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On dendroids and their end-points and
ramification points in the classical sense

by

Jacek Nikiel (Wroctaw)

Abstract. It is shown that a dendroid has uncountably many end-points (in the classical
sense) if and only if it contains 2 homeomorphic copy of either the Cantor fan or the Cantor comb
or the Gehman dendrite. Besides, it is shown that a set of all ramification points of a plane den-
droid X which lie on some subarc of X is a Gse-set.

1. Introduction. In this paper we consider dendroids with uncountably many
end-points. We show that such dendroids contain subcontinua of a special typs.
Moreover, we start an investigation of a Borel class of sets of all ramification points
in plane dendroids. )

This paper is a modification of J. Nikiel “On planable dendroids and their
end-points and ramification points in the classical sense” (which was sent to
Fundamenta Mathematicae in 1981) and it follows papers [7] and [8]. The next
paper dealing with related topics is [9].

The referee of the earlier version of this paper sketched proofs of some more
-general results than those obtained there (first of all Theorem 2 of the present
paper), stated Theorems 3 and 4, and re-proved some results of [7] and [8] which
fead to Theorem 4. In the paper “On planable dendroids and their end-points and
ramification points in the classical sense” it was shown that a plane dendroid
fulfilling the assumptions of Theorem 2 (resp. Theorem 3) of the present paper
contains. a semi-smooth fan the set of all end-points of which is homeomorphic
to the Cantor set (resp. a semi-smooth comb of a special type). The results of
Theorems 2 and 3 were proved under the assumption that the dendroid in question
is smooth and planable. The referee’s methods used in the proof of Theorem 2 are
quite different from those explored in the earlier version of the present paper. The
importance of the referee’s contribution to the final version of the paper made
‘the author suggest co-authorship to the referee, but he (or she) preferred to remain
anonymous.

Ackndwledgments. The author gratefully acknowledges the referee’s suggestions
«escribed above.
1 — Fundamenta Mathematicae CXXIV/2
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2. Preliminaries. A metrizable continuum is said to be a dendroid if it is arcwise
connected and hereditarily unicoherent. Therefore each subcontinuum of a den-
droid is again a dendroid.

If X is a dendroid and x, y € X, then there is a unique arc I contained in X the
end-points of which are x and y. We denote this arc by [x, »] (if confusion is pos-
sible we write [x, y]y instead of [x, y]). The only exception from the above rule
is [0, 1] denoting the set of real numbers which are not less than 0 and not greater
than 1. We also use the mnotation (x,y]=[y,x)= [x,y]\N{x} and (x,)
=[x, yIN{x, »}. If x is a point of a dendroid X, then we define its order (in the
classical sense), r(X, x), as a cardinality of the set of all arc-components of X\{x}
(for equivalent definitions see [1], p. 229 and [6], p. 301). If »(X, x) = 1 (resp.
(X, x)>3), then x is said to be an end-point (resp. a ramification point) of X. The
set-of all end-points (resp. ramification points) of X is denoted by E(X) (resp.
R(X)). We say that a dendroid X is a fan with the top p if p € X and R(X) = {p).
X is said to be a comb provided R(X)<=I for some arc I contained in X, If X is
a comb, then Jy denotes the minimal arc of X (in the sense of inclusion) which
contains R(X). We say that a fan (resp. comb) X is uncountable if r(X, p)>N,
(resp. if R(X) is uncountable).

There is exactly one dendrite G such that E(G) is homeomorphic to the Cantor
set and r(G, x)<3 for each x € G. We call G the Gehman dendrite (see m and [8D)-

Let C denote the Cantor set constructed in [0, 1] in the usual way. Now, we
construct two dendroids in the plane E2. Put

= {{x, ) e E*: x+(3—c)y = % for some ce C}
and

Ce = [0,1]x{0} u Cx [0, 1].

F¢ is called the Cantor fun and C. — the Cantor comb.
All the required definitions and facts on smooth dendroids can be found in [31.
In this paper d always denotes a metric on a given space (and its subspaces).
This metric is fixed during the whole reasoning. If X is a metric space, Y isa subset
of X, ¢ is a positive real number and d is a metric on X, then we denote

B(Y,e) = {xeX: dx,Y)<e}, S(Y¥,e)={xeX: d(x,7)= &}
and
B(Y,6) = B(Y,5) U S(Y,5).

If 4 is a set, then |4] denotes its cardinality.

3. Some lemmas. A dendroid X is said to be a Gehman dendroid if there is
a one-to-one and continuous map from G\E(G) onto some dense subset of X.
Lemma 1 ([7], Theorem 1). A dendroid X has uncountably many end-points if
and only if either (i) there is an arc I (maybe degenerate) in X such that the set XN\I
has uncountably many arc-components, or (i) X contains some Gehman dendroid,
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Lemma 2 ([8], Theorem 8). Each Gehman dendroid contains topologzcally the
Gehman dendrite.

LemMa 3. Let X, and X, be smooth fans such that E(X;) is a compact set. Then
X, is homeomorphic to X, if and only if E(X,) is homeomorphic to E(X,).

Proof. Let us suppose that E(X,) is compact and f: E(X;) - E(X,) is
a homeomorphism. For i = 1,2 let p; denote the top of X, and if xe X\{p:},
then let g;(x) be the only point of E(X) such that x € [p;, g:(x)]. Since X; is smooth
and E(X)) is compact, we see that g;: X\{p;} - E(X}) is continuous for i = 1,2.
Let d, be a radially convex metric on X; with respect to the point p; (such a metric
does exist by [3], Theorem 10, p. 310). If x € X;\{p,}, then let F(x) be the unique
point of (p,.f(gy(x))] such that

df(a:),22)
d1(91(x) s F1)

and put F(p,) = p,. It is clear that the map F is well-defined, one-to-one and 011.to;
moreover, Flgu,) = f. We show that F is continuous, and so Fis a homeomorphism
from X; onto X,.

Since the maps f, g, and g, are continuous and gz(F(x)) fg1()) for
xe X \{p;}, we see that Fly,\ g, is continuous. It only remains to show that Fis
continuous at the point p,. Let {x,» be such a sequence in X; that limx, = p;.
Therefore limd, (x,, ps) = 0 and since d,(p;, E(X;))>0 (by the compactness of
E(X,)) we see that limd,(F(x,), p,) = 0, ie., imF(x,) = p,.

LemMma 4. Let X be a dendroid. Then X is homeomorphic to the Cantor comb
if and only if :
(i) X is a comb,
(i) r(X,x)<3 for each xe X,
(iiiy E(X) is homeomorphic to the Cantor set, and
(v) If Iy = [p, q, then X is smooth with respect to p and X is smooth with
respect to q.

dz(F<x)>P2) = dy(x, p;)

Proof. Let us consider the mapping i: X\Iy — Iy, where i(x) is the first point
of [p, x] meeting Iy. By (iv) 7 is continuous. By (ii) igx): E(X) ~ Iy is one-to-one,
and so (by (iii)) /(E(X)) = R(X) v {p, ¢} is homeomorphic to the Cantor set.
Let k: Iy — [0,1] be any homeomorphism such that k(R(X) v {p, q}? = C.
By (iv) and [3], Corollary 10, p. 309 X/Iy is a smooth dendroid, and so by (i) X/1
is a fan. By (iii) and Lemma 3 it is homeomorphic to the Cantor fan. Let 4: X F¢
be ac omposition of the quotient map X — X/Jy and a homeomorphism X/I — Fe,
B(x) = (hy(x), hy(%)) € Fe=E? for x € X. The mapping H: X — Cc,

_ fE), 0)
HE) = {(k(i(x)), B

is easily seen to be a homeomorphism.
1.

for xe I,
for xe X\Iy,
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LevMA 5. Let I,.J be arcs with their natural orderings “<,” and “< 7" Let K be
a closed subset of I and let f: K — J be any function either increasing or decreasing.
Then f(K) is a Gy-set in J.
Proof. Let us assume that f is increasing (the case where f decreases is similar).
Let a, (resp. by) be the least (resp. the greatest) point of XK. We may assume that a,
and b, are end-points of f and that f(a,) and f(b,) are end-points of J. Since X is
-]

closed in I, we see that K = I\ (a,
n=1

n=1,2,.. Put

Dy ={ael: sup{f(x): x<,a}<,f(aj}, D, ={ael: fla)y<, inf{f(x): a<px}}

and D = {aelI: f is not continuous at a}. Then by [10], Theorem 4.29, p. 95 we
have D = D; U D,, and so by [10], Theorem 4.30, p. 96 D, D, and D, are count-
able sets. For each ae Dy (resp. ae D,) put e, = sup{f(x): x<,a} (resp. f,
= inf{f(x): a<;x}). Since the countable union of F,-sets is an F,-set, we see
that the set

, byt for some points «,,b,e1, a,<;b,,

=n91(f (@), f(B)s U‘ELIJ) lea, f(@); U LIJ)(J‘ (@), fals

(bere (x, x); = @ for xeJ)is an F,-set in J. It is not difficult to see that f(K)
= J\L.

Lemma 6. If X is a dendroid, then for any points a, 5é‘”X, cela, bl, and 21711;
open set U containing ¢ there is a nelghbourhood Vof b such that [a,x] U # @
for each xeclV.

Proof. Suppose that for each n=1,2,... there is an x,e B(b, 1/n) such
that [¢, x,] 0 U= @&. Put ¥ = Ls[a, x,]; so by [4], Theorem 2-101, p. 101 Y is
a subcontinuum of X such that a,be ¥ and ¢ ¢ Y. This means that X is not he-
reditarily unicoherent.

Let Z be a dendroid. For any positive number ¢ and any arc I contained in Z
define a number s(J, &) as the greatest integer »n such that there is a monotone
sequence X, Xy, ..., X, of points of I satlsfymo d(xL px)>s for i=1,..,n
Obviously s(Z, &) is finite.

Lemma 7. Let p and q be two points of a dendraul Z and let t be a point of [p, q].
Then for every positive number ¢ there are neighbourhoods U of q and V of t such
thdat for each x eclU

’s([x,p], PERIY
Moreover, if ze [x,jz] m_cIiV and [z, pI\B([t, pl, 4e) # & then
s([x, pl, &> s([p, ql, 8

Proof. Put n = 5{[p, ¢], €) and let x, x,, ..., X, be a monotone sequence of
points of [p, ¢] such that d(x;_,, x)>¢ for i =1,...,n Let k be an integer such
that xg, ..., Xz €[p, ] and x4y, .., X, € [£,q]. Using Lemma 6, we construct

icm°

On dendroids and iheir end-points and ramification points 103

inductively a sequence Vg, ..., ", V, Vi1, ..., Vi, U of neighbourhoods of points

Xgs 105 Xs By Xii 10 e Xy 4, -T€SPeCtively, such that . -

(2) diamV;<e for i =0,...,n,

b) d(V;-,V>e fori=1,..,n,
© y.plnVio, #@fori=1,.,
(d) [z,pl "V, # @ for zedV,

(& [y,plnV# B for yedV,,y,
@) [paplo ¥y @ for j=k+1, ...,
(® [x,p1 NV, # @ for xecll.

k-and yeclV;,

n—1 and yeclV;,,,

Each V; is constructed as a subset of B(x;, g;), where
e; = fmin{e, e—d(x;_ 1, X)), e—d(x;, X;51)} .

Thus (a) and (b) hold. Put ¥, = B(x,, &). By Lemma 6 there is a neighbourhood V7]
of x; such that for each yeclV; the intersection [y, p]n ¥, is nonempty. Put
V,= Vi nB(x,,¢). In asimilar way V5, ..., Vi, Vs Vit 1 .., Vyand U are constructed.
By (©)-(g), if xeclU, then [x,pln ¥V # @ and[x,plnV;# D fori=1,...,n

Now, take any x e cl U. Let y; be the last point in the ordered arc[x, p] meeting
cl Vi for i =0,...,n. Note that the sequence yg, ..., ¥, is monqtoue, and so by
(b) we have s([}~ p] &) =n. ]

Take any z e [x,p] n clV and suppose that there 1s a pomt

€[z, pPINB([1, P, 4) -

If v € [3%, p], then in order to prove that s([x, p], £) >n it suffices to arrange points
D, ¥g, -5V iNto a monotone sequence. So assume that v e [z, 4] It suffices to
show that d(v,)%.+;)>e. Observe that by (a) Vi.,<B([t,p],3¢) (because if
Ve NB([t, p1, 38) # @ then d(xy, x;41)>2¢; so s([p, q], &>n— a contradiction).
Therefore d(v, yi+1)>e.

For a point p of a dendroid X and for any positive number & let p(s) be the
set of all points x & X such that for every neighbourhood U of x there is a ye U
with s({y, p], &)>s([x, pl, €).

LemMMA 8. If X is a dendroid, pe X, and € is a positive number, then p(e) is
a closed and nowhere dense subset of X.

Proof. By Lemma 7, p(e) is closed in X. Suppose that intp(e) # &. We will
construct inductively a decreasing sequence ¥, ¥y, ... of nonvoid open subsets
of intp(e) such that s([y, p], e)=n for any y e clV . Obviously, such a construction

leads to a contradiction — because for yeﬂ cl¥V, we have s([y, p],a)>n for

n=0
every n.
Put ¥, = intp(e). Suppose that ¥V, ..., V,-, are constructed. Take a point
x€V,_y; so s([x,pl, &y =zn—1. Since x ep(s) there is a point y € ¥, such that
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s([y, pl, ©)=n (because ¥,.; is an open set). By Lemma 7 there is a neighbour-
hood ¥ of y such that s([z, pl, &)>n for each zeclV. Now, put ¥V, = V' n'V,_

LemMA 9. If X is a dendroid, p € X, and Y is an arc-component of X~\{p}, then
Y is an F,-subset of X.

Proof. Let ¢ be any point of Y. For each integer k such that d(p, g)>1/k
let ¥; be the component of X\B(p, 1/k) which contains g. Hence Y; is closed
in X and connected, i.e., ¥; is a subdendroid of X. Therefore each ¥ is contained
in Y. It remains to show that Y is contained in () ¥%. If x € ¥, then d(p, [g, x])
>0; so let m be such that 1/m<d(p, [q, x]). Then x€ g, x]= ¥,,.

4, Main facts,

THEOREM 1. Let X be a planable dendroid and let IcX be an arc. Then the set
RX)YN I is a Gyp-set.

Proof. We consider X as a subset of the plane E2 All balls and their
boundaries are taken in EZ, “cl” and “bd” denote, respectively, the closure and
the boundary of a set in E2.

Denote I = [ay, a,]. Let I, and I, be arcs in E? (they are not. subsets of X?)
such that I; n I, = &, E(I) = {a;,a;}, [;nI = {a} and I, n S(Z, 1) = {a}} for
i = 1,2. For each positive integer n and i = 1, 2 let 4} € I; be such that [a;, af];, n
A S(I, 1/n) = {df}. By [11], Chapter VI, (1.6), p. 104 the set B(Z, 1/n)\([a], a;]r, v
U T [a,, d3]y,) has exactly two components D} and Dj such that

bdD’L‘ = [d;! ul]h v IU [dz, a3112.UJ?: Whel'e J'I':J'ZICS(I’ 1/”)

are two distinct arcs with end-points 4} and 4}, for each positive integer » and
i=1,2. Put

K =g, A, vl vd,al, for i=1,2;
1 2

so both J§ and J3 are arcs with end-points @, and a,. Below we consider the arcs T
and Ki'; i=1,2; n=1,2,..; with their natural orderings “<,”, “er”', re-
spectively, from a; to a,.

For each positive integer n and i = 1, 2 let X7 be the component of X n cl D}
containing I; so Xj' is a dendroid. For each point x € R(X7) n I let P(x, i, n) be
the union of all arc-components of X;y\{x} which are disjoint with I. By [11],
Chapter VI, (1.7), p. 105 and the Jordan curve theorem we have the following:

if x,*eRXNNI x#x', yeP(x,i,m)n K}, yeP(,i,n)n K, then
x<;x' if and only if y<g, )"

For each ye X7 n K7 let f{'(y) be the unique point of R(X}) A I such that
[, )] o I = {f{{»)}. Then for each positive integer n and i = 1,2 the map
fi X7 n K — I is increasing. Moreover, X7 n K7 is compact; so by Lemma 5
f,"(X"' n K}) is a Gj-set. Note that

FXT KD =RED) 1) v {ag, a,}.
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By the Jordan curve theorem it is clear that
RX) (a0 = U{RXT KD i=1,25 n=1,2, . Ny, a5} .

‘Therefore R(X) nI is a countable union of Gj-sets.

Remarks. 1. It can easily be seen from the above proof that if d(E(X)\E(I), I)
>0 then R(X) nTis a Gy-set.

"2. In [9] we show that the set of all ramification points of a plane dendroid
can be covered by countably many arcs, and so it is a Gj,-set.

COROLLARY 1. If X is a planable comb, then R(X) is a Gs,-set.

THEOREM 2. Let X be & dendroid. If for some point p e X we have r(X, p)>¥Ng,
then X contdins a fan Y homeomorphic to the Cantor fan. The top of Y is p.

Proof. Let H denote the union of all open sets contained in X{p} meeting
a countable number of arc-components of X\{p}. Since X is separable metric,
H meets only a countable number of arc-components of X\{p}. Put Z = X\H.
Observe that for every z € Z we have [p, z]=Z (by Lemma 6). Hence Z is a den-
droid such that r(Z, p)>¥,. Moreover, each arc-component of Z\{p} is an F,-sub-
set of Z (by Lemma 9) which is of the first category in Z.

For n=1,2,... consider the set F, consisting of all functions /' mapping
{1,2,...,n} into {0,1}. For feF,, n=2,3,.. let f'eF,_, denote f restricted
to the set {1,2,...,n—1}. .

For each n = 1,2, ... and each fe F, we will construct a nonvoid open set
VicdV,cZ {p} such that

() diamV,<1/n,

@) clVynpl/n) =9

(i) cl¥V,c=V, (f n=2),

(iv) if f,geF,, f#g, xedV,; and yeclV, then [x,y] n B(p,1/n) # O.

Suppose that for every k<n and for every fe Fy a set ¥ is constructed. Using
Lemma 8 and the fact that arc-components of Z\{p} are of the first category in Z,

o
one can choose for every fe F, a point y, e (Vﬂ\kU p(1/k)) such that pe (y,,¥,)
=1

for f,geF,, f+ g. Since F, is finite, there is a positive integer m such that
m>4n and

B([J"j'yp],‘t/m) mB([y,,,p],4/m)CB(p,l/n) fOI' fngFn,f# g.
Since y, ¢ p(1/n) U p(1/m), there is a neighbourhood Uy of y, such that
s([z, pl, 1/m) = s({y;, 1, 1/m)

for each zeclU,. By Lemma 7 there is a neighbourhood ¥;< Uy of y, such that
[z, pl=B([y,, p, 4/m) for each ze clV,. It is clear that the conditions (i)~(iv) are
fulfilled.

dU,cVpnB(y,, 1/mNp(ljn) and
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-}

The set Cy = [} U ¥ is homeomorphic to the Cantor set. Moreover, p ¢ C,,

o . n=1 feFp . f
Con Up(i/ny =@ (by (ii)) and any two different points of C, are contained in
n=1 . . . o

two different arc-components of Z\{p} (by (iv)).
“Put' Y =1 [e,pl For a point ye Y\{p} let e(3) dengte the ‘unique point

ceCo

of C, such that y e [e(y), p]. We will show that, for every sequence {3,> of points
of YN\{p}, if y = limy,, then ye Y and [y, p] = Ls[y,, pl.

Let {y,y be fixed, y = limy,, y # p. Consider the sequence (e(},)}. Since
C, is compact, there is a subsequence {e(y,)) converging to some point ceC,.
Suppose that y ¢ [c, p]. Take an integer m such that 4/m <d(y, [e, p]). By Lemma 7
we have s([e( Yu)s P, 1/m)>s({c, pl, 1/m) for sufficiently large k, and this contra-
dicts the fact that ¢ ¢ p(1/m). Thus y e [c, plc Y. ‘ ‘

Now, suppose that [y, p] # Ls[y,, p]. Then there is an integer & such that
[y, PINB([y, p1, 4/k) # @ for infinitely many n’s. By Lemma 7 it follows: that
c e p(l/k), which is impossible for ¢ e Cj. : ' ‘

Thus Y is a smooth fan and by Lemma 3 we see that:it is homeomorphic to
the Cantor fan. ' : o

COROLLARY 2. Eech uncountable fan contains topologically the Cantor fun.

THEOREM 3. Let X 'be a dendroid, If for some arc I contained in X we have
IR(X) N 11> and r(X, x) <N, for each x € R(X) N I, then X contains a comb Y
homeomorphic to the Cantor comb. Moreover, R(Y)cI.

Proof. Denote the end-points of I by p and ¢. Put Z = X/Tand let i: X —» Z
denote the quotient map. Put p = h(I)eZ. By [2], Corollary 2, p. 219, Z is
a dendroid. Moreover, r(Z, p)>¥,; so, by Theorem 2, Z contains a fan Z, homeo-
morphic to the Cantor fan and such that R(Z,) = {p}. Put ¥, = h™YZy); so

R(YD<I and |R(Y)|>Ko."

Furthermore, E(¥)=C, n {p, g}, where C; = h™Y(E(Z,)) is homeomeorphic to
the Cantor set. - )

For each x e Y;\[ let i(x} be the first point of [x, p] which meets I and let
J(x) be a point of C; such that-x e (i(x), j(x)]. Let D be the set of all points of (o
such that if ¢ & D then for some x € (i(c), ] the function i is not continucus at x.
We show that :

(*)  C\D contains an uncountable G,-subset of C,.

First we prove that if ¢ e D then

(i(0), c]= ,.Ql (p(/n v q(ifn).

Indeed, suppose that for some- x & (i(c), c] there is a sequence {x,» of points of
Y \I such that limx, = x and limi(x,) = z % i(x). Using the map A: ¥; —» Z,,
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one can see that limj(x,) = j(x) = ¢ and that ze N{i(x)}. We may assume that
ze[p,i(x)): Then for each ye(i(c), c] there is a sequence (y,> of points of
(i(x,),j(x)] with y = limy, (to see this again use the map h). Moreover, there
is an integer m such that [y,, g\B([z, q], 4/m) % &. By Lemma 7 yeq(l/m).
By Lemma 8 the set L{) {i(c), ¢] is 2 union of countably many nowhere dense

CE

subsets of ¥;\J. This proves (), . v .
By (%) and [5], Corollary (Theorem of Alexandrov and Hausdorff), p. 427
there is a subset C, of C;\\D which is homeomorphic to the Cantor set. Put Y,

=TIu U [i(¢), c]; so Y is a dendroid. Moreover, ily,\ ;: Y,\I - I'is continuous.
ceCy

Therefore Y, is smooth with respect to p and q.
Let us use the same notation for F, and ' as in the proof of Theorem 2.
For each n and each fe F, one can easily construct a closed-open nonvoid.
set V,=C, such that

diamV,<l/n, V,c Vi

V) ni(Vy) =& for

(for n>=2),

figeF, f+#g.

It suffices to notice that R(Y,) =i (C3) is an uncountable subset of I because
r(¥a, x)<r(X, x)<Ny for each xe R(Y,).
o0

Put C3 = () U V,; so Cy is homeomorphic to the Cantor set and fleg: C3=T

n=1 feFy
is one-to-one. Let [py, ¢,] be the minimal subarc of I (in the sense of inclusion)
which contains i(Cj). It is easy to see that ¥ = [P gl U [e,i (¢)]is a dendroid
ceCy

which fulfils the assumptions of Lemma 4. Therefore ¥ is homeomorphic to the
Cantor comb and R(Y) L {py, q,} = i(C3)<1T.

Remark. Theorem 3 remains true without the assumption that r (X, )<,
for xe R(X) n 1. In the proof of this more general result one cannot use Theo-
rem 2. The proof requires the use of Lemmas 7 and 8 and is somewhat similar to
the proof of Theorem 2 (and to part of the proof of Theorem 3).

COROLLARY 3. Edach uncountable comb contains topologically the Cantor comb.
By Lemmas 1,2 and Theorems 2,3 we obtain the following
TueoreM 4. Let X be a dendroid. Then X has uncountably many end-points if

and only if' X contains topologically either the Cantor fan or the Cantor comb or the
Gehman dendrite.
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Embeddings, amalgamation and eleméntary equivalence:
the representation of compact logics

by

Daniele Mundici (Florence)

Abstract. Any logic L generates the L-embedding relation 7 just as first-order logic Lye

generates the elementary embeddability relation. By abstracting from L, given a transitive re-
lation ~ between structures we may ask whether there is a (perhaps unique) logic L such that —
=2 ‘We prove that if L is compact and — = o then L is uniquely determined by — : thus in
particular Ly is uniquely determined by the elementary embeddability relation. We give necessary
and sufficient conditions for the existence and uniqueness of a logic L such that — = e in

case ~ has a strong form of amalgamation property, called AP+. Upon restriction to countable
structures of finite type there are exactly two nontrivial embedding relations with AP+,

0. Introduction. Given a logic L, say in the sense of [12], one defines the
L-elementary embedding relation e just as for first-order logic L,, one defines

the elementary embeddability relation (1.2(b), (c)). By abstracting from L, we may
consider an arbitrary transitive relation — between structures which is preserved
under isomorphism, reduct and renaming (1.1). Any such relation — generates
an-equivalence relation ~ = —* between structures, by saying that U~B iff A
and B are connected by a finite path of arrows between structures of the same
type (1.4). Conversely, any equivalence relation ~ as defined in (1.3) generates
an embedding relation — = ~*, by saying that & — B iff the type 7(A) of A is
contained in ©(B) and some expansion of B | t(A) is ~- equivalent to the diagram
expansion 2, of A (1.4).

Given an abstract embedding relation — we consider the problem of existence
and unigueness of a logic L such that = In Section 2 we give criteria for the

unigqueness of L: Theorem 2.3 states that if 7= and L is compact, then L is

uniquely determined by —»: thus in particular L,, is uniquely determined by its
own embeddability relation Z; the same holds for the logic with thé cofinality w
quantifier (2.4). Theorem 2.6 establishes the following: if ~ is an abstract equiv-
alence relation, then ~ = =, for at most one logic L, provided the pair (~, ~*)
has JEP: the latter means that whenever A~B there is 9 with U — 9 « B,
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