¥; of X'x ¥ such that Z,c U}, CLU, n F

icm
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=@ and ZicV;,, EnClV; = @. Let E, = U Ugand Fy = F— |J V,. As
izt
in the proof in Claim 1 take an open set G; for z>1 so that Ey <G, and CIG; n
N (X% Y) = @ Then we have () C1G; N FeX'x Y,, and by Claim 2 there exists
izl

an open set Gy such that E,cG, and ClGo n () CIG; n F) = @. Hence by
121

Lemma 2.1 there exists an open sct U, such that E,c U, and ClU, N F = &,
Similarly, we can choose an open set ¥, such that FocV, and En ClV, = @.
We have now

Ec ) U, FeUV,
120 i20
and . .
CAUnkF=0, EnClV,=@

for cach iz0. Therelore £ and F can be separated by open sets, and consequently
X'x Y is normal.

Thus, to complete the proof it remains:

Proof of Claim 2. Note that for a subset £ of X'xZ we have ®#(CIE) n
N (X% Yy) = ClO(E) n (X'x ¥y) since fis closed and {x} xf~*(y) is compact
for each (x,))e XX ¥y, and which will be frequently used.

Let I, and E, be disjoint closed sets of X'x ¥, both contained in Xx ¥,. Let
us put for w e Q,

Co(l) = U {P| P is an open set of X such that (Pxf(CIG,)) N E, = @},
Cf2) = U {P| P is an open set of X such that (Pxf(ClG,)) n E; = @},

Ciw = Cu{1) U Ci(D),
and for ne N
T,= {(X— CaxClG,| aeQ,}.

Since ¥, is locally finite and %, refines %,, T, is closed and T,,,c<T,.
Moreover, .} T, = @, because if ﬂ ClG,,, # @ then X U Cy,» Hence we have
n

N oy n (X>< Yo
n
From the fact above it follows that
() CLO(T,) N (X% ¥y) =
u

= @ since {},} %f~Y(y) is compact for each (x,))e X'x Y.

NET)N (X% V) =@
n

Thus, () CLBTY X% () Y), and since By U E,cX % Yy, by Claim 1 there exists
izl
K of X% Y such that

ncle@)=x,

n
an open set

CIKN(EyWE)=@

Then {Cl¢(T,)~K| ne N} is decreasing and has the empty intersection. Hence,
by the countable paracompactness of X'x Y there exists an increasing open cover
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W = {W, ne N} of Xx ¥ such that C1W, n (C18(T,)—K) = @ for each ne N
(cf. [3]). Let us put for a e Q,

Dnu= {XEX' {x}xf(ClG,,a)cCIW',,~K}.

Then D,, is a closed set of X, and we have Dy, C,, since (D,, xf(C1G,,)) N &(T)
= Q. By the normality of X take open sets U,, and V,, of X so that

Dnz - sz(z) < Unac =Cl (Jnu < Cna(l) '
Dna_ Cna(l) . me <Cl sz < Cnu(z) .

Let us set
MYI = U {Umtx G"ﬂl o e Qll} r

NYI = U {Vﬂux G'ldl ae Q"} i
Then it can be easily checked that
o YEYe UM, & YE)=UN,,

CIM,n o Y(E) =D,
for each ne N. Therefore we can find open sets H{ and H, of X'xZ such that
¢~YE)cH{, ¢ HE,)cH; and H{ n H, = &. Now the sets

H, = Xx Y-Cl®(XxZ~Hj),
H, = Xx Y—Cl®(X'xZ~—Hj3)

.are open and disjoint, and we have E;cH;, E,cH,.
This proves Claim 2 and the proof of Theorem 1 is completed.

For the proof of Theorem 2 we need another lemma. Let

&~ YE) A CIN, = @

Q, = {0 Q,| G, is not locally compacf},
%, = {Gil e}

LemMaA 2.2. For each ne N and o€ Q, we can select two distinct points p,, and
Goe Of Gy SO that the following conditions are satisfied:

@ ¥ {/(pud [@u)} N Yo # B, then [(p,) # [(du),

O If ntm or n=m and o # B, then {P, du} O {Pups dup} = @ and
{f(Pna)?f(qna)} M {f(Pmli)!f(qu/i)} n -YO = g*

Proof. Let Q, be the well-ordered set (@), <), and assume €, N €, = &
if n # m. We select p,, and ¢,, by induction on the lexicographic ordering of
U @ for ae @ and fe @, a<f if and only if n<m or n = m and a<f. Let
B €2, and assume that p,, and g¢,, have been selected from G, for each a<f so
that (a) and (b) are true for py, and g¢,,, y<p. Let us put '

Cﬁ = {Puz: quml a<ﬁ} s
Dy ={zeCyl f2) e Yy}.

icm
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Since C, is a discrete closed set and f is closed, the set Cp O f~Yf(Dp) is locally
compact. Hence, G,p—Cp U f ‘lf(D,,) is infinite. Select distinct points Pug 304 Gpp
from Gpp—Cpuf —if (Dp). If f(pup) e ¥y may arise, select a point g from
Gup—Cp U ST U (pup) and newly define Gus by q. Then we see that
conditions (a), (b) are satisfied for all p,,, ¢,, with 2< . Hence, Lemma 2.2 is proved.

Proof of Theorem 2. Suppose that X is normal, Y is non-discrete and
X x Y is normal. Since Y is a Fréchet space and non-discrete, Y contains an infinite
sequence {y,} baving yo as its limit. Then X % ({y, y,| #n € N}) is normal, and hence
X is countably paracompact [2].

Let &# = {F,| ne N} be a decreasing sequence of closed sets of Xx ¥ with
the empty intersection. To prove the countable paracompactness of X x ¥, since
X% Y is normal, it is sufficient to obtain a countable closed cover of X x ¥, each
member of which is disjoint from some member of &,

Let i 1. Since Y, is discrete and closed in ¥, X x ¥; is countably paracompact.
Hence, there exists a sequence {Cy,| n € N} of closed sets in X'x ¥; (so also in X'x ¥)
such that {] C;, = X% Y; and C;, n F, = @ for each n e N. Since X'x Y is normal,

n

there exists an open set U, such that Cp,cU,, and ClU,, n F, = @. Les us put
E, = F,— U{Uul i, ke N}.
“fhen E, is a closed set of X'x ¥ and contained in X'x ¥, since
Xx(ly[ Yy U{Uul i, ke N}.

Let& = {E,| ne N}

CramM, There exists a countable closed cover 9 of X x Y such that each member
of @ is disjoint from some member of &. ’

First suppose that the claim is valid. Let @ = {D;] ke N}, and set

EOn = U {Dk[ Dk N En = @, kSI’l}—- U {Uijl i: jEN} ’
By'=ClU;, (@iz1)
for each n & N. Since & is deoreasing, {£,| /20, ne N} is a closed cover of X'x ¥,
and we have E;, n F, = @ Thus, X'x ¥ is countably paracompact, and it suffices
to prove the claim.
Proof of the claim. Let p, and g, be points of G,,, e & Q, defined in
Lemma 2.2. Let us put
Co = U {P| P is an open set of X such that (Pxf(ClG,)) N E, = &}
and ’
An = U {(X— Cna) X {Pnu}l xe Q',t} 3
B, = U {(X'_ Ci) % {qna}l x € ern} .

4 — Fundamenta Mathematicae CXXIV/2
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Since ¢! is locally finite, 4, and B, are closed sets of X'xZ and disjoint. Let
-A=UAn5 B:UB,,.
n n :
Then by the first equality of (b) in Lemma 2.2 the same proof as in [18, Theorem 1%}
yields that 4 and B are disjoint and closed in X'xZ, Furthermore, from (a) and

the second equality of (b) in Lemma 2.2 it follows that ®(4) n $(B) N (X'x ¥y)
= @. Hence, by the fact mentioned in the proof of Claim 2 in Theorem I, we have

Cl®(A4) A ClPB) N (Xx Yy) = @

Since E; =X x Y, by the normality of X'x ¥, there exist open sets U, ¥V and W
of X'x Y such that

1 Cld(4) nClB(B)c W
Cl¢(A)~wecU, CloB)-WeV

and CIWnE; =
and ClUNCIV = @.
Let us put
e = {x e X| {x/(CIG,)eXx Y—(U L W)},
= {xeX| {x}x f(CI1G,)=Xx Y—(V L W)}

for ¢ e Q,, and
Hy, = U {(Dy v E)xClG,| aeQ}.

Since D,, and E,, are closed and &, is locally finite, H, is also closed. Moreover

we have ®(H,) nE, = @. To see this, let (x,z)e H, and suppose that (x,z)

€ D,y xClG,, for some aeQ,. Then {x}xf(CIG,)cXxY~(Uu W). Hence,

({x}xClG,,) » 4 = @, and consequently x & C,,. Thus, we have (x, f(z)) ¢ E,.
Since E,=Xx ¥,, as before we have

@ Cl®(H)NE, =@ for cach neN.

Let o e Q,—Q. Then X'x Gy, is countably paracompact since G, is locally
compact metrizable and X is countably paracompact. Hence, there exists a closed
set K, of XxG,, such that

XXGM: U {Kkanl nEN},
" Kin 0 ®"UE) =@ for each ne N.

Since Gy, is an F, subset of Z, Ky can be written as Ky, = ) {Kjuyyl /& N} for
some closed set K,,; of X'xZ. Let

Lknj = U {Kkanjl e ‘Qk'—gl,c} ’
Since %y is locally finite, Ly, is closed in X xZ, and Ly,; ~ ¢~ '(E,) = @, Therefore,

G Cle¢(Liy) NE, =@ for each k,n,je N.

icm°
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Finally we show that the collection
@ = {CIW, CI®(H,), ClO(Ly,)| k,n,je N}

covers X x Y. To see this, let (x, y) be any point of X'x ¥ and suppose that (x, y)
¢ ClW. We may assume that (x, 1) ¢ CIU since CIU n C1V = @. Let z be a point
of Z with y = f(z). Then there cxists Gy, € % for some ke N such that ze Gy,
and {x} xf(CIG)c X x Y—(ClU L CIW). If o e @, then x e Dy,. Hence (x,z)
€ Hy. That is, (v, )) & Clo(H). If a € Q,— &, then (x, 2) € Ky,y; for some n and J.
Hence, (x,2) € Ly,; and (¥, y) € C1d(Ly,;). Thus, & covers X'x Y.

Therefore, in view of (1), (2) and (3) @ is now the desired closed cover of
X x Y, which proves the claim and the proof of Theorem 2 is completed.

Proof of Theorem 3. The “if” part follows from Theorem 1. The “only
if” part follows from Theorem 2 in case Y is non-discrete. If ¥ is discrete, Xx ¥
is obviously countably paracompact.

Let us denote by m an infinite cardinal number. A space is said to be
m-parqgcompact if its every open cover with cardinality <m admits a locally finite
open refinement, and a space is m-collectionwise normal if for every discrete family
{F,] weQ} with Card @<t of its closed subsets there is a family {U,| e Q} of
mutually disjoint open subsets such that F,=U, for each ae Q.

Let I™ be the product space of m copies of I =10, 1], and 4 (i) the one-point
compactification of the discrete space of cardinality m. Then it is known by [10]
and [1] respectively that a space X is mi-paracompact and normal iff X'xI™ is
normal, and a space X is m-collectionwise normal and countably paracompact
iff X'xd@n) is normal.

Using these results and Theorem 2.3 below and replacing C by I'" or 4(my),
we immediately obtain Theorems 2.4 and 2.6 and their corollaries.

TurorEM 2.3. Suppose that Y is Lasnev and C is compact and both X x Y and
X'xC are normal. Then X< Yx C is normal.

Proof. We may assume that Y is non-discrete. Then by Theorem 2 X'x Y is
countably paracompact, Since C is compact, (X'x Y)xC = (Xx CYyx Y is count-
ably paracompact. Hence by Theorem 1 X'x ¥'x C is normal, which proves the
theorem.

THEOREM 2.4, Lot X be an m-paracompact and normal space and Y «a Lasnev”
speee. If X' Y is normal, then X% Y Is m~pdracompact.

COROLLARY 2.5. If the product space Xx Y of & paracompact space X with
« Lasnev space Y is normal, then XX Y s paracompact.

THEOREM 2.6, Let X be an m-collectionwise normal space and Y a Lasnev space.
If X% Y is normal, then X x Y is m~collectionwise normal.

COROLLARY 2.7. If the product space X x Y of a collectionwise normal space X
with a Lataev space 'Y is normal, then X x Y is collectionwise normal.

Corolfary 2.7 answers afficmatively to a question of K. Chiba asked in a letter
to the author.

4%
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3. Product of a normal P-space with a paracompact g-space. A space X is said
to be a P-space if for any set @ and for any family {Gaty, s a) gy o, 0, € Q;
neN} of open subsets of X such that

G(‘xia tees an)CG(‘xb veen Opy (xn-l-l) for gy vues Oyy Olpgey EQ; nENa

there exists a family {D(0y, ..., )| oys e o, €Q; n.eN} of closed subsets of X
such that the two conditions (a), (b) below are satisfied:
(a) D(ala C/l,,EQ,

L 0G0y, oy 0y) FOT gy s

0 o0
®) X = D, ..., %, for any sequence (%) such that X = U1 (cICTAY
n=1 n=

The notion of P-space is due to Morita [L1], and by his theorem normal
P-spaces are known to be those spaces whose product with any metric space is
normal. ¢-spaces are defined to be spaces with a - -locally finite net (Okuyama [17]).

We shall now prove the following mentioned in the introduction.

TraeoreM 3.1. Let X be a normal P-space and ¥ a paracompact o-space. Then
Xx Y is normal iff Xx Y is countably paracompact.

Proof. Since every o-space is a strong X-space in the sense of Nagami [15],
the “only if” part follows from [15, Theorem 4.10]. To show the “if” part, assume
that X' ¥ is countably paracompact, and let 4 and B be disjoint closed subsets
of Xx Y.

It is known that ¥ has a net § = U &;, where cach &, is a discrote collection

of closed sets. Let #; = &; v {¥}, and .9" s = {Fi,] @ € Q;}. Here it may be assumed
that all ;s are equal to an index set Q. Then we can write F; = {Fil EQ}
Let us put for ie N and aeQ

Un(1) = U {P| P is an open set of X such that Px F,cX'x Y5},
Uif2) = U {P| P is an open set of X such that Px F,=Xx Y—A}.
Further let us put for ay, .., %, €Q

Ulcu(j) .. nun(J)’ j = ]" 2’
S0y 1)U Glaty, oy o5 2)

Gy, voes 003 J) =
G(otyy e, 0,) = G0y, ..o

Then we have G(oty, ..., 0,) S G (g, weoy Oy, 0y gy) FOr EVELY SCQUENCE Gy, veny Oy Uiy
€ Q. Since X is a P-space, there exists a family {D (@, ..., )| &y, s 0, € Q3 nE N}
of closed subsets of X satisfying the conditions (a), (b) above. By (a) and the
normality of X there exist zero-sets K(y, ..., &3 f) (f = 1,2) of X such that

S U SRy ey 03 1) 0 Koy, o
vs Oy j)CG(Dtl,A.. j,: 1,2.

Dy, ...
K(ey, ..

> % 2),
203 J)s

icm
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On the other hand, since Y is paracompact, there exists a locally finite family
{H,] «€Q} of open sets of ¥ such that F,cH,, for each o e Q. We have then

Kty et DX(() Fud €6, 5 D%(() ).
=1

§

Since Y is perfectly normal, () Fy, is a zero-set of Y. Hence K{tg, ens 00,5 1) %
n i=1 .

x(iﬂlF,-m) is a zero-set of X'x ¥, and by the assumption and Lemma 2.1 there

exists an open set Wi(oy, ..., a,; 1) of X'x Y such that

n
Koy, ..., o3 ])X(iﬂlFm)CW(%, ey 03 1),

CAW (s, ovvs 23 DGy, vy o3 D () Hy)—B .
i=1

Similarly we can choose an‘open set W (0, vy 0,5 2) of X'x Y so that

K(Otl, ey OC,,, 2)X( ﬂ wu)c W(DCl, suvy O‘n; 2),
Cl W(Ofl, s Oy Z)CG(OCJJ vees Oy 2) X( ﬂ Hloti)'—A .
=1
Let us put
Vi) = U W0y, e, 03 ) 0y ey, €2}, j=1,2,

Since { () Hiyl ¢4,...,0,€Q} is locally finite and ClW(ay,...,a,; 1) N B =&,

i=1
we have

) Clv,1)nB=@ for each neN.

Similarly

AnClV,(2) =@ for each neN.

Finally we show that 4« U V,(1) and Bc U V,(2). Let (x,») e A. Note that the

set () {Fe&F,|yeF}is equal to some F,,, € .97,,, and {F,, | n e N} has the property

that any open set U with y € U contains some F,,.. Hence it can be easily checked

that X' = U G(oy, viey &). Therefore by (b) we have X = ) D(ay,...,®,), and
# n

consequently x e D(ay, ...
x e K(x, ..., 0,3 1). Thus,

,o,) for some n. Then, since (x,y)ed, we have

n
(x’ J’) EK(“!.: eony Oy 1) X(iolFim)c W(‘xl; vy O3 l)CVn(l),
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which shows A< U V,(1). By the same argument we have Be |J V,(2). Hence,
n

n
A and B are separated by open sets, which completes the proof of the theorem.

Remark. It should be noted that for the “if” part of T heorem 3.1 “a para-

compact o-space” cannot be weakened to “y strong Z-space”. Indeed, let W(w,)
= {¢} 0<a<m,} and W(wy+1) = {«] 0< <, +1} with the usual order topology,
“where @, is the first uncountable ordinal. Then W(w,) is a normal P-space, and
W(w,+1) is a strong Z-space since it is compact. On the other hand, it is well
known that W(w,)x W(o,+1) is countably compact, but is not normal.

In view of Theorem 3, it is unknown to the author whether the assumption
“p.space” in Theorem 3.1 can be replaced by “countably patacompact space”.

It should be pointed out that the product of a paracompact P-space and
a paracompact ¢-space is paracompact.

The following theorem of Nagami [16] can be proved using Theorem 3.1

THEOREM 3.2. Suppose that X is a collectionwise normal P-space and Y a pura-
compact o-space and X x Y normal. Then Xx Y is collectionwise normal.

Proof. Note that X x4 (m) is normal and is a P-space. Therefore, with the

aid of Theorem 3.1, the same argument as in the proof of Theorem 2.3 implies
that X' x ¥'x A (i) is normal. Hence X'x Y is m-collectionwise normal for every i,
and consequently it is collectionwise normal.

Added ‘in proof. The author proved Theorem 3 also for the casc Y is paracompact
F,-metrizable; this fact and contents of this paper are announced in [19].
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