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Embeddings, amalgamation and eleméntary equivalence:
the representation of compact logics

by

Daniele Mundici (Florence)

Abstract. Any logic L generates the L-embedding relation 7 just as first-order logic Lye

generates the elementary embeddability relation. By abstracting from L, given a transitive re-
lation ~ between structures we may ask whether there is a (perhaps unique) logic L such that —
=2 ‘We prove that if L is compact and — = o then L is uniquely determined by — : thus in
particular Ly is uniquely determined by the elementary embeddability relation. We give necessary
and sufficient conditions for the existence and uniqueness of a logic L such that — = e in

case ~ has a strong form of amalgamation property, called AP+. Upon restriction to countable
structures of finite type there are exactly two nontrivial embedding relations with AP+,

0. Introduction. Given a logic L, say in the sense of [12], one defines the
L-elementary embedding relation e just as for first-order logic L,, one defines

the elementary embeddability relation (1.2(b), (c)). By abstracting from L, we may
consider an arbitrary transitive relation — between structures which is preserved
under isomorphism, reduct and renaming (1.1). Any such relation — generates
an-equivalence relation ~ = —* between structures, by saying that U~B iff A
and B are connected by a finite path of arrows between structures of the same
type (1.4). Conversely, any equivalence relation ~ as defined in (1.3) generates
an embedding relation — = ~*, by saying that & — B iff the type 7(A) of A is
contained in ©(B) and some expansion of B | t(A) is ~- equivalent to the diagram
expansion 2, of A (1.4).

Given an abstract embedding relation — we consider the problem of existence
and unigueness of a logic L such that = In Section 2 we give criteria for the

unigqueness of L: Theorem 2.3 states that if 7= and L is compact, then L is

uniquely determined by —»: thus in particular L,, is uniquely determined by its
own embeddability relation Z; the same holds for the logic with thé cofinality w
quantifier (2.4). Theorem 2.6 establishes the following: if ~ is an abstract equiv-
alence relation, then ~ = =, for at most one logic L, provided the pair (~, ~*)
has JEP: the latter means that whenever A~B there is 9 with U — 9 « B,
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where — = ~* is the embedding generated by ~ (1.4). For the proof we use the
main theorem of [14]. From Theorem 2.1 we then obtain as a byproduct the follow-
ing criterion for the union of two compact logics L' and L' to be compact (see
[10, Problem 2, p. 218]): L" L L' is compact if =, and =y~ are comparable.

In Section 3 we give criteria for the existence of a logic L such that 7= -y

we mainly deal with embeddings satisfying a strong form of amalgamation, de-
noted by AP* (3.1): this turns out to be the counterpart of the Robinson property
(3.2) of —*, as proved in (3.9). Using Theorems 3.9 and 2,3 together with the main
result in [17], we give in Theorem 3.10 a necessary and sufficient condition for
an embedding relation — to determine exactly one compact logic L with interpola-
tion such that 7= Any such L # L, would provide a positive solution to

the fourth problem in [7]. Whatever the answer to this problem, the results of
Section 3 can be translated, with no essential modification, into the realm of enriched
structures, e.g., topological, uniform, proximity, modal structures (see [61, [1]
and [19], the latter for the general framework). In addition, the fact that equivalence
(cesp., embedding) relations in this paper are not required to imply elementary
equivalence (resp., elementary embeddability) makes Theorem 3.9 also applicable
to the study of weaker languages than L,,. Work along these lines is.in progress.

In Section 4 we relativize all our definitions to the class K of countable struc:
tures of finite type, and prove that there are exactly two nontrivial embedding
relations with AP* on K; for the proof we use the main result of [13].

This paper could be also-viewed as progress toward a problem raised in 20,
§ 21, namely determining necessary and sufficient conditions for the existence of
a strongest logic with prescribed L-elementary equivalence (or, L-embedding)
relation,

Abstract embeddings, AP* and the function * were originally introduced
by the author in the Summer of 1979, when 1.5, 3.3, 3.4, 4.1-4.4 were also proved.
Theorems 3.9 and 3.10 were first proved in 1980. The present paper is based on
a set of lectures delivered at the Mathematical Institute of the University of Florence
during the academic year 1981/82. The author thanks the referee for his suggestions.

1. Embedding and equivalence relations between structures. See [12, § 1] for the
necessary background in abstract model theory. As usual 21, B, D, M, N, and &
denote structures whose universes are respectively denoted by 4, B, D, M, N and §.
For any structure 2, 7(2) is the (usually many-sorted) type of 2, and 74 is the
diagram type (also called, diagram language) of U, i.e., the type of the diagram
expansion 2, of A, which is obtained by adding a constant ¢, for each element
ac A4, and by interpreting each c, by the element a, as in [2, p. 68]. We let Str{r)
denote the class of all structures of type 7. A name-changer, or renaming, ¢: 7> 0.%),
is an isomorphism between types. If 2 e Str(t') and ' <7, then ¢ naturally trans-
forms U into the structure U, e Str(g(c)) obtained by stipulating that cach symbol
Re is interpreted in U exactly as g(R) is interpreted.in 2,; compare with [4,
p. 155},
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1.1. DEFINITION. A bin
an (abstract, model-
conditions:

(1) isomorphism: U= B implies A — B;

(2) renaming: A — B implies A — Be;

(3) reduct: A — B implies Abr - B pr;

(4) type: W~ B implies T(A)ST(B); A —» B iff A — B b (A;

(5) transitivity: A — B and B - N implies o - N,
where %, B and R are arbitrary structures, 7 is any type S 1(Y)
changer whose domain contains (%), ’

::1ry relation — on the class of all structures is called
theoretical) embedding relation iff — satisfies the following

and ¢ any name-

1.2. ExA ) [ 1
' MPLES, (a) Let ;Z: B mean that t(MW<=7(B) and U =~ B b (AY;
then ;I: is an embedding relation.
(b) Let A L—:w B mean that ¢() S7(B) and AT B b (A, ie., A is ele-
mentarily embeddable in B } £(2); equivalently [2,3.1.3, % » Biff B+ =9
= A
for some expansion B* of B } (), where = is the ele ton. i
: msic 1), = elementary equival -
lation; then = Isan embedding relation. 7 cautielenee re
(c) Generalizing example (b), let L be any logic, say in the sense of [12, §13;
o ) - s ’
let A . B mean that (A =7(B) and B* = 1 W, for some expansion B* of
B b 1:(*2?), whexje =y, is the L-clementary equivalence relation (two structures are
=y-equivalent iff they satisfy the same sentences of L); then — is an embedding
0 . L
- relation, and is called the L-embedding relation. Compare with [14], [15].

1.3. DEFINITION. An equivalence relation ~ on the class of all structures is
an (abstract, model-theoretical) equivalence relation iff ~ satisfies the following
conditions:

(1) isomorphism: M = N implies Vb~ N;

(2) renaming: M~N implies M2~ NT;

(3) reduct: M~N implies M pc~R } 7;

@ type: M~N implies (M) = (M),
where M and N are arbitrary structures,  is any type < (M), and ¢ is any name-
changer whose domain contains (). Compare with [20]

» L4, DerNemioN, Given any embedding — ‘and equivalence relation ~ we
say that 'thc pair (~, -») has the Joint Embedding Property (J EP) iff for every MM
and 9t with M~ 9N there is B of the same type as M and 9t such that M — B « RN,
A logic L is said to have JEP iff the pair (=, ?) has JEP; compare with [14],
[15]. Bvery abstract cquivalence relation ~ generates an embedding relation —

also denoted ~*, by saying that 9 — B iff (M <1(B) and A, ~B* for some
expansion B* of B p 7(A).
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i lation —> gemerates an equivalence

Conversely, every abstract embedding rela i -
relation ~, also denoted —*, by saying that M~ RNiff M and. 9 have the same type t
and are connected by a finite path of arrows over Str(z), i.e., there are B;,..., B,

€ Str(7) such that:

{+) m_l—BlTBZ"“'

B, = 9, where € {>, )
3 n

for each i =1,..,n. o .
1.5. PropoSITION. Let ~ be an abstract equivalence relation; let — = ~
. = Rk -
be the embedding relation generated by ~, and let ~ = .->* = be ;:le g;gﬁz;t
alence relation generated by —. Then = is Siner than ~, i.e., for all M, N, M~
implies M~N. .
Proof. Assume M= N; then we can write

*

931——1—551—2—%2—?...—”—93"=m:

as in (+) above. The fact that SBii_H_QiH_l (say, == -») is .to the effect t.hat
some expansion of the structure B,,, is ~~- equivalent to the dl.ag?am exsgzlmsgn
of B, (or vice versa, if P .<—), hence, by 1.3(3), B;~B;.,. Similarly, M~B,,
hence we have M~B;~ ... ~B, =N W

1.6. PROPOSITION. For any logic L we have:

@ (=0* = 7

(i) if L has JEP then (:;)* = =j.

Proof. (i) is immediate from the definition of e and of ~*; to prove (i),
note that for all M, Ne Str(z), if M =, N then by JEP we have m 7 B 4L—€Tt
for some B e Str(7); hence, by definition of —*, we also have that SIR(?)*SR. Th}s
shows that = is finer than (:»)*. By Proposition 1.5, =* ie., (;»)*, is finer than

=,. Then we conclude that (-i»)* ==, 0

2. Unique representability, compact logics and JEP. Every logic L uniquely
determines the L-embedding relation o as in 1.2(c). We now consider the problem

whether an abstract embedding relation — can be identified with 2 for some
(perhaps uniquely determined) logic L. We shall mainly consic'ler logics L == L(Q')';E I
for I a set of relativizing Lindstr8m quantifiers as defined in [123 § 1], Following
common usage, we let o and § denote ordinals, and x, 4, pt cardInals, so that we

can equivalently write L = L(Q%u<x- .
Given logics L’ and L we define L = L' U L' to be the logic whose sentences

y are precisely those of the form

(++) ¥ = Qiky o Qe B(PY, oo Ons 05 o> Pr) 5
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where each £, is a constant symbol, Q, & {V,3} foreveryt = 1, ..., r, B is a boolean
function, i.e., a composition of A, v, and T1’s, each @ is a sentence of L', and
each ¢j is a sentence of L''; compare with [17, 2.1}. Using high-school ‘gymnastics
one can verify that L is closed under negation, conjunction, existential quantification
and relativization to boolean combinations of atomic sentences (see [17, § 5] for
details). One now defines 2 k y in the natural sense; note that L need not (prima
Jacie) have the form L = L(0Q%,<,. We shall use the following result of P. Lipparini
(see [8] and references quoted therein):

2.1. THEOREM. Let L' = L(Q% <y, L' = L(Q”),,ﬁ, L=LoL" If =4 is
Jiner than =y (e, YR, M, N =5, M implies N = M) then =, = =,. .

Proof. Assume =, s =;, so that =y, is strictly finer than =,,; then for

some ¥ in L and 9, B with % =, B we have B FLT1y and Wk . Asin (++)
above, i has the form

V= 0iky . Q. B, s 01y @Y, s l0)

Let AT = (A, RY", .., RY™) and B+ = (B, R¥, ., R¥*Y be the (definitional)
expansions of U and B respectively, defined by:

n
® A", BY b, AV, .V E(RE, ke ),
i=1

where Ry, ..., R, are new r-ary relation symbols. Define now the sentence & in "
by &= Q:k; ... O,k B(RK, ..., R,E, @7, ..., pl), where E is short for kg ok,
By (1) we have that %" kz.s and B* kp. ¢, hence A* £, B*. Since =L is
finer than =, then AT, B*, too. Then A* k., 5 and B* Er.71 x for some
sentence y in L. Let 8 be the sentence in L’ defined by 9 = 1(QYRE, ..., o4/R, ),
Le., § is obtained from y by replacing each (material) occurrence of R,k in y by ol
this is perfectly legitimate in a logic with quantifiers such as L’, where sentences
are finite strings of symbols obtained from the atomic sentences using the same
formation rules as in L,,, together with Q% quantification, for each Q%in L. By (1)
we have UF ky, § and B* k1 9, hence A ky, 9 and B, 9 (since the R;’s are
no more present in J), which contradicts the assumption that % =, 8. W

2.2. LemmMA. Let — be an embedding relation such that — = 2 for some com-
pact logic L' = L(Q%,<y. Let L' = L(Q")l,< 2 be such that % z B implies A = B
(for all A, B). Then L' is compact, too.

Proof. Since L’ is compact, then L’ has JEP, by the same argument used for
Lyo in [2, 3.1.4]. This means that whenever 2 =,, % there is & such that o =

" =] < B; by hypothesis, o S < B, whence U =, B; this shows that = L is

finer than =;.. By Theorem 2.1 we have =, = = 1y Where L =L UL" (see
(+ +) above).

Cram. L is compact.
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Proof of the claim. Deny (absurdum hypothesis): then some’ cardinal
u=w is cofinally (or, weakly) characterizable in L; in other words, there is an ex-
pansion M of the structure (g, <, ¢,py<y such that whenever N =, M the set
{cg'}7< 4 is unbounded in the order <% ie., there is no element ¢ in 9 such that
(M, ey k¢, <c for all y<p: for a proof see [10, §61, [11, §2]; the fact that L is
closed under relativizations to boolean combinations of atomic sentences is enough
for p to exist; for details see [9, 1.3, proof of the claim]. Since =, = =, then we
can as well say that whenever I =, % the set {c]},<, is unbounded in <™. But
this implies that L’ is not compact, a contradiction. Thus L is compact, which
proves our claim. Now, L' is a sublogic of L, so L is compact, oo, which proves
the lemma. W

The following is a “unique representability” result: recall that two logics L’
and L" are equivalent iff they have the same sentences, up to logical equivalence;
in this case L' and L' are often identified.

2.3, THEOREM. Let — be an embedding relation such that — = - Jfor some
compact logic L' = L(Q%)y<x- Assume — = by for some L' =L(Q”)p<;,. Then
L' is equivalent to L'.

Proof. Let & = —* By Lemma 2.2, L' is compact, hence L' has JEP. By
Proposition 1.6(ii) we have (;:)* = =,,, ie, & = =p.. Similarly L' has JEP,

and & = =, = =, Letting L = L' U L, by Theorem 2.1 we have =p= =y~

= =y, and arguing as in the proof of the claim of Lemma 2.2 we have that L is
compact. A familiar finite open-cover argument (e.g., an obvious generalization
of [5, 2.4]) yields the equivalence of L and L', and the equivalence of L and L,
hence the equivalence of L' and L"”. i -

‘We may apply Theorem 2.3 to all compact logics found in the literature (see,
&g, [22], 21}, [11]) — including L,,. To fix ideas we shall only deal with Ly,
and with L(Q%®), the logic with the cofinality @ quantifier introduced in [22] and
proved therein to be compact. Recall from 1.2(b) the definition of = in terms
of 2. : -

2.4, COROLLARY. (i) First-order logic is uniquely determined by the elementary
embeddability relation Z;

(i) Let L' = L(Q%®). Assume L' = L(Q";<, is a logic with 2= 2. Then
L" is equivalent to L'. W :

2.5. Remark. Corollary 2.4(i) can also be proved without using Theorems 2.1
and 2.3 but using instead the (JEP and) Robinson property of =, together with
Propositions 1.5 and 1.6 and [18,1.1].

We give a final criterion for an abstract equivalence relation ~ to have at
.most one logic L such that =, = ~. Following [14] we let § (vread: natural) de-
note the following set-theoretical hypothesis: ‘

Every uniform ultrafilter on every regular p>w is A-descendingly incomplete

whenever w<A<yu. -

icm
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See [2, p. 210] for this terminology. In [3, p. 91] it is proved that k is weaker than
—1L* (there is no inner model with an uncountable measurable cardinal), hence 4 is
weaker than 710% and V = L.

2.6. THEOREM. (Y ) Let ~ be an abstract equivalence relation such that (~, ~%)
has JEP. Then there is at most one logic L' = L(Q%,<, such that =, = ~. Further,
if any such L' exists, then L' is compact.

Proof. Assume both L' and L" = L(Qﬂ),,q are such that =, = =,, = ~.
Let L = L' u L"; using Theorem 2.1 we have =, = =, = =5, = ~. Now L has
the following properties: (i) for every type 7 the collection of sentences of L of
type T forms a set; (ii) L has the atomic sentences and is closed under conjunction,
negation, existentjal quantification, and relativization to boolean combinations of
atomic sentences, and (iii) L has JEP or, stated otherwise, the pair (=, —L>) has

JEP: indeed (~, ~*) has JEP by hypothesis, =, = ~, and 7= (=p* = ~*

by Proposition 1.6(i). Then we can apply the main theorem of [14] to the effect
that L is compact (here assumption § is apparently used, but see also [11]). By
a familiar finite open-cover argument (as in [5, 2.4]), from the compactness of L
and the fact that =; = =;, = =, one infers that L is equivalent to each of its
sublogics L' and L”. M

3. Criteria for the existence of representations. Amalgamation. The results of
Section 2 provide a number of criteria for an embedding relation to be representable
as L-embedding for ar most one logic L. Criteria for the existence of exactly one
such L will be given in this section by strengthening the compactness (or JEP)
conditions as follows:

3.1. DEFINITION. An embedding relation — on the class of all structures has
the Strong Amalgamation Propcrty, AP* (tesp., the Amalgamation Property, AP)
iff for every 7, 7, v, with ¥ Nt = 7 (vesp., with ¢’ = 7/ = 7) and structures
A, W, A’ of type 1, 7', 7" respectively, if A « A and A - A" then A' - D
and D « A’ for some D of type v’ U z'’. Compare with [15].

3.2. DERNITION. An equivalence relation ~ on the class of all structures
has the Robinson property iff for every U’ e Str(z’), A eStr(z"), if A p ' n”
~" p 7' A 1, then there is D e Str(r’ U 7'').such that D p v/ ~U and D} 7"/~ A",

Equivalence relations and logics with the Robinson property were extensively
studied by the author in [[3]-[19]. It is easy to see that when ~ = = then ~ has
the Robinson property iff L satisfies the Robinson consistency theorem. Referring
to examples (a)~(c) in 1.2, observe that 2 has AP*; to see that = has AP* use

Xp =10]
the Robinson consistency theorem for first-order logic, together with the identity
=*= P (in the light of 1.6(i), since L, has JEP [2, 3.1.4]); then argue as in

Theorem 3.5(i) below. More generally, for any logic L generated by a set of
quantifiers, we have that "y has AP* if = has the Robinson property (again by

2 — Fundamenta Mathematicae CXXIV/2
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Theorem 3.5()); the latter holds iff L satisfies compactness + interpolation [14],
[15], {111, 19, L.4], iff L provides a positive solution of the fourth problem in [7].

We now investigate the relationship between AP* and Robinson property.
Recall from 1.4 the definition of JEP and of the map *.

3.3. THEOREM. Let — be an embedding relation with AP let ~ = —* be the
equivalence relation generated by —. Then ~ has the Robinson property.

For the proof we prepare the following lemma, dealing with AP:

34. LemMA. If — has AP and ~ = —*, then (~, ) has JEP.

Proof of the lemma. Assume A~%B, so that the following holds for some
path of length n:

QIT il’ft,-l—...Tim,, =%B; AB,M,. .., M, eStr(r).

‘We now prove JEP arguing by induction on n=1,2,...:

Basis. Trivial, because % — B implies A - B « B by 1.1(1).

Induction Step. We can write W~M,_, — B by definition of ~ = —*;
by induction hypothesis there exists & e Str(z) sll,lch that AW - S « M,_, — B,
Now, in case - is +, then & jointly embeds U and B by transitivity, 1.1 (5’3; in
case — is —, then by AP there is D e Str(z) such that & - D « B and, again by
transitivity, we see that D jointly embeds 2% and B. B

Proof of Theorem 3.3. Let = = 7' n ¢, M, M’ be structures of type ©”
and 7" respectively, with % = ' pr~M"” p7=B. We have to find & of
type 7' Ut such that & } '~ and S } v/~ M", By Lemma 3.4 we have U —
~ D« B for some D € Str(t). Thus by 1.1(1), (4) we have D'« A — D B — M.
By AP (twice) there are %’ € Str(z’) and N’ €.Str(t”) such that M’ — N« D —
= N M. Again by AP* there is a structure S e Str(c’ U 7"’) such that 9t'—
— &« N, Graphically:

S

/

m' gt//
SN N
n’ D m
NSNS

By 1.1(3), (5) we see that M'— S p 7’ and M'> & b 7’75 hence, by definition of
~o= ¥ M~ S b1 and M/~G Mo B

3.5. THEOREM. Let ~ be an equivdlence relation having the Robinson property;
let > = ~* be the embedding relation generated by ~. Then
(i) = has AP™, and

(i) the pair (~, ) has JEP.

icm°
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Proof. (i) Let M « 9t - B, with (W) n t(B) = t(R). By definition of —
= ~* we have A } t(J)~N~B } t(N), if one argues as in the proof of 1.5. Let
9, and By be the diagram expansions of A and B respectively, where different
constant symbols are used in 7, and t5. Again, A, } t(M)~N~B | 1(N); by
the Robinson property of ~ there is 3 such that M } 74,~A, and W } 1~Bg.
By definition of — we have ¥ — 9% « B, hence — has APY.

(if) If A~ B, let A, and B be the diagram expansions of A and B respectively,
with 7, Ntz = (). By the Robinson property of ~ there is M such that
M 1~ and M | t~Bjy; thus by definition of — we have H— Dt } (W) B,
whence (~, —) has JEP as required. B

3.6. PROPOSITION, Let ~, ~y, ~, be equivalence relations with the Robinson
property. Then we have:

(i) ~** = ~;

(i) if ~{ # ~, then ~7 # ~%.

Proof. (i) By 1.5, ~** is finer than ~; on the other hand, if A~B then,
letting — = ~*, by Theorem 3.5(ii) there is M such that A — M « B, hence
A ~**%, which shows that ~ is finer than ~**; therefore ~ = ~**, as required.

(il) Without loss of generality assume U ~,B and not-A ~,B. Let —; = ~%
—+, = ~35, By Theorem 3.5(ii) there is 9 with A — M« B, If —»; = -, (ab-
surdum hypothesis), then 2 —,9M,« B holds, hence we have % ~,B by arguing
as in the proof of 1.5; this is a contradiction. B

Remark. In the light of 3.6(ii) one might ask whether different embedding
relations with AP* generate different equivalence relations: to see that this need
not be the case, consider o (1.2(b)) and the relation —* given by A %8 iff
(M) =1(B) and A is completely embeddable into B } ©(A), as in [2, 6.4]. Both
embedding relations have AP*, as a corollary of Robinson’s consistency theorem.
Further, both — and —% generate elémentary equivalence, = (argue as in 1.6

in the light of [2, 3.1.4 and 6.4.23]). But they are different.

We are thus led to say that two embedding relations —, and —, are equivalent
iff they generate the same equivalence relation. If AP holds, hence a fortiori if AP*
holds, then we have the following simple characterization of equivalence: )

3.7. PROPOSITION. Let —, and -+, both have AP. Then the following two
statements are equivalent:

(i) =, and —, are equivalent embedding relations;

(i) for any A, B e Str(r) with A -, B there is MM e Str(t) such that A —,
—, M, B, and, symmetrically, for any D, N € Str() with D =, N thereis S e Str(7)
such that ® -, G« N.

Proof. (i) = (ii) Assume —»} = =3 = ~; if % —, B then by definition of ~,
A~B; by Lemma 3.4 (~, —,) has JEP, hence A —,M,« B for some M. By
symmetry we also have the other half of the proof.
2k
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(i) = (i) Let ~; = =% and ~, = —3. If A~ B then there is D such that
A -, D,« B, since (~,, —) has JEP by Lemma 3.4. By assumption there are
MM and N such that A —, M, D —, N, B; this shows that W~ ,B, by de-
finition of ~,. Therefore ~ is finer than ~,. By symmetry, ~, is finer than ~,
hence -1 = —3. H

Remark. Thus two embedding relations - - +—> and —— with AP generate
the same equivalence relation iff each arrow of the former can be replaced by two
arrows of the latter, and vice versa, as follows:

//"\\ - .

R

One might ask if each equivalence class of embedding relations with AP* has one
canonical representative which is well-behaved with respect to the map *; let us
first agree to say that an embedding relation — is involutive if (=*)* = —., Then
we have:

3.8. PROPOSITION. Each equivalence class of embedding relations with AP*
has exactly one involutive element.

Proof. Let Z be any such class, and — an arbitrary element of Z. We shall
prove that —** is the unique involutive element of Z. To this purpose, let ~ = —*;
since — has AP then ~ has the Robinson property by Theorem 3.3; thus ~
= ~** by 3.6(); hence (~*)** = (~**¥)* = ~* which shows that —** is in-
volutive. Since ~ has the Robinson property, then ~* has AP by Theorem 3.5(i);
the embeddings ~* and — are equivalent since (~*)* = ~ = —* By definition
of Z we have that —** = ~* g Z, To see that ~* is the unique involutive embedding
in Z, recall that every embedding  in Z is equivalent to —, hence =% = ~;
therefore, if <> is involutive, then <> = %% = ~* = %% W

We now show that there is a natural correspondence between the family R of
equivalence relations with the Robinson property and the family A of involutive
embeddings with AP*. We remark here that the isomorphism and renaming con-
ditions for embeddings (1.1) and equivalence relations (1.3) could be considerably
weakened without affecting the validity of this correspondence.

3.9. THEOREM. The function * maps R one-one onto A and vice versa. Also,
~¥ =~ and % =~ for any ~ in R and - in A

Proof. By definition of A, —** = —, By Proposition 3.6(i), ~** = ~. For
any ~ in R, ~* has AP* by Theorem 3.5(i), and ~* is involutive, since ~ *%*
= (~*)* = ~*; thus * maps R into A. Furthermore, the function #: R — A
is one-one by 3.6(ii); the function * is onto A because for each — in A we have
— = —**¥ e, - is generated by —*, the latter being in R by Theorem 3.3. M

From Theorem 3.9 together with 2.4 and the Duality Theorem in [17] we
shall now obtain criteria for an embedding relation — to be representable as 7
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Recall [20, Theorem 7(1)], [17], that an abstract equivalence relation ~ is bounded
iff for every type t there is a set S,=Str(z) such that VU e Str(z) 3B e S, with
B~A. Also, [17], ~ is separable iff whenever 7(%) = 7(B) and not- A~ B, there
is a quantifier Q such that 9 #,, B and ~ is finer than = L)

3.10. THEOREM. For any embedding relation — the following are equivalent:

(i) there is exactly one compact logic with interpolation L' = L( Q"< Such
that — = —;

I

(ii) there is exactly one logic L' = L(Q%),<y such that o= in addition,
L' is compact and satisfies interpolation;

(iii) — is involutive with AP*, and —* is bounded, separable and finer than
elementary equivalence =.

Proof. (i) = (iii) The basic properties of logic L’ ensure that =, satisfies the
conditions of Definition 1.3; =, has the Robinson property as an immediate
corollary of compactness and interpolation in L’. By Proposition 1.6, o= (=1)%,

whence by Theorem 3.9 - = - has AP™ and is involutive. The identity =}F**

= >**% = % now yields —* = =,,. One concludes that —* is bounded,
separable and finer than = recalling that L' is generated by a set of quantifiers,
and that L,, is a sublogic of L.

(iii) = (i) Let ~ = —* Then ~ satisfies the conditions of Definition 1.3,
and ~ has the Robinson property by Theorem 3.3. This, together with our hypo-
theses about ~ are sufficient to apply the Duality Theorem [17, 5.5] to the effect
that ~ = =,, for exactly one (up to equivalence) logic L' = L(Q%,<,; further,
L' is compact and obeys interpolation. We also have — = (—¥* = (=,)* = o

Assume L' = L( Q”)ﬂ< 5 is a compact logic with interpolation such that o=

Then (=y)* = — = —, hence (=,)** = -* = =;,. Since =, has the Ro-

P
binson property, then =p.= (=p)** by Theorem 3.9, hence =, = =,,.
Another application of [17, 5.5] yields that L is equivalent to L’.

(i) = (i) Trivial.

(iii) = (ii) Use Theorem 2.3 and the implication (iif) = (i) established above. M

Remark. The Duality Theorem [17, 5.5] can be applied to prove 3.10 without
mentioning the special sct-theoretical hypothesis used in the quantifier-free frame-
work of [17], along the lines of [I8, 1.1]: indeed for any L = L(Q%),«, the identity
“Robinson consistency = compactness + interpolation™ can be proved without any
sct-theoretical hypothesis (see, c.g., [9, 1.4] for a short proof due to Lindstrém).
Once this is accomplished, the proof of the Duality Theorem for logics generated
by quantifiers can be completed without mentioning any special set-theoretical
axioms as well, exactly as the anthor did in [17] (see [17, 6.9], in particular).

4. Restricting to countable structures. Let C be a nonempty class of types closed
under union, intersection, renaming, reduct, (i.e., v’ St e C implies ¢’ € C). For
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%> a fixed but arbitrary cardinal, consider the class of structures X = UC Str, (1),
TE

where Str,(c) is the class of all structures of type © and of cardinality <x.‘ Tl}en
one can define the notion of an abstract embedding relation — on X, by relativizing
to X Definition 1.1. One can similarly define the notion of an abstract equivalence
relation ~ on X. Any equivalence relation ~ on X generates an embedding re-
lation — = ~* on X by stipulating that (for all %, B e X), A - B iff t(W=(B)
and there exists some expansion B* of B | t(2) having the following property:
Ay P 1~B* b1, for each 17, with 7 € C. Any embedding relation — on X gener-
ates an equivalence relation ~ = —* on X by stipulating that two structures
M, Ne X are ~-equivalent iff they have the same type 7 and are connccted by
some finite path of arrows,

M— B, — By — . B, =N B, eStr(r) n X,
1 2 3 n

just as in 1.4.

An embedding relation — on X has AP* on X iff for every 2, U, A e X of
typs 1,7, 7" respectively, if ' 07’ =71 and W « A~ A" then there‘ is B
eX A Str(r’ U 7'’) such that A'— B « A", One similarly defines the notion of
an equivalence relation ~ on X having the Robinson property on X, by relativizing
Definition. 3.2 to X (compare with [13]). In this section K will denote the class of
all countable structures of finite type: we also let =|g and =[x respectively denote
the restriction to K of elementary equivalence = and isomorphism £. Refer to

Examples (a), (b) in 1.2 for the definition of 2 and ex—;.

4.1. PROPOSITION. Both =|g and =|g have the Robinson property on K. Also,
both — and . upon restriction to K, have AP* on K.
exXp @
Proof. Clearly = has the Robinson property, and - has AP*; one similarly
exp

notes that these properties are preserved upon restriction to K, in the present case.
The fact that =] has the Robinson property on K is a corollary of the Robinson
" consistency theorem for L, together with the generalized downward Lowenheim-
Skolem theorem, see [2]. One can similarly prove that o restricted to K has AP™

on K. &
The following theorems show that AP ¥ is quite rare on K:

4.2. THEOREM. Let — be an embedding relation on K, with AP* on K, and —
# — on K. Assume that the equivalence relation ~ on K generated by — is finer
(24

than =|g. Then ~ = =|g.
Proof Since -+ # - on K, then for at least two nonisomorphic structures
€.

Xp
A, Be X we have A - B; hence ~ % = on K. On the other hand, the relation ~
has the Robinson property on K, as can be seen by relativizing to K the argument
of Theorem 3.3. Therefore, by the main theorem in [13], ~ = =|,. &
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4.3. THEOREM. Let ~ be an abstract equivalence relation on K. Assume that
~ Is finer than =|g and that the embedding relation — on K generated by ~ has
AP* and is different from ~ on K. Then ~ =

exp

=|g.

Proof. Let & be the equivalence relation on X generated by —. By relativizing
to K the argument of 1.5 one has that ~ is finer than ~, hence finer than =|;.
By hypothesis and by (relativizing to K) Theorem 3.3 we have that ~ has the
Robinson’ property on K; finally, by Theorem 4.2, ~ = =[g. Therefore ~
= =|p. B

The above two theorems have a counterpart in abstract model theory:

4.4. THEOREM. Let L = L(Q%,<, be a compact logic. Then the Sollowing are
equivalent:

() =y, = = on the class of countable structures;

(i) 2 restricted to K has APt on K.

Proof. For the direction (i) = (ii) see Proposition 4.1. To prove the other
direction it suffices to prove that % =, B iff % = B for all ¥, B e K, since by
hypothesis each sentence of L only has a finite number of symbols. For the same
reason, letting ~ be the restriction of =, to X, one sees that ~ gencrates the
restriction of 2 to K. By Theorem 4.3 we have that ~ = =|, unless ~ =

=g
Assume this latter alternative actually holds (absurdum hypothesis). Let T bz
a first-order complete theory of finite type = with one sort s; assume T ,-categorical
and not w-categorical. By the theorem of Baldwin and Lachlan [2, 7.1.27], T has

exactly w-many nonisomorphic countable models, say
Wo, Wy, oy Wy oo

By the absurdum hypothesis for each n<w the complete theory in L of o, Th, 21,
is w-categorical. Let S, be the class of cardinals A such that Th, 2, has a model
of cardinality 4. Using Morley’s theorem [2, 7.1.14] we have S; N S; = {w} when-
ever i 5 j, since Ly, is a sublogic of L. Let ¢: 7 — ¢(r) be a renaming such that {s}
= 1N g(7), and let AY be the renamed structure corresponding to 2, as in the
introductory discussion of Section 1. Clearly Th; %% has a model of cardinality /
iff Ae Sy, Let T” be the theory given by 77 = Th, 23 U Th, 2, : then 7" has only
countable models, since Sy NSy = {w}. We have thus exhibited a set T’ of
sentences which is a counterexample to the assumed compactness of L, a contra-
diction. H

n<w, W, e K, A; £ A, for all i /.
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Countable subsets of Suslinian continua
by

Piotr Minc (Auburn, Ala.)

Abstract. An example of a Suslinian continuum Y with no countable set intersecting all non-
degenerate subcontinua of Y is given.

All spaces are considered to be metric. A continuum is a connected and com-
pact space. A continuum is Suslinian if it does not contain uncountably many
mutually exclusive nondegenerate subcontinua.

In 1971 A. Lelek posed the following question: If ¥ is a Suslinian continuum,
does there exist a countable set 4 in Y such that 4 intersects every nondegenerate
subcontinuum of Y? ([2], Problem 10, P 726). A partial positive answer was given
by A. Lelek in the case where Y is hereditarily unicoherent (3], Th. 2.2, p. 133):
The aim of this note is to describe an example which gives a negative answer to
this question. :

The author would like to express his gratitude to Professor W. Kuperber;
and Professor E. Tymchatyn for valuable remarks during the preparation of
this note.

CONSTRUCTION OF THE EXAMPLE. Denote by I the unmit interval [0, 1]. Let
h: I'— Ibe a mapping defined by the following formula:

-2,

For an acbitrary finite collection 4 of subintervals of J, we will say that 4 has
the property () provided that for every Jy,J, € 4 either J; = J, or Jycint/, or
Jyeintd, or Sy = @

For any collection 4 with the property (x) let us adopt the following notation.
L(4) is the sct of all left ends of intervals from 4, and R{4) is the set of all right
ends of intervals from A. For a point p € L(4) U R(A) let d(p) denote the length
of the interval from A4 having p as an endpoint.

Set r(A) = tmin{la~b|: a # b, a, be L(4) U R(4)}.

Forn = 1,2, ... let us definc a mapping g,[4}: I — I by the following formula:

for 0<%,
for ¥<tgt.
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