

On minimal generators of σ -fields

bν

Bohdan Aniszczyk (Wrocław) and Ryszard Frankiewicz (Warszawa)

Abstract. In this note it is shown that

- (i) there is a σ-field without minimal generators;
- (ii) the σ -field $\Sigma_{\theta \omega}$ has a minimal generator.

Let \mathscr{B} be a σ -field of subsets of the set X. A family \mathscr{G} is called a generating family (or generator) for \mathscr{B} if \mathscr{B} is the least σ -field containing \mathscr{G} , and a minimal generator if no proper subfamily of \mathscr{G} is a generator for \mathscr{B} . This concept was introduced by D. Basu and studied by B. V. Rao and K. P. S. Bhaskara-Rao, who raised the question whether every σ -field of subsets has a minimal generating family ([6, p. 685], [1, p. 2]). The aim of the first part of the paper is to give a negative answer to this question. The second part answers the question of M. Talagrand ([7, p. 59]) and shows that the family of all ultrafilters on ω is a minimal generator for the σ -field generated by them on $\{0, 1\}^{\omega}$.

Let P(X) denote the family of all subsets of X and, for a family $\mathscr{F} \subseteq P(X)$, let $\sigma(\mathscr{F})$ denote a σ -field generated by \mathscr{F} .

1. Question of B. V. Rao and K. P. S. Bhaskara-Rao. ω_1 stands for the set of all countable ordinals and also the least uncountable cardinal.

Proposition 1 is the clue to our further investigations; for the proof see [1, remark after Proposition 2]. Another proof, based on a theorem of Parovicenko-Rudin, is given at the end of the paper.

PROPOSITION 1. Any family of subsets of ω_1 of cardinality ω_1 is contained in a σ -field generated by a countable family.

LEMMA ([2, Lemma 7.4]. For each family of cardinality ω_1 of cubs on ω_1 ("cub" means "an unbounded subset of ω_1 closed in order topology"), there is a cub almost contained in any cub of that family ("almost" means "all but countably many points").

PROPOSITION 2. The σ -field $\mathscr{B} \subseteq P(\omega_1)$ of sets containing a cub or disjoint with one does not have a minimal generator.

Proof. Let \mathscr{G} be a generator for \mathscr{B} , card $\mathscr{G} > \omega_1$. We may assume that any $G \in \mathscr{G}$ contains a cub. Let $\mathscr{G}_0 \subseteq \mathscr{G}$ be such that $\operatorname{card} \mathscr{G}_0 = \omega_1$ and all countable sets are in $\sigma(\mathscr{G}_0)$. Take $\mathscr{F} \subseteq \mathscr{G} \setminus \mathscr{G}_0$, card $\mathscr{F} = \omega_1$. By the lemma there is a cub C almost contained in any element of F. By Proposition 1 there is a countable family $\mathscr{G}_1 \subseteq \mathscr{G}$ such that $\{F \setminus C : F \in \mathscr{F}\} \cup \{C\} \subseteq \sigma(\mathscr{G}_1)$. Thus we have $\mathscr{F} \subseteq \sigma(\mathscr{G}_0 \cup \mathscr{G}_1)$. This shows that $\sigma(\mathcal{G}) = \sigma(\mathcal{G} \setminus (\mathcal{F} \setminus \mathcal{G}_1))$ and that \mathcal{G} is not a minimal generator.

Proposition 3. (CH) $P(\omega_1)$ does not have a minimal generator.

Proof. Assume that \mathscr{G} is a generator for $P(\omega_i)$. Let $\mathscr{F} \subseteq \mathscr{G}$ be such that $\operatorname{card}(\mathscr{F}) = \omega_1$. By Proposition 1 there is a countable family \mathscr{A} such that $\sigma(\mathscr{A}) \supseteq \mathscr{F}$. Any member of \mathcal{A} is generated by a countable subfamily of \mathcal{G} ; hence there is a countable family $\mathscr{G}_0 \subseteq \mathscr{G}$ such that \mathscr{A} and therefore \mathscr{F} is contained in $\sigma(\mathscr{G}_0)$. This shows that $\sigma(\mathscr{G}\setminus(\mathscr{F}\setminus\mathscr{G}_0))=\sigma(\mathscr{G})$ and finally \mathscr{G} is not a minimal generator. Because of the arbitrariness of \(\mathscr{G} \) the proof is complete.

Remark, 1 In view of Silver's result ([4, p. 162]) Martin's Axiom + CH implies that $P(\omega_1)$ has a countable generator and has a minimal one [6]. Therefore, in Proposition 2 some additional assumption, in place of CH are needed.

Proposition 4 (CH). Let \mathcal{L} denote the σ -field of Lebesgue measurable sets on the real line does not have a minimal generator.

Proof. By CH there is a family $\{B_n: \alpha < \omega_1\}$ of increasing zero measure Borel sets such that any zero measure set is contained in some B_n (use, for example, [5, Theorem 19.6 and the last remark in Ch. 19]). Let \mathscr{G} be a generator for \mathscr{L} . Obviously card $\mathscr{G} > \omega_1$. For any element $G \in \mathscr{G}$ fix a Borel set B(G) satisfying B(G). $\subseteq G$, $G \setminus B(G)$ having measure zero. There is a Borel set B such that

$$\operatorname{card} \{G : B(G) = B\} > \omega_1;$$

then, for some $\alpha < \omega_1$, $\mathscr{G}_{\alpha} = \{G : B(G) = B, G \setminus B \subseteq B_{\alpha}\}$ is of cardinality at least ω_1 . Choose a subfamily \mathscr{F} of G_{α} of cardinality ω_1 . By Proposition 1 there is a countable family of subsets of B_{σ} -hence in \mathscr{L} -generating on B_{σ} a σ -field which contains $\{G \backslash B \colon G \in \mathscr{F}\}$. So there is a countable $\mathscr{G}_0 \subseteq \mathscr{G}$ such that $\{G \backslash B \colon G \in \mathscr{F}\} \cup \{G \backslash B \colon G \in \mathscr{F}\}$ $\cup \{B, B_n\} \subseteq \sigma(\mathscr{G}_0)$. Finally $\sigma(\mathscr{G}) = \sigma(\mathscr{G} \setminus \mathscr{F} \setminus \mathscr{G}_0)$ and \mathscr{G} is not a minimal generator.

Remark 2. The same proof works for the σ -field of subsets of real line with the Baire property (consult [5]).

2. Question of M. Talagrand. Let ω denote the set of all finite ordinals and $\beta\omega$ the set of all ultrafilters on ω . We identify $\{0,1\}^{\omega}$ with $P(\omega)$. The ultrafilter $u \in \beta \omega$ is principal if there is a $j \in \omega$ such that $A \in u$ iff $j \in A$ and $u \in \beta \omega$ is free if it is not a principal. All principal ultrafilters generate on $P(\omega)$ the σ -field of usual Borel subsets of $\{0,1\}^{\omega}$. It is well known from Sierpiński [8] that free ultrafilters on ω are non-Borel. M. Talagrand posed the following question at a conference on analytic sets in 1979: For a set $\mathscr A$ of ultrafilters on ω , let $\sigma(\mathscr A)$ be a σ -field of subsets of $P(\omega)$ generated by the elements of \mathscr{A} . Does there exist a $u \in \beta \omega$ such that $u \in \sigma(\beta \omega \setminus \{u\})$?

We prove the following

Theorem. $\beta\omega$ is a minimal generator for $\sigma(\beta\omega)$.

Proof. Assume, a contrario, that there is a $u \in \beta \omega$, $u \in \sigma(\beta \omega \setminus \{u\})$. Then obviously there are $\{u_i: i \in \omega\} \subseteq \beta \omega \setminus \{u\}$ such that $u \in \sigma(\{u_i: i \in \omega\})$. The ultrafilter u is not principal (if it were, for two points, one with each coordinate equal to zero and the other with a coordinate equal to one only on the coordinate which gives u, u would separate them while $\sigma(\{u_i: i \in \omega\})$ would not, which is impossible if $u \in \sigma(\{u_i: i \in \omega\})$.

Put $y = \{i: u_i \text{ is principal}\}; \alpha = \omega \setminus y$.

CLAIM, $u \in \operatorname{cl}_{R\omega}\{u_i: i \in \alpha\}$ (closure in $\beta \omega$ of $\{u_i: i \in \alpha\}$). Otherwise there is an $A \in [\omega]^{\omega}$ (infinite subset of ω), $A \in u$ and $A \notin u_i$ for $i \in \alpha$.

P(A), as a subset of $P(\omega)$, is in one atom of $\sigma(\{u_i: i \in \alpha\})$, namely

$$\bigcap \{P(\omega) \setminus u_i \colon i \in \alpha\}.$$

 $P(A) \cap \sigma(\{u_i: i \in \gamma\})$ is a sub- σ -field of Borel sets on P(A) (u_i is principal for $i \in y$), while

 $P(A) \cap u$, as a free ultrafilter on A, is non-Borel. Finally $u \notin \sigma(\{u_i: i \in \omega\})$. This contradiction proves the claim.

Since $u \in \operatorname{cl}_{\beta\omega}\{u_i \colon i \in \omega\}$, there is a partition of ω , $\{P_n \colon n \in \omega\} \subseteq \{\omega\}^{\omega}$ such that

(i)
$$\forall n P_n \notin u$$
,

(ii)
$$\forall j \exists n P_n \in u_j$$

(it is easy to obtain such a partition by induction).

This partition defines a function $f: \omega \to \omega$ by f(i) = n if $i \in P_n$. For \mathscr{A} $\subseteq P(\omega)$ put

$$f_*(\mathcal{A}) = \left\{ A \in P(\omega) \colon f^{-1}(A) \in \mathcal{A} \right\}.$$

 f_* is a σ -homomorphism on $P(\omega)$ (i.e., preserves complementation and countable unions in $P(P(\omega))$). Hence

(iii)
$$f_*(u) \subseteq f_*(\sigma(\{u_i: i \in \omega\})) = \sigma(\{f(u_i): i \in \omega\}).$$

By (ii), $f_*(u_i)$ is a principal ultrafilter on ω ; thus $\sigma(\{f_*(u_i): i \in \omega\})$ consists only of Borel subsets of $P(\omega)$. On the other hand, by (i), $f_*(u)$ is free, hence non-Borel. This contradiction of (iii) proves the theorem.

3. Another proof of Proposition 1. Our proof of Proposition 1 is based on the following theorem of Parovicenko and W. Rudin:

THEOREM. Let B be a Boolean algebra of cardinality not greater than ω_1 . There is a one-to-one homomorphism from B into $P(\omega)/\text{Fin}$.

The proof can be found in [2] (Theorem 14.12).

Proof of Proposition 1. Let $\mathscr{F} \subseteq P(\omega_1)$ card $(\mathscr{F}) \leqslant \omega_1$. Let \mathscr{A} be an algebra of cardinality ω_1 containing ${\mathscr F}$ and all one-point subsets of ω_1 . Let φ be a homo-

morphism of $\mathscr A$ into $P(\omega)/\mathrm{Fin}$. For $A \in \mathscr A$ let $\chi_A \in P(\omega)$ be any element of the equivalent class of $\varphi(A)$. Since $\omega_1 \subseteq \mathscr A$, we have obtained a function $\chi \colon \omega_1 \to P(\omega)$.

For any $F \in \mathscr{F}$ consider the set $K_F = \{x \in P(\omega): \operatorname{card}(\chi_F \setminus x) < \omega\}$. It is easy to see, K_F is σ -compact in $P(\omega)$ (with Cantor set topology). Hence K_F is a Borel set. Also, it is easy to see that $\chi^{-1}(K_F) = F$.

So $\mathscr{F} \subseteq \{\gamma^{-1}(B) | B \subset P(\omega), B \text{ is a Borel set}\}.$

The above family is a σ -field which is a countable generating family. The proof of Proposition 1 is complete.

References

- [1] K. P. S. Bhaskara-Rao and B. V. Rao, Borel spaces, Dissertationes Math. 190 (1981).
- [2] W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin 1974.
- [3] T. J. Jech, Set Theory, Academic Press, New York 1978.
- [4] D. A. Martin and R. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), pp. 143-178.
- [5] J. Oxtoby, Measure and Category, Springer-Verlag, New York-Heidelberg-Berlin 1971.
- [6] B. V. Rao, On Borel structures, Collog. Math. 21 (1970), pp. 199-204.
- [7] C. Rogers, Analytic Sets, Academic Press, London 1980.
- [8] W. Sierpiński, Fonctions additives non completement additives et fonctions non-mesurables, Fund. Math. 30 (1938), pp. 96-99.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Wrocław, Kopernika 18
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Warszawa, Śniadeckich 8

Received 4 October 1982

On the homotopy classification of pairs of linked maps of manifolds into a linear space

b

C. Bowszyc (Warszawa)

Abstract. It is shown that the linking number of maps $f: M \to E$ and $g: N \to E$ of connected closed manifolds into a linear space with disjoint images gives the homotopy classification of such pairs of maps if $\dim M + \dim M + 1 = \dim E$.

Let M and N be two closed connected oriented smooth manifolds of dimensions m and n respectively. We shall suppose that $0 \le m \le n$. Let E be a real oriented k-dimensional linear space with $k = m + n + 1 \ge 2$. Denote $E_0 = E \setminus \{0\}$. A pair (f, g) of smooth maps $f: M \to E$ and $g: N \to E$ with disjoint images f(M) and g(N) will be called a *pair of linked maps*.

Two pairs of linked maps (f_0, g_0) and (f_1, g_1) are said to be homotopic if there are two smooth homotopies $f_i : M \to E$ and $g_i : N \to E$ with $f_i(M)$ and $g_i(N)$ disjoint for every $i \in I = [0, 1]$. We shall write $(f_0, g_0) \simeq (f_1, g_1)$ in this case. Denote by \mathcal{H} the set of all homotopy classes of pairs of linked maps.

For a pair of linked maps (f,g) their linking number l(f,g) is defined to be the winding number around 0 (comp. [2], p. 144) $W(\Phi)$ of the map $\Phi: M \times N \to E_0$ of oriented manifolds defined by $\Phi(u,v) = g(v) - f(u)$ (or the degree of the map $\Phi/|\Phi|: M \times N \to S^{m+n}$ if E is Euclidean). It is known ([8], p. 104) that homotopic pairs of linked maps have the same linking number.

The main result of this paper is the following

THEOREM 1. The function $\mathcal{H} \to Z$ assigning to a homotopy class of a pair of linked maps (f, g) their linking number l(f, g) is bijective.

If m=0 then M is a point and the theorem is really the Hopf classification theorem (comp. [7], § 7). If m=n=1 then M and N are diffeomorphic to circles; this result was obtained by J. Milnor in [6], p. 190 by means of tools developed there. We shall give also another, more direct proof of this case.

We shall need some lemmas.