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On minimal generators of o-fields
by

Bohdan Aniszczyk (Wroctaw) and Ryszard Frankiewicz (Warszawa)

Abstract. In this note it is shown that
(i) there is a o-field without minimal generators;
(ii) the o-field Zpy has a minimal generator.

Let # be a o-field of subsets of the set X. A family  is called a generating
Samily (or generator) for # if B is the least o-field containing %, and a minimal
generator if no proper subfamily of & is a generator for 4. This concept was intro-
duced by D. Basu and studied by B. V. Rao and K. P. 8. Bhaskara-Rao, who raised
the question whether every o-field of subsets has a minimal generating family
([6, p. 685], [1, p- 2]). The aim of the first part of the paper is to give a negative
answer to this question. The second part answers the question of M. Talagrand
(I7, p. 59 and shows that the family of all ultrafilters on o is a minimal generator
for the o-field generated by them on {0, 1}°.

Let P(X) denote the family of all subsets of X and, for a family #<P(X),
let o(#) denote a o-field generated by #.

1. Question of B. V. Rao and K. P. S. Bhaskara-Rao. o, stands for the set of
all countable ordinals and also the least uncountable cardinal.

Proposition 1 is the clue to our further investigations; for the proof see [l, re-
mark after Proposition 2]. Another proof, based .on a theorem of Parovicenko—
Rudin, is given at the end of the paper.

ProrOSITION 1. Any Jamily of subsets of w, of cardinality w; is contained
in « o-field generated by a countable fumily.

LemMa ([2, Lemma 7.4], For each family of cardinality o, of cubs on o (“cub”
means “an unbounded subset of w, closed in order topology™), there is a cub almost
contained in any cub of that family (“almost” means “all but countably many points™).

PROPOSITION 2. The o-field B=P(w,) of sets containing a cub or disjoint with
one does not have a minimal generator.
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Proof. Let 4 be a generator for #. card¥>w,;. We may assume that any
G e @ contains a cub. Let $,=% be such that card¥, = w; and all countable
sets are in o(%,). Take F SH\Y,, cardF = ;. By the lemma there is a cub C
almost contained in any element of &#. By Proposition 1 there is a countable family
@, =% such that {F\C: Fe F}u {C}=a(%). Thus we have F=o(%, U &)).
This shows that o(%) = a((ﬁ\(’f\&f’l)) and that ¢ is not a minimal generator.

PrOPOSITION 3. (CH) P(w,) does not have a minimal generator.

Proof. Assume that ¢ is a generator for P(wy). Let F<¥ be such that
card(#) = w,;. By Proposition 1 there is a countable family &7 such that ¢ (/)2 .
Any member of &/ is generated by a countable subfamily of #; hence there is a count-
able family ¥, % such that & and therefore & is contained. in ¢(%,). This shows
that o(#\(F\Y,)) = 6(%) and finally ¥ is not a minimal generator. Because
of the arbitrariness of ¢ the proof is complete.

Remark. 1 In view of Silver’s result ([4, p. 162]) Martin’s Axiom + CH
implies that P(w,) has a countable generator and has a minimal one [6]. Therefore,
in Proposition 2 some additional assumption, in place of CH are needed.

ProrosiTiON 4 (CH). Let % denote the o-field of Lebesgue measurable sets '

on the real line does not have a minimal generator.

Proof. By CH there is a family {B,: o <w,} of increasing zero measure Borel
sets such that any zero measure set is contained in some B, (use, for example,
[5, Theorem 19.6 and the last remark in Ch. 19]). Let % be a generator for &.
Obviously card¥>w,. For any element G € ¢ fix a Borel set B(G) satisfying B(G)
<G, G\B(G) having measure zero. There is a Borel set B such that

card{G: B(G) = B}>w,;

then, for some a<w,, 4, = {G: B(G) = B, G\B<AB,} is of cardinality at least o,.
Choose a subfamily & of G, of cardinality ;. By Proposition 1 there is a count-
able family of subsets of B,~hence in #-generating on B, a o-field which contains
{G\B: Ge #}. So there is a countable %,=% such that {\B: GeF}u
v {B, B,}=0(%,). Finally 6(%) = o(9\(F\F,)) and ¢ is not a minimal generator,

Remark 2. The same proof works for the o-field of subsets of real line with
the Baire property (consult [5]).

2. Question of M. Talagrand. Let w denote the set of all finite ordinals and fie
the set of all ultrafilters on w. We identify {0, 1} with P(w). The ultrafilter u & fio
Is principal if there is a je  such that 4 e u iff je A and u e o is free if it is not
a principal. All principal ultrafilters generate on P(w) the o-ficld of usual Borel
subsets of {0, 1}*. It is well known from Sierpiniski [8] that free ultrafilters on
are non-Borel. M. Talagrand posed the following question at a conference on
analytic sets in 1979: For a set o of ultrafilters on w, let o (o) be a g-field of sub-
sets of P(w) generated by the elements of 7. Does there exist a u e P such that

ueo(fo{u})?
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We :prove the following

THEOREM. fw i d minimal generator for o(fw).

Probf. Assume; a contrario, that there is a u & fo, ueo(fo{u}). Then
obviously there are {u;: icw}spo{u} such that weo({u;: ic ®}). The ultra:
filter % is not principal (if it were, for two points, one with each coordinate equal
to zero and the other with a coordinate equal to one only on the coordinate which
gives u, u would separate them while o({u;: 7€ w}) would not, which is impossible
if weo({u;: iew)). i

Put y = {i: u; is principal}; « = w\y.

CLAM. uecly, {u;: iea} (closure in Bw of {u;: i€ ). Otherwise there is an
Aelw]® (infinite subset of w), Aeu and A ¢u, for e

P(d), as a subset of P(w), is in one atom of o({u;: i €a}), namely

N PNy iea}.

P(A) A o({u;: iey}) is a sub-o-field of Borel sets on P(4) (u; is principal
for iey), while

P(A) nu, as a {ree ultrafilter on 4, is non-Borel. Finally ug¢ o({u; icw}).
This contradiction proves the claim. _

Since u & clp, {11 i € @}, there is a partition of @, {P,:ne o}={w}” such that

@ VnP,¢u,
(i) VjdnP, e u;
(it is easy to obtain such a partition by induction). .

This partition defines a function f: @ — by f(i)=n if ieP,. For o
<P(w) put .

fulst) = {deP(w): fHA) e L.

fx is a o-homomorphism on P(w) (i.e., preserves complementation and countable
unions in P(P(w))). Hence o
(i) fedsflou: Te o})) = o({f@): i€ ®}) .
By (if), fx(u;) is a principal ultrafilter on w; thus o({fi(u)): i€ ®}) consists only
of Borel subsets of P(w). On the other hand, by (i), f.(1d) is free, hence non-Borel.
This contradiction of (iii) proves the theorem.

3. Another proof of Proposition 1. Our proof of Proposition 1 is based on the
following theorem of Parovicenko and W. Rudin:

TuroreM. Let B be « Boolean algebra of cardinality not greater than w,. There
is a one-to-one homomorphism from B into P(w)/Fin.

The proof can be found in [2] (Theorem 14.12).

Proof of Proposition 1. Let & SP(wy) card (%)< ;. Let o be an algebra
of cardinality w, containing # and all one-point subsets of @;. Let ¢ be a homo-
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morphism of & into P(w)/Fin. For A€ o let y,&P(w) be any element of the
equivalent class of ¢ (4). Since w, &7, we have obtained a function x: w; ~ P(w).

For any Fe & consider the set Ky = {x € P(w): card(yp\x)<w}. It is easy
to see, Ky is o-compact in P(w) (with Cantor set topology). Hence Ky is a Borel
set. Also, it is easy to see that y~*(Ky) = F.

So #<{x"(B)| B=P(w), B is a Borel set}.

The above family is a o-field which is a countable generating family. The
proof of Proposition | is complete.
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On the homotopy classification
of pairs of linked maps of manifolds
into a linear space

by

C. Bowszyce (Warszawa)

Abstract, It is shown that the linking number of maps f: M — E and ¢g: N — E of connected
closed manifolds into a linear space with disjoint images gives the homotopy classification of such
pairs of maps if dimM+dimN+1 = dimE.

Let M and N be two closed connected oriented smooth manifolds of dimensions
m and n respectively. We shall suppose that 0<m<n. Let E be a real oriented
k-dimensional linear space with k = m+n+122. Denote E, = E\{0}. A pair
(f, g) of smooth maps f: M — E and g: N — E with disjoint images f(M) and
g(N) will be called a pair of linked maps.

Two pairs of linked maps (fy, go) and (f3, g4) are said to be homotopic if there
are two smooth homotopies f;: M — E and g,: N— E with f(M) and g(N)
disjoint for every t e I = [0, 1]. We shall write (f, go) ~(f1, 94) in this case. Denote
by # the set of all homotopy classes of pairs of linked maps.

For a pair of linked maps (f, g) their linking number /(f, g) is defined to be
the winding number around 0 (comp. [2], p. 144) W(P) of the map &: M xN — E,
of oriented manifolds defined by ®(u, v) = g(v)—f() (or the degree of the map
&/|B|: Mx N — S"" if E is Euclidean). It is known ([8], p. 104) that homotopic
pairs of linked maps have the same linking number.

The main result of this paper is the following

THEOREM 1. The function # — Z assigning to a homotopy class of a pair of
linked maps (f, g) their linking number I(f, g) is bijective.

If m = 0 then M is a point and the theorem is really the Hopf classification
theorem (comp. [7], § 7). If m = n = 1 then M and N are diffeomorphic to circles;
this result was obtained by J. Milnor in [6], p. 190 by means of tools developed
there. We shall give also another, more direct proof of this case.

We shall need some lemmas.
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