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The number of zeros of polynomials in valuation rings of
complete discretely valued fields

by

A. Schinzel (Warszawa)

To honour the hundredth
birthday of Waclaw Sierpifiski

Abstract. Let X be a field complete with respect to a discrete valuation v and Tet I be the
valuation ring, P the valuation ideal, R the residue field 1P,

In this paper we consider the number of zeros of a polynomial '€ I[x] in I and express it in
terms of the number of solutions of suitable systems of equations in several variables in R provided
charR>deg/ or charR = 0. The cquations are uniform with respect to K and v and thus if
FeZlx,1] the result implies that for p large enough the number of solutions of F(x,p)=0in
p-adic integers equals the number of solutions of F(x, ) = 0 in formal power series in ¢ over the
finite field of p elements.

§ 1. Introduction. Let K be a field complete with respect to a discrete valuation
v and let I be the valuation ring, P the valuation ideal, R the residue field I/P and p
an element of P with v(p) = 1.

It is an easy extension of a result of Nagell ([2], p. 349, see also [3], Theorem 53)
that the number of zeros of a polynomial fe I [x] with the discriminant discf s 0
equals the number of solutions of the congruence

JSix) = 0(mod P21y,
where & = p(discf).

In this paper under the assumption charR>degf or charR = 0 we express
the number of zeros of fin Iin terms of the number of solutions of suitable systems
of equations in several variables in R, In order to formulate the result we set, for
every polynomial 4 & K[yy, ..., 3],

m 1

d= 3 a, I 55 the vectors [o,y, ..., a,] distinct,
n=l A=1
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v(4) := minv(a,),
nsm
P4 i A#0,
H A= {o ifA=0,

and if AeT[rg, ]

Apa

n !
FA = ZZEMIIJW s
p=1  A=1

where the bar is the residue map. Moreover, we put

N+:=Nu{0,oo}=Nou{oo}={0,l,..-,oo}.

Now we can state | »
TugoreM 1. For every me N there exist a system of forms Ri(a) (I<i*) and
H .

Iynomials Spa(a, vy W (<j*, k<k;, I<ly) with integral coefficients, a de-
PO.W FACEIRG AR

composition

and Ny-valued functions 65 (v) defined on X; with the following property:
If charR = 0 or charR>m,

-) = < m“lleK[x]: f?é 0, a== [(l()., AR ”m] N
&) ,Zo"ﬂx

v = [P(Ry@), ., v(Ru(@))] € X,

and

) 1 (V) aialv) |,
Silyes 30 = g‘%sjkl(azpaj”(" Prs e PP

then

Lie
5 e A8 gy v i) = O}
card{€el: f(§) =0} = k; card{[ny, N2, ..} € R “Aj Suilny 1 }

The polynomials Ry, Sy, the sets X, and the functions oy do not depend
¢ saluati lement p.
.on the field K, the valuation v or the e o - .

The calculation of R;, Sy etc., possible in principle for every m, is illl}’lillt.f‘(())ll;
m=1and m = 2. At the end of the paper we give the result of the calculati
for m = 3 and some comments on the cases m = 4, m = 6.

Theorem 1 easily implies ‘

THEOREM 2. For every me N there exist ¢;(m)e N and c(m)e N such that,

if Fe Z[x, t] is of degree m in x with the sum of the absolute values of the coefficients
)

equal to, say, 1(F), then for all primes p satisfying
> (m)l(F)>™
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we have
card{¢e Z,: F(¢,p) =0} = card{¢e F,[[1]]: F(£, 1) = 0},
where Z,, is the ring of p-adic integers and Fy the field of p elements.

For the understanding of both theorems it is important to note that the values
of a polynomial with integral coefficients for arguments in a field of positive
characteristic are again in this field since a positive integer 1 is to be interpreted
as I+1-+..4+1 (n times).

The equality asserted in Theorem 2 testricted to primes p greater than a suit-
able primitive recursive function of the coeflicients of F follows from a result of
P. Cohen [1] (Corollary to Theorem 5.1). His theorem (Theorem 5.1) implies also
that in the more general situation of Theorem 1 the solvability of f(x) = 0 in I'is
decidable in terms of R provided charR is either zero
depending on f.

The proof of Theorem 1 is rather complicated and much notation is used.
In addition to those already introduced the following symbols are used throughout:

N_ =Ny {~o0},

or greater than a bound

n

Py, for the Cartesian product YixY,x..xY¥,,
i=1

Y=
i
However, except for the sets {0,1}, N, N,, N, and N_, no other set appears in the
caurse of the proof with an exponent. Also the algebraic operation of raising into
power with a simple (one letter) exponent is used rarely. Therefore, as a rule (with
some exceptions), a simple superscript without parenthesis is to be understood as an
index and not as an exponent. A, superscript in a parenthesis means a differentiation.

Y.

L=

m
For a given polynomial f = Z a,x™ 7", xf is the vector [ay, ..., a,). Thus #f is
=0
determined by f up to a sequen”ce of zeros preceding the leading coefficient. The
length of the sequence will be clear from each context. Whenever possible without
danger of confusion we shall write £ instead of #f, aiso f® instead of #f ™ and f
instead of 2/ Ordinary capital letters except I1, X and occasionally E denote
polynomials in several variables, small bold face letters vectors, «capital bold face
letters (except P) sets; script capital letters will denote operations; for two
polynomials f, g res(f, g) is their resultant (*). Finally we accept the usual conven-
tion: deg 0 = — oo and for a vector ¢ = lag, ..., ay,] we set

o n![O, )0, (Z’)ao, (Z)am_n] ,

For the convenience of the reader we give a flow chart of the proof of The-
orem 1. The numbers denote lemmata, the arrows implications; T denotes the

theorem.
e,

() xes (f; 0) = 1 if f= const 0 otherwise res (f, 0) = 0.
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§ 2. Lemmata.
DEFINITION 1. Cy(m;, mj; ..., m) is the class of all polynomials
Ae Z[xl’ Koy eens Xpgy V15 Yoy oees yl]
that are homogeneous in each vector of variables x; = [Xy, ..., Xj,] separately and
isobaric. in all the variables jointly, where the weight of x,; is j and the weight of
v; is 1. The degree of A with respect to x; is denoted by deg'4 and the common
weight of all terms of 4 is denoted w(A4).

LiMmA 1. If AeCmy,my, ...,my), CieCy(nyg, ., n) (ISisk)y C; depend
formally on the same vectors of variables xi,...,x, besides yy =y and Jor all i
deg, C,<my, then for all vectors [py, ..., pk]eN(',‘ we have

B = A(*cs‘m)? sy *c;‘l’k), V1s --<1yl) € Cl(nlv (ALY nr)
where C; is differentiated with respect to y and CI? treated as a polynomial in y.
Moreover

x
0} deg’B = ¥ deg'4deg?C;  (1<q<r),
11
k
2 w(B) = w(d)+ Y, deg'd(w(C)—m;—p).
=1
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Proof. Let us consider a typical monomial of B:

Kis
Cig

M(x.l» e Xpy Vg, '--ﬂ,Tk) =m H
is

1
I1 %,
Jj=1

where s 18 the i X inC;a m 5% Q) ne ;
oI S e coeflicient of d s .
€ [4 S € C,EC](}?I, ...,ﬂ,),

we have deg’e;; = deg?C,, w(e,) = w(C;)~de : X
have for each /gk i ‘ (CO-der,Cits. Since A e Cilms, ., my), we

3

Hence for cach g<r

Y oy = deg'd .
5

k
deg! M = iZu,Sdcg"Ci = 7, deg'4degiC;,
5 i=1
which proves (1).
Now consider the weight of M. It equals
‘ I
W) = 3o (w(C)—deg,Crt)+ Y, .
»8 Jj=1

The variable v, occurs in C? in the coefficient of oerCi=pi=s

‘ variable x rather than
in that of 3™7% Since 4 e Cymy, ..., m,) we get

1
ga,s(s-i-m,-i—p,wdequ)%- Y oy = w(d).
; =
Hence by (3)
w(M) = w(d)+ %a,s(w(ci)——mi—«pi) = w(d)+ zl: degiA(w(Ci)—mi—pi),

which proves (2).
DEgINITION 2. For a field L and ae L U {00}, let

1
SgLo = {0

) Dernrrion 3, For a given subset M of N* Q(M) is the class of all oper-
ations o/ on polynomials with coefficients in a field such that for every vector
by, ..., my] & NE there exist polynomials 4;, B, € Co(my, ..., my), Cre Ci(my, ..., my)
(i<iy, j<jy) and a decom position

if @0,
ifoa=0.

0,1 ?a = joS
{ 3 } U ol
j=1

with the following property:
If Lis a field, f,e L[x], degfy<m, (1<i<k),

[degfi, ..., degfile M,
[SgLAl(f;’ "'=ﬁ¢)> (K} SgLAl(f;., --'sﬁc)] ESJ‘ 3
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then By(fi, ..., f) # 0 and
Cfis s fir
Bi(fis - )

If for some integers dy,...,d, and all [my,..,m]eNE, j< Jo we have either
C;=0or

A (S f) =

deg”C;—deg"B; = d, (1<x<k)

and
k
w(C)—w(By) = dy+ Zldum,, ,
w=
then we write
e QM; dy, ..., d).

Remark. As an immediate consequence of Definition 2 we have

@ ol M) = N a0,
=1 p=1
) QU My doyoord) = () QM5 doy o )
=1 a=1

provided |) M,=NE.
p=1
Lemva 2. Let MeN%, Myc N, of,e QM) (A =1,2,...,1), oty € QM)
and assume that for every field L the condition

fieLlx], [degfi,..,degfile M
implies
[deg 1 (fis s fi)s vy deg o (fi, s Sl € M .
Then

Aoty ..., )€ QM)

Moreover, if of,€ Q(M; dyg, ..., dy) (1A, o€ QMy; dogs ., dgy) then
1 I 1
ANy .., ) e QM ‘100'221 do;.dzoalzl dosdays e AE] doadi) .

Proof. Take % nonnegative - integers My, .. My, Since  of; € Q(M).
(4= 1,2, .., 1), there exist polynomials A}, Bf}e Colmy, ..., my), Cﬁ € Cy(my, .., ).
(i<iy; j<Jju) and a decomposition :

. Ja
0, 13* = U 7
=1
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with the following property:
(6) If Lisafield, fie L[x], degf,<m, (1 SI<k), [degf;, ..., degf,] € M and

Isgr AU Srs s ), oy L AL (fi, s )] eS8t (<
then BY(fi,....£;) # 0 and

BN fis s £

A
A fryonrfi) = Do o %)

Put ¢, = max deg,Cl.
180,

Since /o & Q(My), there exist polynomial A, Bl eCyley,...,0), COe Cilersomrcy)

and a decomposition

. Jo

o,13°= () s
i=1
with the following property:
(7) If g;eL[x], degg;<e; (1 <igl), [deggy, ..., degg,]e M, and
[SgLAg(gh LR gl)’ “rry SgLA?g(gh ey gl)] € Sjo (1<]O) 2
then BY(g,,...,g)) # 0 and

C,?(gl’ con §1s x)

Lo(d1s s g) =
v ! 'B,?(gly“-: gl)

1
Let us order the Cartesian product - P {1,2,..., Ja} into a sequence, denote-
a=1

t
the vth term of this sequence by [j, ..., ] (1<v<j,j, w-Je=mn)andtakem = ¥ i,
A=1
Further, put '
Ag ifi= ¥t 1<p<i,
®) Ar=1 by e,
,4,,(*Cj3,, v *Cﬂv) if i=m = iy(v—~1)+g, 1<o<iy;

and, if j = jo(v—1)+0, 1<v<n, 1<a<],,

! o
@ By = BY(sCly ., wCl TT (B,
1
(10) = Co#Cly, e, ¥Chy, %) AHI (Bl wet
i
(1 Sy = P 8}x{0, 12070 x §0x {0, 1o
a=1 7Y
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We have by Lemma 1 A;, BjeCo(my, ...my), Cie Cilmy. o, my) (i<m+
+ign, j<jon): moreover, the sets §; are disjoint and
Jon

0.1y = U 8.
Assume now that f, e L{x], degf,<m, (1<x<h) and
(12) [sgL Ay (fy oo f)s oo LA+ 100U 15 s S € 850
where j = jo(v—1)+0, 1<v<n, 1<o<jy. Then by the definition of A,
(sge AL s Fds s SEL ARy s fi)] € ST

Therefore by (6)
(13) Bis(fir oo fi) # 0

and
Ci"‘«}(.fh wees Sis X)

e el S LI
(14) Ao fir ooes S Bofor i f B
Now
(15) - degg, <deg, Ch<e,

and by the assumption of the lemma
[deggyy, .., deggn] e My .
Moreover, since 4f are homogeneous in cach vector of variables separately,
$8L A G 1y, o O1) = sg,_A?(*Ci-b(fl, cer S X s *C}lv(f‘, v fis ¥))
and by (8), (11) and (12)

[SgLAg(ylvs ey !llv)! sree SgLA?O(g“" v ﬂl\v)] & Sg )
Now by (7) and (14)

(16) Bof1ys s g1) # 0
and

Cg(glm s Pree X)
4 Folfrer o Gn) = Bg(glvm-u, )

Since BY and C2 are homogeneous in each vector of variables separately
BYG1vs s G13)
! ! A ~deg? BY
= Bg(*ch(fls sﬁc: X), [XXFY *Cj(‘(fla ey ﬁﬂ: JC)) AHI. Bj(}(fls ~"7ﬁc) 3
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Cg(ylv: s glv)

1
= ColeCllfis o foa s Clfy o o) TT B, . gy-soricd
A=1 7V

and inequality (16) implies that

Bg(=kcr}5(fl, s fr X5, *Ci(fys s £, X)) #0.
Hence also by (9) and (13)

Bf(fl: a./;c) #0
and by (10), (14) and amn

MU(&!i(fls "'sj;zv)i “w‘ﬂl(fl, !f;f)) = %{}i@ )
#i 1,""9 k

part of the lemma. In order to prove the
(10) and the second part of Lemma 1. If
have for each <k

This completes the proof of the first
second part we use formulae (9) and
J=J(v=D+o, I<vgn, 1o, we

deg”C;—deg*B;

it

! 1 )

,121 (deg* €9~ deg* BY) deg” Clat ¥ (deg’BO— deg? C2)deg” B2,
= A=t v
1 1

zzn (deg* €2~ deg” B) (deg™ Cli—deg"Bl) = 3 doyd,,.
= v A=1

[

Moreover
W(C)—1w(By) = w(C)—w(BY)+ ;_;11 (deg? Cs —deg*BY) (W(C}é) —c)+
+ é:l (deg® B0 —deg® C?) w(vaa)
= dyo+ Aé‘] (deg"CS—dengg)(w(C}# —w(B}y)

&
= oo+ ), doydye+ 2. i)
S LTS

! 1 k

1
= doo+ Y, dosdho+ T mg 2 doady) -
A= ®=1 A=1
LEMVA 3. If s, € QM doy oo, d) (1= 1, .., 1), then

Attt A € QM d, .., dy) .

4 — Fundamenta Mathomaticae CXXIV[L
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Proof— similar to that of Lemma 2. The crucial formulae (8)-(11) are

replaced by
A=A for i= Y dtp 1<psiy,

®<A

C}‘,} - >

— )1 B}z, S;=PSj,.
4/ A=l v a=1 Y
2 .

1 1
=8 G= (Z
A=1 A=1
Since the sum of homogeneous (resp. isobaric) polynomials of the same degree
(resp. weight) is a bomogencous (resp. isobaric) polynomial of the said degree
(resp. weight), we have
deg”C;—deg” B, = d,,

&
w(C)—w(B)) = do+ zid,,m,‘
%=

and
A vl oyt A€ QM dy, . dy) .

LemMMA 4. For every k the operation: [fy,...fil = /1. f belongs to

Q(N®;0,1,...,1).
Proof. It is enough to take in Definition 2, for arbitrary my, ..., my, iy =0,
Jo=1, By =1
mg
Cy(Xy, vy X, X) = H1 jz xpx™7I, where  xp = [Xig, s Xl
i

We have
k
deg'C,—deg'B; =1, w(C)—-w(B;) =Y m,.
51

LEMMA 5. The operations of taking the partial quotient 2(f, g) and the remainder

R(f,q) from the division of f by g belong to QN-xNy; 0,1, -1) and

Q(N_xNgy; 0,1,0) respectively.
Proof. Let us consider the following operations:
a
Exd“f’d””, where a, b are the leading coefficients of f, g
- (9= respectively if degfzdegy,
0 if degf<degy;

(S, 9) =f—s (S, 9)g .

It is clear that o/, € Q(N.xNp; 0,1, —1), &, € Q(N.xNp; 0,1,0). We take

M, ={[d,e}e N.xNy: d<p} (u=0,1,2,..),
M, ={{d,eleM: dze}, M?%={[d, eleM: d<c},
and we shall prove by induction on u that
) 2eQ(M,; 0,1, =1), ZeQ(M,;0,1,0).
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For p =0, 2(f, 9) = Z(f, g) = 0; hence the statement is true. Assume now that
it is true for some u. We have

4

'@(f! g) = dl(f! g)'l'-@(ﬂz(f: g)!g)s
(18
2(f.9) = R((f, 9), g).

Denote by £, the operation [f, g] — g. Clearly £, e Q(M; 0,0, 1). More-
over, if

frgeLlx], [degf,deggle ML,,,
then,
[degt(f, 9), deg £.(f, )] € M,

and by the inductive assumption
2eQ(M,; 0,1, -1), #eQM,;0,1,0).
By Lemma 2
22, F) € QM3 0,1, =1),  R(sty, £5) € QM1 0,1,0).
By Lemma 3
A1+ 2(sty, F)eQ(M),y; 0,1, —1)
and in virtue of (18)
2eQ(M;.1;0,1,-1), ReQ(M:;0,1,0).
On the other hand, if [degf, degg] € M7, we have
2f.9) =0, A(f.9)=1;

hence
2e0(M2150,1,-1), ReQ(M2i;;0,1,0).
Since M, ; = M,}H v} M,f'H, the inductive assertion follows from (5). Another
application of (5) gives thetlemma.
DerinNtTION 4. For two polynomials f, g we set

ﬁgao(fa g) = f: gl(f: g) = g,
. Syl g) i S(fi9) =0,
Firslf> ) = {ﬂ(ﬁk_l(f, 0),64f.9) i 6f.q) #0.

LEMMA 6. &, € Q(N%; 0,1, 0)if k is even and &, € Q(N; 0,0, 1) if k is odd.

Proof - by induction on k. For k = 0 or 1 the assertion is obvious. For
k=2 we put M; = N_x{—ow}, M, = N_xN, We have &,eQ(M,; 0,1,0)
and by Lemma 5 &, e Q(M,; 0, 1,0), hence by (5) &, 2(N2; 0,1,0). Assume
now that the lemma is true for all k<! (I>2). Then

Briy = Ex(81-1, 6)
4*
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and by Lemma 2 ‘
(Q(NZ;0,1,0) if 1is odd,
$11€90(N2; 0,0,1) if s even.

LemMA 7. For every k=1 the operation on polynomials

0 I'ff1=fz=~~=f/c:0,
D [f“""f"]q{( S1s s fi)  otherwise

belongs to Q(N*). In the case k = 1, f, %0, by (f{Y we mean f divided by its Ieadmg
coefficient.
Proof — by induction on k. For k = 1 we take Mj = {—m;, M, = {u-1}

(u=1,2,..). Clearly 9, € Q(M,) for all i and by (4) 2, e 52( U M) = Q(N.).

For k = 2 we take M, = NA®NZ,

M, = Nx{-00,0,1,.,u} (u=1,2,..).
Clearly 2, € Q(M,) and if [degf, deggle M, we have
- DAL, 9) = D(BuiilS 9)s Euiilf 9)),
[degﬁ,,+1(f, g): degénu-kz(fa g)] € MO .

It follows from Lemma 2 that @, € Q(M,) and from (4) that @, e Q(N2).

Assume now that the lemma is true for the operations @,., (k3). We have

9k(fla aﬁc) = >@2(-@k—1(f1a --,:fk—l), 5%:—.1(/25 sﬁc))

and the lemma follows by an application of Lemma 2 (cf. [4]).

Lemma 8. For every nz1 the operation on polynomials

s SO, e fO4D)
0,(f) = (fs s FO)?
0 Ff=0

¥r+#0,

belongs to Q(N.).

Proof. The operation f — f® is in Q(N,) for every n. Hence by Lemmata 2
and 7 the operation f = (f, ...,f™) is in Q(Ny), and by Lemmata 2 and 4 the
operations

F = f O, s )

and
T (fs e fO)2

are in Q(Ng). Moreover, if degfe Ny, then deg(f, ..., /™) e N,. Hence by Lem-
mata 2 and 5 the operation

I = 2((fo s SO s SO, F))
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is in Q(Np). We proceed to show that

(19) (s wos TOVISs o SO (S, o, FOH DY)

Indeed, let L be the coefficients field of f, & an element of L, the algebraic
closure of L, and

v = ordx_gfm(x).
It is enough to show that for every &
min{vy, ..., v, s} +minfo,, ..., v"+;}>2min{vo, s Upb e
Clearly v,4,>0v,—1; hence the above inequality holds unless
(20) vy = min{vg, ...,0,_,} and v,y =op,—1.
However, conditions (20) are impossible. They imply

v, = v, for some k<n and either charL = 0 or
v, # 0 modcharL.

But then w4y = v,—1, k<n-1 and v, # min{v,, ..., v}, a contradiction.
Thus (19) holds,
2 s SOV ois SEO), (s SOP) = 0,0)

and 0, & Q(N). Since clearly 0,e Q({—o0}), we get by (4) 0,e Q(N_).

LeMMA 9. For every field L and every polynomial fe L[x] satisfying f #0 and
charL = 0 or degf<charL we have

oNH=, TI x—%
G~ f =) gk
where L is the algebraic closure of L.

Proof. Let
S(x) = const J] (x—&*®.
‘&Ei
Then
(s f®) = ] (xgpe@he”

lei
Since )
max{e(&)~n+1,0}+max{x(&)—n—1, 0} —~2max{a(&)~n, 0} = 1f a) =n,

’ ’ ’ 0 otherwise,
we get
o= TI x=9.
a(g)=n

‘LEMMA 10. Let X be a field with a discrete valuation #, I its valuation ring, R its
residue ﬁeld and the bar the residue map. If A is a polynomial wzth integral coefficients,
By hye 1[x] and A(hy, .., ) is defined, then

sgg Ay, . b)) = 1—ng1‘5(A(h1, v b))
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Proof. If 5(4(hy, ..., k) >0 we have
Ahy, o b)) = A(hy, ..., ) =0
and
sgg Ay, . B) = 0 = 1—sgoB(A(hy, ..., B).
If 5(A(ky, ..., b)) = 0 we have

A(hgy oy b) = Ay, . ) #0
and
sgg ARy, ..., B) = 1 = 1—sgoi(d(hy, ..., b)).

DEFINITION 5. For a subset M of N¥, Q*(M) is the class of all operations %
on polynomials with coefficients in a valuation ring such that for every vector
[my, ..., m]e NE there exist polynomials F;, G; € Cy(my, ..., my) and

Hye Cy(my, ....,m)  (i<io, j<jo)
and a decomposition
Jo
Ne= U T4
j=1
with the following property. 3

If B is a field with a discrete valuation 3, I its valuation ring and 2 the residue
map for polynomials over I, £, e I[x], degf,<m, (1<»<k), [degfy, ..., degfl e M,
B(FL(fis s S)s s B(Fis(fis s S))] € T then
I{j(fls e ﬁcax)

) e 1
6 fo S

Gj(.fl: st f;c) # 0 ’

and

8oy f) = F M L)

Gfis o fd

LemMa 11. I B, e Q*(M)(A = 1, ..., 1), of € Q(NL) then

A (B, ..., B)) € QHM) .

Proof. Let McN* and take [my, ..., m,) € N&. Since %, € Q¥(M), there exist
polynomials F, Ge Co(my, ..., my), H} e Cy(my, ..., mp) (1<i<iy, 1<j<j;) and
a decomposition

. Ja
Ny=U T}
. "=1
with the following property.

If, in the notation of Definition 5, f, e K[x], def f,<m, (x<k), [degf, ...
..., degfille M,

[ﬁ(F;'(fls ey k)): Ty ﬁ Fiﬁ,(fls rery ﬁs))] € T;’:
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then
H} )
(21) G;‘(_fl, .~-,f;¢) o+ 0’ »J(-lfi,".,fk’XJEj[X]
Gi(fis s £
and : .

Hi(f1s s £y %)
G;(-fl’ e f;c)

Let z; = maxdeg,H}. Since of € Q(NV!), there exist polynomials

J<ia

-@j(fp oS = Z

A B Coltts s 1)y CreCylys s 1) (i<, j<Jo)
and a decomposition
. Jjo
{0: l}m =U SJ
j=t1
with the following property:

@) If by, ., b e R[x], degh,<y; (1<A<)) and
[sggAi(hy, ..., b)), ..., sgiAi,(hy, ..., b)) € S,
then Byh,, ..., k) # 0 and

Ciky, ..., by, x)

oA (y, . b)) = .
! YT Bk, B

14
Let us order the Cartesian product P {1,2,..., 7} into a sequence, call the
A=1
. . !
vth term of this sequence [j},...,/] (I<v<j ../ =n) and take m = ¥ i,
A=1
F} ifi= Y i+p; O<u<iy,
1 1 =
(23) F = AQ(HJ}’, ""HJL) if i—m = 2ig(v—1)+20—1, 1<v<n, 1<<iy,
{
J.I:Ix (G;é)“w" if i=m = 2i(v—1)+20, 1<v<n, 1<0<iy;

moreover, if j = jo(v—1)+0, 1<v<n, 1<o<,

1
G = B,(HYy, ..., Hy) T] (G)**,
(24) A=t

1
H,‘[ = Ca(Hh: ey IJ;‘Q )C) ‘:!___[1 (Gj{;)degl B’:

1
{(25) Tj= P T} x N¥OD 5 p=1(g y 5 N2
A=1 Y
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where the transformation #: N3%° — {0, l}i“ is given by the formula
[1—sgg(ny "’12); 1—5gg(n3=14) s 1 =580 (N3 1gq —17,0)]
o

if <o,
26)  T(my, s Myge) = ' eZi "ae

io
[0,..,0] if ¥ mpyp=00.
e=1

We have F, G;e Colmy, ..., m) and Hye Cy(my, ..., m) in virtue of Lemma 1;
moreover, the sets T; are disjoint and

Jont
N$+210n: U Tj~
Jj=1

Assume now f,‘eT{[x], degf,<m, (1<x<k), [degfy, ..., degfile M and
@7 [B(FL (s s £0)s w5 B(Fsaion i s S € T
where j = jy(v—1)+0, 1<v<n, 1<0<j,. Then by (23) and (25)
[BFLfis s ) oes BELfrs s SN € T (1AKD).
Therefore, by (21)
Hilfis o fis %)

Chalfos s S # 0, e —
B fro o £ X

1= hy,ef[x]

and
H;‘é(ﬁa“-’ﬁc:x) ﬁ
Colforn )

Now degﬁlv<d0ng;z<x;_. Moreover, since 4, are homogeneous in each vector

28 B, )= 2

of variables separately, we have by (23) for each g9<i,
5(Ay(iys ..os b))

= SAGH oo fs s B s D) 3, Qo8 (G )

= 5{(Fut 2t0(r-1)+ 201 (15 +or» SO =8P 2iotv1y426F1 s ) -
Thus (25)-(27) imply

[1~sgot(As(hays s Byy)), s 1580 5(Aig(Byy, oo, By))] € S,
and by Lemma 10 and (28)
IsgAdi(rys ooy By, oons sgidi(hyys - Bl €S, .
By (22) with h; = k;, we ha\?’ .
By(hyys ooy By) # 0
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and

Ay, o Thy) = S By, %)
'Bn(hlvy weny ,'lv)
Since B, and C, are polynomials with integral coefficients homogeneous in
each vector of variables separately, we have by (28)

. BARH G (fo vos fir 35 oy $HYfy s fi )
Byl . By = P A wlfo - fir ¥)

1
[T Ghulfs ... FYo5*5e
i=y 7

\ Gl s fr XYy ey $HY(frs s i %)
Colligys s Iy, X) = &

1
}vﬂ Gjé(ji’ A .f;c)degl Cd
and by (24)

. o Hi(f1s o5 fis X)
BTty s S5 oves B 1y oo ) = B L2 T 2T
1 k 1 ) G f
LeMMA 12. In the notation of Definition S, let ' be the analogue of A defined
by means of an element peX with §( D)= L. Then the operation /& on polynomials:
fe K[x] defined by the formula ’

TOF) = glgif l.’ff#():
A (f) .—-{1 Fre0
belongs to Q(N_) and for every operation £ € Q(NZ) the operation 4 s belongs
to QN2).
Proof. It is sufficient to prove the second part of the lemma since the operation
S [f, g1~ f belongs to Q(N2) and the first part follows from the second on sub-
stituting & = #,. Take two nonnegative integers m2, n. By Lemma 6 there exist.
polynomials A,, B;e Cy(m,n), C;e Cy(m,n) (i<iy, j<jo) and a decomposition
Jo
0.3°=U s
i=1
such that if £, g e K[x], degf<m, degg<n and

[sgxA(fy 6), oo s8RALS D] €S,
then By(f, g) # 0 and

Cj(‘fa g: x)
A (f, §) = T
f g) -Bj(,fs g)
Let ¢ = max deg,C), Cyxy, X5, %) = 3, Cuylxy, x)x° 7%
1% i jo y=0

: _f4 it
@ Fi= e, i imiped = =D+, 1<p<o 0SV<e
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and if j = (u—D(c+2)+v+1, 1<u<jy, 0<v<e+l,

" _JCu if 0gv<e, o Cﬂ if 0gv<e,
G0 Gf‘{l if v=c+l, H 1 ifv=-c+l1,
@31 T; = v H(S,) x NETDE D oy, x N§F Dm0,

where the transformation #: N — {0, 1} is given by the formula

(32) Ty, ey Byg) = [38p1H7 Y, vors S0y ]
and

Y, = {[ng, ..., n.] € N1
(33) v {[0 c] +
Yooy = [o0,.., OO]

The sets T; are clearly disjoint and
) Jole+2)
N$+J'o(c+1) - U T..
=t
‘Suppose now that f, g e K[x], degf<m, degg<n and
(34) ["(Fl(f 9)) s U( o+ Jote+1)(Sf> g))] el;,
‘where j= (u—D)(c+2)+v+1, 1<u<j, 0<v<e+1. Then by (30) and (31)
[Sggﬁ—l(ﬂ(f: 9))s s 8808 (Filfs 9))] € S,
and, since sgo¥™*(a) = sgga for all ae K, we get by (29)
[sgz A4S, ), s SekAilf, D€ S,
Hence B,(f, g) # 0 and

(35) - L(f,g) =

Moreover, by (31) and (34)
[5(Eo+(n—1)(c+1)+1(f} !I)): ey
hence if v<c then by (29) and (33)
min {5(Cuolf; 9); -vvs B(Chus(fs )} >B(C( f, 9))
= min{3(C,o(f. 9)), ...

Clf> 9,%)
B(f, 9}

F(Fiy u- 304 1y ver1 (S Ney,;

and if v = ¢+ then
(36) H{(Cuolf, 9)) = ... = &( Culf, 9)) = .
“Therefore, if v<c we get 5(C,(f, g,x)) = 5(Cu(f, ) and from (35)

¥ ”"'0(Cuv(fx0))c
S 9=2 TN . 0:)
p PB(f, 9)

s min{ng, .., my_}>n, = min{ng, .., n,}},

' ﬁ(Cuc(f- g))} ’
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Moreover, the leading coefficient of the above polynomial equals

5=W(Chuv( £

o b H{Cuul S, y))Cuv(f’ g).
~~2(Bu(f,9)) ’
FDOBAL )

hence
~ ~C ~ H;
TS ) = D, PHst S, gy = 729D _ gy
Cu of, ) G;
If v = ¢-+1 we have by (35) and (36) &,(f, g) = 0 and by (30)
- ~H;
MA(f,g) =1 =%

J

-(T..
The proof is complete. '
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Lemma 13. Let f, g e I[x], charR = 0 or charR>max{degf, degg}, fel,

&1, 961 9) # 0, Iy = HE(f, 9)
@7 =", by = (=& modP, ik
where Y is monic and hence determined uniquely. If

r = res(hiy, 6(F,9)) # 0, e, = v(8if. 9)
then 141 # 0,
(38) o(r) = eudyoy—eio1 a0 {rpey)

and

(dz) da—t (d;. 1) da
(39) ])_"("‘)/'15(—l)d"”“("“—“(p) (h 5)) ptCAp mod P.

dy_y!

Proof. Let h, = hy hy. We have by (37)

(40) h§(E) = i ("‘) B OERT Y I(E) = dilhy (¢) % OmodP .

Moreover,
ry = res(hy—y, Py = ptres(hioy, )
= p*=tres(hi_y, hy)res(hi—q, h3)
= peams (o Y-t og (0 B Yres (B 17)

res(/zl , h/l_m_l,)

i, hy) .
st gy o o 1)

( l)tu-lda eada~i

Now, by (37) and (40) we have
(41) res(hi, hi-y) = res((e—&)", hi_y) = res(x—¢&, hi-)™
(a=1) da
= (/LM”(E)> modP,

dy-y!
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(42) res(hy_q, hy) = res((x— &%, hy) = res(x—¢, By )ta-t

(d;.) dpm i
= (hF Q) = ( dll(é)) modP.

Finally, &,,.(f, 9) = &,-4(f, gymodhy, and thus
res(hf, hymy) = p~"Hres(hf, €,1(f, 9)) = P~ Pres(hi, E141(S, 9)).

Since the extreme ught-hand sides of (41) and (42) are prime to p, we get

. Lemma 13.

LEMMA 14. Let f, g, & and ). satisfy the assumptions of Lemma 13 for all A<,
let d, have the meaning of that lemma and E, = &,(f, g). Assume that dy = 1 and
1 is the least nonnegative integer such that E;,.y = 0. Then if d,;>0 we have g (&) = 0,
if dy=0 we have g(£) # 0,

(-l;.)(f) da-1 E(d;. 1)(5) =d; ,
(43) 9(&) = H (=1~ “‘*( x > (TT) mod Pre@)+!

and v(ESP(®) = v(E) (b =0,1,...;D.

Proof. If d;>0 we have degh >0. Moreover, from ;' |E, it follows that
BN, @), BT\ hs . But hf = x—&, whence b = x—¢ and g (&) = 0.

If d; = 0 then for every A</ we have res(hi_, Ey) # 0. Indeed, (hj-,, E)E,,
and thus res(#i_y, E;) = 0 would imply d,>0. Using Lemma. 13, we get (38) and
(39) for all A</ Summing or multiplying over A, we obtain

1

1 1
Azlv("z) = Z (erdr-1—€1-1dp)+ Z v{rse1) -

. (da)(é:) dj-1 h(d;.-—i)(@ =da
H oy, = H (=1~ m( ) ( 7 ) [1 p7oe+ 0, modP.
-1

A=l

Since r}4; = res(l,0) = 1, it follows that
1
v(ry) = AZ (1 —e1-1d)),

1 h(dz)é: da-1 ](d:. 1) =dz
P = AI:IJ( 1)8a- “’4< d'( ) <1---~£‘?—> modP .

Since h¢M(E) =

1 E(d")(f) amy E(&""‘)(f) a5
_yda—ada { A NS A=) v(re)+1
rp= I (-1 < a;! ) ( dl > mod pYro*I

pTEETE), we get

]

However, r; = tes(x—¢&,¢(x)) = ¢(£); thus g(&) # 0 and (43) follows. The last
statement of the lemma is a direct consequence of (40).
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DerNITION 6. The operation .# on polynomials S eKlx] is defined by the
formula
Gy . P H
= {%J./[f if fs£0,

1 iff=0.

Lemma 15. For drbitrary monnegative integers m, o, ny, .. . hy, less than char R
unless char R = 0 there exist polynomials Fy, Gy, Hy, (1<1U,f<10, V<V0)s Kjvs Ljve
(wk, j< o VSV and a decomposition

Jo
=UT
J=1
independent of K, v and p with the following properties:
(44) Fy, Gye Colm, myny, oy ), HyeCo(m, m,ny, ..,m),
(45) Ky Ly € Cy(m, m) and cither Ly, = 0 or deg'Ly,
= deg? K+ 1, WLy = w(K;,)+n,.

= dEg Kj\m dEg jyxe

If fuJas G1s ens g€ Ix], degfo<m (o = 1, 2), degg, <n, (x<k)
M
O, AL AMf1, | O ) e
(46) fal Sy ( ] o ‘/sz) 1
and :
[v(FL(flﬁfZ! G1oores gla))’ ey U(F!O(fln fzs G1s 005 gk))] € Tj
then
. PH (1o o G145 o5 Gi X)
47 Gffiofor 910 s g) 20, L2 eIfx],
( ) s jz gl yk Gj(fl:fh Gi1s e gk) [ ]
v Hy(fi2 fo Gys s G0 X)
48 0,4, = L4
@) e vIJl ij(fl’fzsgl"":gk)

and if Eel
‘ Ji® =0,
then for all w<k

.%fffj(f]‘, fz, Giroes Gis x)]x=d§ =0

Li\m(fls gw E)

¥ Kyl fio 0208 # 0, )
o J‘”Ul e Kfvn i !Imi‘)

and

(50) g l) {'J"f(f" ”‘“amod Praw L

K:/vac /'! ’ ﬂm

(Ljvelfs g0 &) = O implies ¢,(£) = 0). Moreover
v (Ljvx(fl‘n [ PT) ‘E)) = U(Ljvu(fiv G x))'
U(Kjvn(fln Ixs é)) = U(Kjvx(f:[a Gus x)) .
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Proof. Let M be the set of all pairs [x, A], where 1<x<k, 0<i<n,+2,
A the set of all integer-valued functions § on M such that 0<d(x, A)<n, and
8(x%,0) = 1. By Lemmata 4, 11 and 12 for each & € 4 the operation
o gonod > T1 #E(f1,9.)
{x,AleM
5(¢,4)=0

belongs to Q*(N**1). By Lemmata 8, 11 and 12 we have 0,7 € Q*%N.). By Lem-
mata 7 and 11 the operation

Ui 915 woos 9] = Oy T1 61, 9.)
[%,A1eM
3(e,i)=0
belongs to Q¥N“*%). (An empty product equals 1). By Lemmata 5 and 11 the
operation
0, Af»
(mmﬁfm ]_-I -/”‘g}.(fln gx))
(gzcw, Z)E o
belongs to Q*(N:*2), Further, by Lemmata 8, 11 and 12 for every fixed &, 3, A
the operation

[f]af?.a Gis-ees gk] g

[f1: 9.1 = aa(x,;.)ﬁgz(fn 9.
belongs to Q*(N2). Hence by Lemmata 7 and 11 for every 5 e 4 the operation

0,4lfs o
s Gis s G e s g.0d, Oy 0 ST
Utz 01 g"]—’((m,,ﬂfz, I Aéfs, gy 0 own (i g")>
Jz;a'):.l)so

belongs to Q*(N:*?). On the other hand, by Definition 6 the operation ./ is
a specialization of the operation .# to the case of

K=Kk, =0, p=p.
This implies by the definition of Q*(N*"2) that for every §e4 there exist
polynomials F,{(8> (p<p,), G {8y, HL8) (9<gs) and a decomposition

es 145
independent of K, » and p and with the following properties:

(51)  F,(8), GL8Y € Colmy, my, my, ...y my), H{(8> e C(my, my,nyy o, m) s
11125 915 e g € 1], degf,<m, (o = 1, 2), degg, <n, (x<k) and

[U(Fl<5>(.f1’ f2> Gy eees gk)): e U(Fm<5>(f1sf2, G1s 2005 gk))] € TL((S)
then

Gﬂ<5>(f1=f2= 15 000y yk) 3& 0’
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'HE<5>(f1,f2a G5 e gk’ X’)

(52) Iﬂ<6> o Gl)<5>(f13 f2= 15 ees gk) EI[X]
and
0,41,
(53) ((U) ,//fz’ I:[ //(‘)",; /1;-‘(]”) g c d @J(M AY/ ”(y}. fl: gx)) = _9]0<5> .
e i

Now let us fix $ & 4 and %<k and consider the following operations:

metd (a(x,zﬂ)) 50,4)

) 3 lﬁﬂ

@ LS g] - I [ (— 1)6(%.7.)0(:¢.l-1 1) f, g) ’
s (x )h+ !

6(;1: m>o
My 1 (d(u A=1)) 3(%,4)
: cﬂ’
@, 1191~ Il LN
=1 5(% J—1)!
8(x,4)> 0

The operation f— f“/n! properly understood (Zaﬂx"—vzwl )x"'") belongs:
to Q(N; —n, 1); hence in virtue of Lemmata 2, 4 and 6 we have

Myl N+l e+l

e Q(N2, Z 50¢, N3, A+1), 2 066, 1), % 36,
A= 1mrd2 A=0mod 2
(54 et 2 M2 k2
QN2 - 5 006, 2-D30 D T 662, L, 0667,
FE] 1mod2 A= 0mud2

Therefore for ¢ = 1,2 there exist polynomials 4,{5, %, 6) (< flsxa)s BLI, %, 0D,
C(6,%,0) (005 and a decomposition

Haxa

{0_’ l}llﬂmr - U1 S{z<55 %, G>
0=

independent of K,'v and p and with the following properties:
(55) A8, %, 0%, BKS, %, 0) & Colm, 1), C8, %, 0) & Ci(m,ny);

it f,geK[x], degf<m, degg<n, and [sgxA (8, %, 63 (f; ), wos SExAuaolfs )1
@ §,{§,%,a) then
(56) B8, k,o)(f.g)#0

and
H AR B0 1) Eiﬁ(»{‘lwn(/ ‘1) o) - 0(5 %, 1>(f g,%)
- 80, A4 1)! B (9

d(x J-)>0

(57 a2 (l AR, m)d(u.l) b, . 2, q,x)

T S0, A ! B8, % 20 (f,9)

A=l
(1, A)>0
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Moreover by (54)

K nuto
deg! C(8, %, 0y —deg' B, (3, %, 0) =}, (x4,
AEI_modz
(58) et a .
deg? Cp{8, », 6y —deg? B, (8, %, 0y = 3, d(n, A+2—0,

A=2
A=0mod 2

Ww(CK{8,%,0))~w(BL3,%,0))

B+ 1 Heto Nyt
== % 80, D60, A+ DFm Y 80, Nnf Y (2, +2—0).
=0 A= 1=mlnd 2 i.ss)(f;nid 2

We order all functions § € 4 in a sequence §,, 95, ..., 8y, Next we order lexico-
graphically all polynomials F,{4,), the order of letters being v, s, and then order
lexicographically all polynomials 4,(8,, %, o, the order of letters being v, %, o, .
The ith term of the sequence of polynomials so obtained will be called F;

2

Vo Yo o
(<ip= Y, wo,+ 2, 2,
y=1 y=1 z=1 =

Cartesian product (the order of letters being v, %, )

Y tse). Now we order all elements of the muwltiple
1

n k 2
P, . o)x P P{l,.., 05
v=1 x=1 g=1

in a sequence, denote the jth term of this sequence by

" k

a<j<jo=1les I

v=l %=1 a

%

[0t 51115 Qjt125 Qj121s o5 .ankzl Qp,ea) »

define a transformation z: Nf — {0, 1}* by the formula

. . -1 -t
(Vs ors 0,) 1= [58007 7, .v, 520y ']

and put
n k 2
59 T:= P (1, 0yx P Pr's,, (5,.%.0),
v=1 x=l =1
{60) Gy 1= Gﬂju((‘)'v), Hyy = z'w‘(&v},

Ko e By i$0,1) CopalBymay i 8,00, 4+ 1)8,0¢, 1, 42) = 0,
Jve 1 otherwise,
(61)
Lo e Byial02) Cppon (Byy %, 2) if 8,(0¢, 1y 1) = 8y(n, me+2) = 0,
v 0  otherwise .

We proceed to prove that the sets and the polynomials so defined have the
properties asserted in the ‘lemma.
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The sets T; are disjoint and we have

Jo lr; 25 ﬁc 12) 25yxa
T, = T8, % -1
}91 1 v=1(‘el=-'}1 E< > x=1 n=11 091 S,,(5v,%, 0'})
" . k 2 M n k 2
= PL('N*VX P] P40, 1)) = P(Nix P P N"woy Nio
y= %=1 o= v=1 x=1o=] .

Formula (44) .f‘ollows from (51) and (59), formula (45) follows from (55), (58)
and (61). Indeed, if &,(%, m,+1)--8,(%, n,+2)>0 we have Ly = 0, if 8,(¢, n,+1)
= 8,(%, n,+2) = 0 we have v T

deg” Ly, —deg” K}y,
= degﬂ C"J"”l<($‘n %, 1 >—-deg"B”Mu<5v, %, 1> __degac’“mz(aw %, 2> +
+dcgvﬂalwa<6w %,2)

Myt 1 Myt 2 (_1')",, 1
= 2 b= 3 60 =" 5k, +)=0ifo=1,
Amlmod2 Amlmod2 2
e+ 1 Myt 2 1+(_1)"“
=1+ ¥ 8- ¥ i =1- 8,0t m+2)=1if =2,
A=0mod 2 A=0mod 2

W(Ljvu)"'w(Kva) =m0+n,1 =n,.
Assume now that polynomials f,, 13, g4, ..., g, satisfy (46) and

[U(Fl(fls .fz: Gi5 s gk))’ sy U(Fio(fu wa Fi> ooes yk))] € 1} .
“Then by (59) for each v<n

(62)

[U(F1<5v>(f17 .f29 gi: srey gk)): ey 0 Fuav<5v>(f1= fz: gl: ey gk))] € Tij<5v>'
Hence, by (52) and (60)

(63) ij(fj.s fz, g1 -0 gk) # 0 H

Hv(f,f,g ,‘_.,y)
(64) ]\r:=_i.__.;__»;2 1 *———k-=] 5 .
! ij(fu Sos 1o s G0 njv< |> e I[x]

Now for every §ed and every pair [x, 4] e M with 6(x, 2)>0 we have by
Lemma 9

OseuayHEf1s 9,) = ]1

s aR
(o= E)BC R || A8 AL 100

x=0.

Hence we get

g’c'd‘ 05(3{17-)‘#6’1(./:‘1 ’ gpt) = H (x _C) .
fx,alaM o :
50, 2) >0 B, 2)# 0+ (e = )M AN LA A(S 1,0)

5~ Fundamenta Mathematicae CXXIV/L
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On the other hand, since by Lemma 9 0,4/ is square-free

Outlfs = const R 11 (x—3). .
(011>, [u,gém MENf1s 92) gm0
d(x,A)=0
Hence
[ 4 / g
(65) ((ﬂ) 7 ﬁ j;z,g AR [%A(,;]SM Oy #E3 f1 g»))
a S 2 e PAVAER-FY a{:c’,l)?ﬁo
(e 2)=0

= I (x —0).

LeR, Oy M 2(0)=0
ordm g AE AL 1,807 804,2)

For every { e R satisfying 0,.4/5(0)) = 0 we have by (46) ord,_,.#f1(x) = 1;
hence ord,—# &4(fy, g,) = 1. Moreover for every positive A and every { e £ we
have ord,— M E(f1, 9.0 <deg 83 (fis G) <y Hence the function ordy— .. #&,(f 1, g,
defined on M belongs to 4 and we have by (53) and (64)

n
" O, f, = const [] ZI,.
y=1

This together with (63) and (64) proves (47) and (48). Moreover it follows from.
(64) that

U(va(fls fzs g1 ~-~‘= gkox)) = U(ij(fls fz, 1> o5 gk))'

In order to prove the remaining part of the lemma let us assume that

S =0

Eel, and %-H:iy(flsfi’.} G5 ens gkax)l:mé: 0.

H‘v(fia fza F1s 205 Ji» é) y
Then =i =0 and by (53), (64) and (65)
ij(.’:l: /’2’ G1s0es yk)

Ord, s M E(f15 9,) = 8,(n, A) . for all [, Ale M.

Let I, be the least nonnegative integer such that &,,4:(f1, g,) = 0. We have [
<m,+1 and for A=, ‘ ‘
if A Lmod2,

0
oo Sl gl = {é”i,‘('fl, g, if A=lmod2,

Hence by the definition of .# and &, we have for 121,

o if 2 # I,mod2,
#5609~ {46,050

if 4 =1Imod2,
and
0 if Az Imod2, -

(66) O D) ?‘{5y(x, L) if A= Imod2.
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Therefore, if' 8,(x, n,+1) = 8,3, n,+2) = 0 we have 5,(%, 1) = 0 for all Ixl,
and from Lemma 14 with f= 1), g = g,, E, = 6,(f,g,) we get g (&) # 0

gl = ﬁ (= 1j40ma=1)003) (Ef(x’l)(f))d(”’l"1)(Ef(-”ik1)@>—d(x’l)
=i :

d(le, ) d(a, A—1)!
:"”ﬁ] (__1)a(x,z)d(x,;.+n(Eg(fil'f”(f))dcn’;')/ Tak2 <E§(—"’1'1_1)(§))6(”’;') Tod PUUEN+1
=1t TR TY] 1 Ty Mol * .
a(;f,;.)or»o d(x, A+ D) 6(,‘1;’1)1>0 6(x, A—1)!

However, by (59) and (62), for o = 1,2,
[sgxd;Bys %, ) (fis 801 s Sk Ay, Brs %5 0 (fis G € Sy, {3y 703
hﬂ:nw (56) and (57) hold with ¢ = g}y, 6 = 8,, f=f1, g = g, and in particular
CovealBys #, 2) (1, 4,0. &)

(67) _ M2 Eg&xil-l)(ﬁ 3(x,4) 20
o BaeCn a2 (fog) et \6Ge, 211 '

Thus we have

ng\'nl<5\vn X, ]>(f1: Ges é)Bajvu2<5v7 %:2>(f1 » gu)
Bajvx1<5va *, 1>(fh !lx) Cajvx2<5vs %, 2>,(fls [ PT] f)

In virtue of (61) this gives (50) while (49) follows from (56) and (67).
Assume now that §,(x, n,,+1)+8,(%¢, n,+2)>0. Then in virtue of (61)

Iinlh, 009 0 _
Kjvn(fl’ g"’f) 1

and (49), (60) follow. The last statement of the lemma follows from (57) and the
last statement of Lemma 14. '

g8) = mod PP=ENFL

Lemma 16. Let' me N, u = [uy,...,u,] and for every pair [0, B where
0<o, <, o # B let

L=y

. qe, B, u) 1= (u,,,—l—u,,<oo).

Furthermore, let 8(x, f) be the set of all vectors we NF™ satisfying
o tytug<oo, o, f,u)e N

and o

(68)  for all y<m cither u, = o or (q(ot,"y,u)»q(oc, By w)(y—o)>0.

If o' <p', a"<p" then for every we S, pYyn S, p'"*) we have the I
plications ; . o
(69)

5

W<B (o, B ) = @, B S e S B - )
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Proof. Take a une S, )y n S, B Using (68) with a =a', f=f, then
y =a', we get . (76) . d{ﬁ P {0} 7® o 51__3
, - card{f e P\{0}: =0} = > card{ne NP: h ) = 0}.
(10) (g, o, )=, B W) (o =) 205 b= g cadln o) = 0}

The sets U, and the functions n{r, sy are independent of K,v or p.

Using (68) with a =a’, f=p", 7 = o we got similarly Proof. We shall use the notation of Lemma 16. Let us order afl subsets of
the set {S(, f): O<a<f<m} in a sequence Iy, ..., T, and put for each r<r,

gl o, wy<q@’ B, 1),
7 opre ) Ur . S Nm+1 .
an 4@, B, i) <q (e, o', <, By m LS50 D (NETNS)
It is clear that the sets U, are disjoint and (73) holds.

550 For every » with T, % & we consider the set U {x real: a<x<p} and
2 o, B, w)—g@’, B, w)(p —a)20. . . Sef)eTr
&) (g, B> ) —a( B W) g represent it as the sum of disjoint open intervals:

hence g(o, o', w2 g, B> ).

Using (68) with a = o', § = ", vy = ', we get

Addition of (71) and (72) gives .
(g, B m) =g, B, ) (B =)0 o o, BTl 03 <hY = U el <x <)
hence by the assumption where
g, B owy=q@’, B W), (79) BeSoens (5=1,.,8-1).
which together with (71) gives We shall show that for every s<s,
(80) U,=S 05, Brs) -

g, Byw) = qla, B, w).
Assume now the last equality. By (71) we have
q(a” u”’ u) = q(a!’ ﬁl’ u) = q(“l'é ﬁ”’ u) = q1 Say .

Indeed, by (78)~(79) there exists a sequence [«;, f;] (i<n) such that

o = oy, e <Bi,  Bu= B> S@nplel,.

Hence By Lemma 16 we have by induction on v

=ity = g =), =i = q(F" =), , N (s B)=S(ss )
Upr—tiy = q(f"' =), g, u) =4 i=1

. o . . . hence by (77)

and since we S, p'), condition (68) is satisfied with o =o', f = .

LemMa 17. For every me N there exists a decomposition U ) S(eg, BY=S@, Br) = S, Brs) -
i=1
m
1
73 N = '91 U, If T, = @ we take s, = 0, otherwise we put
and for each r<r, there are finitely many (possibly zero) N-valued functions (81) wlr, sy 1= (o, frsr ) (1S58
7wdr, 19, . nr, 5,) defined on U, such that if Clearly, the sets U, and the functions n{r, 5) () are independent of XK, v or p. Sup-

pose now that for some my € U, and s<t we have

wlr, sHup) = w§r, 1) (uo) -
u = [o(ao), o> (@€ Uy, Since by (80) g € S(@yss Prs) () Sy, Brr)» we have by Lemma 16

fx) = ioﬂ,‘x “Fellx], f#0,
=
4

Ts) Byo(3) 1= f(P0 @) , 1ty € S(tygs Bus) «


GUEST


70 A. Schinzel

Since u, € U,, we have by (77) S(0s» ﬂr;) e T, and it follows from (78) that
Sr :
we | {xréal: o <x <),
s=1

contrary to (79). Thus for all we U, and s #t we have

#2) wlr, sy () # nlr, @)
Assume now that (74) holds. Then by (80) for every s
(83) re S(“rav ﬂr.s') .

Suppose that f(£) = 0, £e P\[0}. Let o be the least integer <im stuch that
é s= min(e, ") = (@™ %) = () +m—2)v ().
From the ultrametricuproperty of v we infer the existence of a fiz>2 such that
Q= U(aﬁﬁm_ﬁ) = v(ag)+(m—pe(d).
It easily follows that
(84) v(8) = g0, B, u0)>0 ue S, f) .
Since ue U,, we have by (77) S(«, f) € T, and by (78)

and

s
{xreal: a<x<fie U {rreal: o <x<fig).
B s=1

Since by (79) the intervals on the right-hand side arc disjoint, there exists an sﬁs,
such that :
ars<a<ﬁ<ﬂrs *
By (83) we have ne S(x, B) N S(0, B and by Lemma 16
q(@, B, u) = g5 Brss 1) -
By (81) and (84)
v(&) = nlr, ().
Putting 5 = p ™" OWE we get y e INP and by (75) (i) = 0. Conversely, if for
some §: & 1= p™"O® pe NP and h() = 0, we get by (75) f(¢) =0, and since
n{r,sy(@)>0 also £eP\{0}. By (82) to different s correspond different valucs

of n{r, s)(w) and consequently different & This implies (76) and completes the
proof of the lemma.

DeRNITION 7. For a polynomial f(x) # 0

Ff 1= a7
Lemva 18. For an feI[x] and a ge R let

degf~1

(1A

i=]

(85) 0<deg f<m, (fs =

»

o= ord,,Jf=1,

icm°®
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Jet &, be a unique element of I satisfying
(86) FERE) =0,

and, in the notation of Lemma 17, let

(n)

=0

(87 hm‘s L f(fa +p7f<l‘-x‘f>(ug\'\.) - j;)(pn(ns)(nn)x) (1 <5ES,) .
Then
(88)  card {& & INP: f(£) = 0}

S

3, card{& e INP: B, (&) = 0}.

s=1

=card{pe R: FO,. 4 [(X)|y=q = O} +

>,

e R\{0}
Ofdyemg HTZ2

Proof. The existence and the uniqueness of &, follow frora Hensel’s lemma.
Further, we have

card{& e INP: f(&) = 0}

(89)
= 3 card{lelr f(§) =0, &= g}
eeR\{0}
= Y and{fel f®) =0, &=o}+
ordiil:%((flll
+ Y card{€el: f(&) =0, E=g}.
QERN[0} .

ordym g WS 22

By Lemma 9 and Definition 7 the condition ge RN\{0}, ord,—,.#f = 1 is equiv-
alent to

FO LA (X) =g = 0.
On the other hand, the condition
felif)=0, &=g¢

is in the case o = 1 equivalent to & = &,. Thus the first sum on the right-hand side
of (89) is equal to the first sum on the right-hand side of (88). On the other hand,

Jolx) = f(Eq+x) .

Thus f(x) = f(x~E&) and f,(0) = f(£,). Since by (86) S a-1g) = 0 and a2, it
follows by (85) that f,(0) % 0. Thus

card{EeI; f(£) = 0, £ = g} = card{ne P\{0}: fi(n) = O}
However, by (87) and Lemma 17

card {n & P\{0}: fy(n) = 0} = ilcard {& & INP: hyp(€) = 0} .
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Thus the second sums on the right-hand of (88) and of (89) coincide and the lemma
follows. :

Lemma 19. If A € Co(m), f(x) = Z a,x""* rhen
)
A= a( )€ €.
Proof. For a typical term a ﬂ x5 of 4 we have

= degd, Z o, p = w(d).

#=0

m (m— ) g m
deg, I;Io<f ”(x)> =7

(m—u! | §=0

m (=) L m
w(H(f _(x_)) > = ¥ a,u=w(d),
o\ m—pt) ) i

where deg, denotes the degree with respect to variables dg, ..., . Thus Af, Xy
is homogeneous in dg, ..., @, and isobaric with respect to all the variables.

Lemma 20. If Ae Cm), h(x) = g(cx), geK[x], degg<m, ce K then
'A(h’ yl! ""J”l) = cmdcgiA_W(A)A(yl c))li AR ] c.yl) .

1
1T %
A=1

gMa

Hence

a, = degd,

m
Proof. For a typical term a [[ xi of 4 we have
1=0

m

1
= deg'4, Zo %ﬂ‘i‘;lﬂn = w(d).

b
R

[

m m
g(x) = Y bx" " we get h(x) = Y, (b, " H)x" ™"
»=0 pn=0
m 1
m 1 L aum-p)- £ Ba
[T by [t = e[ 0 T e ™45
n=0 A=1

Since the exponent of ¢ equals m deg*A—w(4) independently of the term, the
lemma follows.

LemMA 21. Let a,,b,, ¢, €= g, K,, L, eI[y;] (lsp<p),
U(Lu(é)) = V(L )>’U(K) = U( u('f))<°o’
L

= +1
a, = =5 mod PUE T,

R (3]

L(yy)
. = LA £ Tury
Vie1) uZIK (J’1)b H Yi¥1 H K1)

q”;,GNO )

A(yy, -
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Then
"

(90) A Z a.b, n Vi) = A, ¥y ey Piad) ‘H[ ,(5)

(the operation A" performed dfter the substitution of y, =
Proof. The assamptions imply for each p<y,

o HOLAD) = LABLYymgs  #(KfD) = LHKLlyrmeg-

Let o(L,)—0(K,)-+0o(h,) attaing its minimum for pe S precisely. Then

¢ into K).

AU‘I,# ey 1'H l‘) = Z ”/)/['bulm J l) I—_[ J\ﬂu«11 H ‘g‘/[I(\r(J 1)

VEL

On the other hand,
LA ( Z ayby l] 1) II K (&) =

and (90) follows from (91).

LemMA 22. For every two nonnegative integers m and n<m there exist finitely
mam' forms M™a) (i<iy) and polynomials N@, V1, ¥ (G<hns KSKT

<O with integral cocfficients, a decomposition

1

1
ZS-V/uL"(é) ;H Y H HEKL(E)
e =1 #p

(92) Nh = Jul vy

and Ny-valued functions Y""(j, k, 1y defined on Vi"™ with the following properties
(the superseripts are omilted):

(93) M;e Cy(m),
if charR == 0 or chatR>m,

Niw & Clm);

F) e I[x), O0<deg/<m, all zeros of LAY except O have multiplicity <n,

) dog_f-l

(94) (&), ﬂ 7)) =1,

(95) vz [o(M(), s o (M ()] €V

and

96) NJ“(J,“ e ) imm ”/)‘%/-ij(fa pvu.k.l)(v)yl’ '."pv<1.k,l>(u)_],l) ,
then

ky bpe
97 card{¢ & NP: f(&) = 0} = 2 card{[n,, Nz -] & R '/\Njk,(m, wsd1) = 0}
K= =

The polynomials M}™, Ny, the sets V™ and the fimctions V"¢j, k, Iy are independent
of K, v and p.

Proof by induction on n. Suppose first that = 0, Then we take i = juo = 1»
M™ = uy, VI = N, kI° = 0. Both sides of (97) are equal to 0.
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In the inductive step m is kept fixed; thus the polynomials M7™, N7, the
sets V™ and the functions v™(j, k, 1) will be distinguished only by the super-
script #. Also, we shall ‘write 7, j,, k7, [T instead of i, jum, k5", T We shall use
formula (88) of Lemma 18 and consider first the term card{g e R: 70,.4/f(x)|
- 0}. o

. We have # e Q(N_) and thus, by Lemmata 8 and 11, #0,.% e Q*(N_). Hence
there exist polynomials 4,, B, & Cy(m), C, & Ci(m) (1<ty. usuy) and a decompo-
sition ‘

x=g

o
' N?‘—“ U T,

u=l

(98)

such that if

[0(41(f)), s V(A ()] T,

then
B(f)#0, %%;2 Ix]
and
CAf, %) Cf, %)
99 0\ Hf = F ———t = .l ,
99 FO,Hf B 5.0

Consider now the term card {¢ € INP: k(&) = 0} in (88). As we shall show, all

zeros of M Ay, except 0 have multiplicity less than n. Indeed, by (85) (#)®(E,)
# OmodP; hence by (87) '

deg Mhy,<ord, LA L(E,+x)<a<n

and, if the multiplicity of a zero ¢ of My, were n, we should have
j (n)
LA b () = ”—JT@Q (=LY,
n!

However, also by (87)

ERrrN)
.Q”Ji’hm,s(x) = Z (“Kf): (f‘l),pﬂ("v”(l’a)(ﬂ"") 3

Wl

Comparing the coefficient of x"~* in the two expressions for &.%" s and using (86),
we find { = 0. In view of (87) and (94) we have also

degligrs—1

(h@rs) ]___[
i=1

By =1;

icm°®

The number of zeros of polynomials in valuation rings 75

thus the inductive assumption applies to I1,,,. Accordingly, we shall apply Lemma 15
to the polynomials f; = £ B, f, = f and the following polynomials g,:

/\:1 .\ éEl . -1 m—1
f(i)(.‘v') (O\<_Z$I1), -A'[y: (fa x) (iéin—l)’ Njhlg(f: .\“) (Jgjn—l:kgkj ’léljk
o a=[41,.. q1€ NS,

F ] .
-1 ; o ATl ,

where N is the coefficient of []r§* in Nja'(a,ys, . 30

‘ =1

gyt g <N 'Y,

Therefore wo order all vectors [, k, I, g] in question lexicographically and
let [j,k, I, g] (j, k.1, fixed, g variable) occupy the places
Ak, D+1 to ALKk D+ p(, kD)

The relevant vectors g will be denoted by q(j, k, I, i) (A<u<p (7, k, 1)) and the
Jth component of ¢(j, k, 1, 0 by q(j, k.1, p, ) (A<i]).
If [/, %, 1, q] occupies the vth place, we shall write

- -1
N}'mql =N, <20,
so that
[EAR ! .
- . , -1 A3k A)
(100) Nja'a, vy v = 2’1 Nig (@) ;HIU A
. n= -

Now we set in Lemama 15

jm~—x+1 if 1<x<m+1,

n, = Aw(Mi 1) if mtl<usmtl+tiey,

k lw(N,',’:,f,..l_in_l) it mAl4i, - <n<m+1+i, +v-g =Ko

and denote the corresponding . parameters of that lemma by io(e), o(e), vo(e,
Foy Gopys Haypyr K03 757, %y, Lo, j, v, %), Tpy. Then we set

(i(l”x'""‘)(”"i) (1gx<m+1),

n=0

A m .
01 gdw) = 1 MEZA_1 (Y, a,x" 7% %) (m+1<n<m+l+ip1),
(X, A

n=

N " . .
:’e‘-‘vil -1 1(2%”\""-#, x) (m+1-|-l,,_1<n<m+l—I—z,,_1+v,,_1)
—me i
p=0

and observe that, in virtue of Lemma 19, degg, <7y

Let
{lx, v]e N*: 1<a<n, 1<y (o)}
{(peN“'z"""'): e(1)<uy, )< o(®) for a>1}, .

{1: 2) ey rm}M’

it

i

M
b
X

It
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and for ye X let
Sy = {le, v, 5]t [o, v]e M: 1<s<s0m}) »
Wx:= {1925 '“.-jn—‘l}sx'

Let us order in a sequence all triples [¢, x, ] where pe @, ye X, Y e ¥,, and
denote the jth term of this sequence by [¢;, x;» ¥,] (j<J,). For each j<j, we order
all quadruples [o, v, s, x] where l<a<n, v<v(e), S<8y0) xsk},’,;(;’v.,) in a se-
quence and denote the kth term of this sequence by [0y, Vi, Sj» %] (KK},

The sequence M} is defined as consisting of blocks corresponding to «
=1,2,..,n in an increasing order. For o = 1 we take polynomials A, ..., 4,
for an «>1 we take polynomials F,i(¢,, g1 g25 s g1 (1 SI<Ip(e0)), then all the
coefficients of the polynomials K (e, B, v, %) (gus g, X) and L{at, B, ¥, %) (g Furs %)
A<B<jo), 1Sv<rg(a), 1<%<k,) ordered lexicographically (the order of letters
being £, v, %).

Now we put for %<k,

Tapoe = 3 (deg K e, B, y+dog, LCa, £, 7, )+2),

(102) l'a/zﬂvx = raﬂvu—l +deng<“: ﬂs v, ”>+1 )
vo(e) Jo(a) vo(a)
(103) Qup 1= Z Z Farvm+1+inaqs bu/l =
A<p v=1
Jo(@) vo(a)

d, = r,
o afiym+1+in-
/=1 =1 ot

Yasym+1tinnys
A v=1
Copyi = Fypymt1in-y ™ Vapym-1 5

so that
n
iy = to+ Zz(io (@+d,).
=

For a vector u = [ug, uy,...] € N##** define Topy(#) a8 a vector whose uth
component (1<u<m+1) equals

(104) 1min {tp gt 15 oons Urgp =N Wy gy eyt 3],

where by convention co—oo = 0, and for we NE#™* -1 gy = [u,, ..., u, 1
define @) as follows. If 1 <a<n, <jo(0), v<Vo(@), Tup() € U,, 5<5, (ng{"‘:tnli)ln
of Lemma 17), then for u<m+1 the uth component wypys, (1) of @yps(m) equals the
uth component of ,5,() and for pu>m-+1 the uth component of Oypys() equals

(105) 1M {th 15 vovs Uppyd =Dty bty vy U, H

+alr, )ty @) (mdeg M 22— — n-1
where again co—co = 0. ? (o) (e Mo = (M)
Further, let us put

—~1 Capy s
(106) V(oc, ﬁ, Vi ¢> . {Fapv(Ux(z.v)zz(N-g- B if sz(u.v) == 0,
n (Dmllvs(Ux(u.v)x Vll/(u,v,s)) otherwise

S Sy (ua)
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and for j<j,
Lt 1) vo(a) baoyter
(07 Vi= Tipm* PZ(TWJ(«) X N0 ><( PL Vo, pi@), v, L Yo) X N2# ).
a= ye=
Furthermore, for j<j,, k<kj put

Aot Vs S50 s D) = Dy

(108) ”(]//j(ajln Viks Sjk)) Hiks I) = Ljkt»
‘1(‘/’1(“1k= Vis i) s Kjtes by B A = Qirraa s

A
Q09) Ko, 0y Vg, Mt T by g+ A+ 19 (@D, Nﬂ’-‘jkl’:ﬂl(as 1), 30

= jklu(a: Y1),

N\
(110) Lo @) s Ve, mt L+iym g+ At 1y (a0, N?.ﬂdlu(a, ¥1),¥1)
’ = ijlu(aw yl) »
@111)  Njala, y,) = H oy, o), Vi)

() /n\—l /n§1 ‘
@0, a5 @, @y @ ey MU @900, e % M (45 71),

s O
*N,I’ (ll, yl)i ey *an_l(a’yl)!}H)s

112) Vi, k, 1)) =0,
Hjtet

Ky T, (a y) 13
u o Ypa) = 3 2 T3 T 34 T K@, 30)
(113) Nijaer(a, vy, s Vien) “;1 Kyl 70 11;[‘ ;.+1u1;[1 o 1

and for 1<ISI by posmen += He—1
@14y vk D)
= m (g V) » Sie0 (Dapeostapovent (036 -+ O xgrsguagion+ 1 (2
+V"_1<'//;(°‘Jks Vier S > %jker Ly (a)ﬂjk(Pj(d jlg)ijSjkM'i'z(vjk) 3 ov s Dojpslagvyessom +1 +i,.-1(”jk)) ,
where, assuming v = [y, vz, ...}, we set
U ' = [Das 15+ Vatnl s

@ = o+ Ay ey T 2 Fajup sy dmet Lt by~ 19 b 1= rujpiupvpantttin-g
A<k

Finally, for j<j, I}',‘r‘u =1,
(115) N,‘]‘k;l(as yl) = Clp](l)(a‘) yl) 3
(116) W, K, 1y (@) = 0.

Clearly the sets, the polynomials and the functions defined above are ind.e-
pendent of K, v and p. Now we proceed to prove that they have all the properties

asserted in the lemma.
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The polynomials M} of the first block (a = 1) belong to Cy(m) since 4, & Cy(m),
(1< 1y). Consider now the block « for. a>>1. By Lemma 15, F,; € Co(m, m, ny, ..., m,)
while "the coefficients -of polynomials K<«, §, v, %), L{x, B, v, %)y belong to
Cy(m, m,). Since by the inductive assumption M}™'e Cy(m) and NJ™*e C,(m),
we have, by Lemama 19 and (101), g, € C,(m) (1<x<ko)

It follows now from Lemma 1 that

Fai(Guis 815 G155 Gi0) € Colm)

and the same applies ‘to the coefficients of polynomials K{a, B, v, %) (g, g, x)
and L{a, B, v, %) (g4, g, %). Hence all polynomials M} belong to Cy(m) and the
first part of (93) is proved. The proof of the second part of (93) for [ = 1 is similar

in view of (111). For I>1 we need in view of (108) and (113) to show that, for
fixed j, k and each p,

Jklu(a yl) ]:[

(117
) Kyaa, )’1) =1

R, = - (@, ¥1) € Cy(m),

the degree of all non-zero polynomials R, with respect to a is the same and their
weight differs from w(N ,{’j;,”) by a constant summand. Now (117) follows from
Lemma 19 and (109)-(110). Moreover, by (109), (110), Lemma 15 and Lemma 19,
either R, = O or

Hjret

deg, R, — 21 deg, Ky, = degaLy,—deg, Ky,
. B=

deg'L{am, oy, m+1+i,m g+ Ayg+u)+

+ ngZL< “jl» ¢j( ‘k)a m+1 +Zn—-1 +A_}"Cl+“1>degﬂM}vﬂd+ﬂ
- — deg' Koy, ¢i{oy), m+ 14i,y +Ajk,+;z>_

N\
— deg K (o, @yle), m+1+1,_, +ﬂjkl+u>deg,,N,{’;,j+ﬂ
/n\——l n—1
= dagaNA;mw = degaNlm'Fu ’

but, by (100) and (108), Nj%, are the coefficients of N-Iu(vuun s A and thus
they all have the same degree with respect to a..

Furthermore, by Lemma 1, Lemma 15 and (101), either R =0 or
W(R" - Z, W(Kjkz,,) = ‘}’(ijz,‘)“w (—Kjklu)

N
W(L<°‘jk: (Pj(yjk)’ m+]+7n 1+Ajkl+“>(*(za X" ”)(ajk—j) * dtjkl*l " JC))

-w(K( o, 048 h),'111+1+1',,_1+ﬂj“+ﬂ>(*(Zoa"x”‘-“)("”" D *N"k,+u, x))
e
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= L @) s b Ul Ayt D) — (e —1)deg! L {oyr p{ctp), m+1+
odyoy A b 1 = WK o @ (o) s A VB g b Ay D)+
g D deg! K o oy, me T,y +lj,;l~k;€>
= fyrt gy gt = W (NG, :
This completes the proof of (93).

Now we shall show that sets P} are disjoint and (92) holds. If / # j" we have
one of the follewing cases:

(118 P Qs
(119) (RS TR TRl D
(120) @y Qp, Ay =Aps Wy #E g

Tn the case (118) there exists an a<n such that

o) # @p(0), thus
hence by (107)

Topyoo O Tapper = 9

Viav=

In the case (119) there exists a pair [a, v] such that l<oc<rz, 1<v<vo(w) and
e, ) (), Whence U, e, v) 0 Uy (et v) = &, Let us observe that by (103)
and (106) for all o, 8, v, %

(121) U V(OC, ﬂ: vy X > = 'vaﬁv(Ux(d.V)) XNCWV
Wely

If ¢(0) = @) = B we have

"aﬂv(UxJ(a.v)) N '”uﬂv( Uspa) = O
and by (121)
‘ Vo, o), v, 2gs Wy 0 V<% @p(: Vs Xps ¥y =95

thus by (107) ¥V a Vi = @.
In the case ( 120) there cxists a triple o, v, 5] such that 1 <a<n, 1<v<v(e),

1sSylor, vy = gyl ¥) zmcl tp,(oc v, 8) % Wyla, v, 5). Therefore
V 1(“;“: H N V‘l’w(m.v n# D
and if f = @) =,pp0), ¥ = %) = xj(et, V) we have
WUy % Vi) O 0Ty % Vitanm) = @
Hence by (106) ‘ ‘ ‘ ‘ ‘
I ZCRTORE x,,a/lj)nVQx (p,(a),v Xprs d /j> g’

and by (107) ¥/ n ¥y =@
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Jn
In order to show that (J ¥} = » we proceed as follows. By (121) we have
j=1

j=
for every pair [, v] € M and every number f<jy(c)

U U P, Bov 1, ) —w U Uyiny) X N5 = (N ™H) ¢ NS

xeX ye¥y
— N:_ﬁcﬂvnﬂ-l‘l‘cuﬁv__ N:_u,m,.»n-:"_l

hence by Lemma 15, (98) and (103)

vo(x)

U vi=U U U(qu,(l)x P(Tw(,)xN"”‘“"“’x P V(oc @), v, x,n//>><N"“"°‘>))

eed xeX jre¥y,

vo(%)

(Tmmx P(Twp(fx)XN we@x P U P, (@), v, 1, '/’>><N"““""’))

v=1 xeX ye¥y

ll

vo(e)

R A L R )
v=1

I

PE

ll

Y (Tipay P(Twme ))- U (Tlux P( U Ty x N'%)

= Nex P Ni@H e o i

x=2

The claim that the functions v'(j, k, > (v) are Ny-valued is obvious from
(112), (114) and (116).
Now we assume (94)-(96) and proceed to prove (97), using the formula (88),
m

Lemma 18. Let f(x) = Y a,x" " By (95) and (107) we have
=0

[o(4:(). s v(Au(P)] € Tipiay
hence by (99) and (115)

JOMf = & Cof(: 1) _ LA NS, %), where ¢ #0.
Byy(f) !
“Therefore, by (96) and (116)
(122)  card{ge R: FO,Mf(x)|ze;, = 0} = card{n, e R: N}'ij(m) = 0}.
Let
g = [gly G2y ey gko] .

By (95) and (107) for each a>1, a<k,
(123) [”(Fm(.‘]u, g):)’ ey v(Fala[a)(ga, 9))] € Tuqu(u) .
Hence by Lemma 15

vo(a)

H{o, 01), v)(gas 9, %)
)
FoMI = VUI'? G{a, (), v)(gar 9)

e ®
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Therefore, if (86) holds and r and h,, are defined by (87), we have .-

124 >

2eR\{0}

sy

3 . card{¢ e INP: h,, (&) = 0}

Oy g il f (x) =0t

where

vola)

=Yy Z card {€ € INP: N, (&) = 0}

v=1geR s=1

.‘Z."/fH(oc, (Pj(a) V>(gzx. g9, Q) =0

LA H oy (@), V) (Gor 9, 0) = LA H, 90, ¥)) (G 95 e +

On the other hand,

if LA H o, o), v)(gq, g,0) = 0, we have
'%H<“: (Pj‘(a).a‘v> (92,9, x)lx=§a =0;

thus by (86), (123) and Lemma 15 for p=10,1,..,m

FUE) =

and

Hence

] @=1) @)
L<O€, (PJ(OC), v, H) (f (1_1; f(,,)’ fg) lnodl,g(ffu) (ég)) +1 ‘
K<O:! (Pj(a)s v, H> (f ) f ) ée)

‘v(L oty pyfen), v, b 1Y (FED, £ £ )

= o(L{a, ), v, 1Y, 19, %)
= v(K{a, @), v, pH1H(FET, 9, &)
= o(K o, 9(0), v 1 (FE70, f*, ).

o(F0UEY) = lo(L<ets @yla), v, et 147, fO, x))—

and by (102)-(104)

= oK 0, v, 1D, £9, )

125) wg 1= [o(/EN) woor 0(FEN] = Tapstan 0 ME41(F))s wees V(M (D

where

z = Lyt gyt Z Fapstyim+tin-y» 17 Vagjlaymt1 -
A<y

Since by (95), (106) and (107)
[U( z ] ) sees U( :Iz;(f))] € T;m’;(a)v(Ux,(m,v)):

we get

thus by (87)
(126)
(127

1y € Uy ey

r= e, V),
Tig(3) = Lp™"V ).
ors'

6 ~ Fundamenta Mathematicae CXXIV/1
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Since M1 e Co(m), we have by Lemma 20 for all i<,y

(maem"”’—w(m“ Nainsdeg) 7N

M7 (hy) = MELED.

Now by Lemma 15

o(MINS, £)) = W(L<a, o(e), v, mA 14+ (D, *M"" f, x), %)) —

—o(K e, py@), v, m+1+iy(f, *Mx"h_i(f,a x), X)) 5

hence by (105)

(128)  my = [v(/ (&),
= waw(ﬂ)vs("(M:+1(f))»

>v(f(m)(€al))a ( M~ 1("0%))
(M, (F)).

v V(Mi.m("on))]

where

2y 1= "aw(a)vm»l—lﬁ,...l .

Since by (95), (106) and (107)

[D(Mzn-rl(f))y ERLEY ”(M:'Pzz(f))] € w;lpl}(m)vs(le(a,v) X V;R:,V.S)) ?

we get
Ups € Uyay % Vi o)
and
(129) Wes 1= [0(M17 (), coos 0 (M ] € Vi)

It follows from the inductive assumption that
(130)  card{¢ e INP: B, (&) = 0}

i 1
W (v, 8)x
Nuvsnm("2=

n—1
*y 1@,v,5) -1
= ¥ card{[n;, N3, ... &€ R,

%=
where

Nuvsxlg(.vz: (X :yH-l) = -‘Z'[ 1};/(41\1 l)(harw I]”wvmla},z,
(131) Tavsnags = V' QY08 ¥, ), 2, 4D () -

Since by the inductive assumption

e PR,

M’i,_(al,v,s)ul & Cy(my,
we have by Lemma 20, (126) and (127)

(132) Navsxlg<y1> v Vit 1)
— _g‘[ij(ams)xl(n,pn(m(u \"ps>(“u)+"x\r3xlay

sMiwr) = 0},

T 22 )8 ()t Tacvam
P RITTAOBIE Pry) -
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1t follows from (124), (126) and (136) that

5
(133) > ¥ card {¢ e INP: By, (&) = 0}
eeR\(0) =1
ol e o M F B2

B 1,
» vola) Sz460,) Fyylav,m)

a—1
Z 2 z 21 21 card{[n, 13, ..., € -R'%(u’v‘s)x:

W=D eS| eR = A=
K2s "(ﬂ)‘l’](“)nvxﬂmﬂrﬂ) 0

i

n—1
Wjavsye

AN Navlatle(ﬂb ey "l—lvl) = 0}
K

It

]
=1
by card{[ny, 13, ...Je R¥* "
k=1 eeR
LA U ey RV 1k G 0 00€) =0

-1

I\ Nesonspospiallar -5 2) = 0}.
Let us consider a typical summand in the last sum. By (96), (111) and (112)
(134) -([‘%/H@‘Jk: @) 5 Viep (Faper 95 ) = Nyu(h) .

Furthermore, by (132), (100) and (108)

-1 e1 er
(135) Nu}k'\"’k!‘";%‘]k&(.}'z’ s Pra1) = ngzj(ljk;ij,Sjk)xJkl(j'n3,p Ya2s s P V14 )

[ 1 :
= 2 (S M) T D),
a=1 =
where
ey 1= o, Vi) Sjk) (#g) F Ty s ponrcde -

By the definition of /, (formula (87)) and of the operation ~ (Lemma 19) we have

(136) ij“‘u(f) }.Jk.-i‘u(f, Eg)
Now by Lemma 15 and (109)-(110)
L (f 5 ) "(Nﬁ-“‘(f-fc))*‘l
J-Jmlu(f: ¢y = R 2 mod P ,
Kjklu fs tg

'7(K,[kl(f= 3;,1)) == ')(Kﬂ(l(fs \)) » ”(ijl(fs 6@)) = U(Lihl(f= x)) .
On the other hand, by (125), (128) and (129) the relations v & VJ, orde— o/ (x) = t
imply
[rg, wea_m] = Uy = wu;kw(m)\'ﬂ‘wk(”ﬁ);

thus by (114) and (131)

ey = WG,k A () (1SALD).
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Put in Lemma 21

1
/\‘ ;.‘—2—-"'1 el jrtpd
a, = N;;kw”(fa ég) B b;z =p- " ’ .
wE = Eq: = Kjkm(f_:'J’i)’ ‘ L,L = ijm(f» }'1),*
v = s Gua = Dapa-

1t follows by (113) and (96) that in the notation of that lemma

' A(yl‘) "'9}'

g
= YA
n= 1Kjklu(f »y) =1

= N;mﬂ(}'n s Vier)

and by Lemma 21, (135) and (136) that

H-l)

klu(f:) 1) I‘I J"”»'ﬁ';“*[?vna s &t 10 et ['l’ K/Iclu(f* ) l)

[ LKL S— B——

‘ ’ Fvi ] 1‘
Jyien) = Niale, ¥as e Viat) n H Ky fs Q)

NEJI;VJkSJkkjklﬂ(yz’ e

Hence by (133) and (134)

o
Y. Y card{¢ e INP: by, (&) = 0O}
g R\{0} . s=1
ordy—gdlf>2 .
"
" jlc

Z card{[m,nl,. ]eRﬂ‘ /\Njkl(m,n,,...,

and (97) follows from (88) and (122). .

LemMA 23. Lemma 22 holds with n = m and without an) restriction on a poly-
nomial feI[x] except 0<degf<m. Polynomials M""" N dre to be replaced
by PP, Qui(i<iy, J<jn, k<], ISIR), sets V™ by W' and functions v e T
by "(j, k, 1.

Proof. We proceed by induction on m. For m = 0 we take iy = 0, jo = K
0%44(y0) = ap, @°(1,1,1>(t) = 0. Assume now that the lemma is
irue for polynomials f-of degree less than m3z1. By Lemmata 6.8 and 3 the op-
erations (f, ) and f/(f, g) belong to Q(N,xN.). Hence there exist polynomials
A, B;, D;e Co(m, n) and Cj, E;je C(m, m) (i<i® j<j® and a decomposition

7“) = 0} 1

=l?1 = 1’

ju
(137) = U
. J=1
with the following property. If 0<degf<m, degg<m and
[U(Ai(fs !1)): “ees v(Alﬂ(f: .‘I))] € Sj
then
(138) Bi(f.9)#0, Dif,g)#0
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and
ht.’:,.,,_gji{i.g_’_@ (f. 9 _E(f,g,x)
(f. 9) By(f.9) 9="p (S5 9)
Let
(139)  Cff.9.%) = Zo Ci(f, 9)x""  E(f,9,%) = ZoEju(fs gxmE
u= . p=

We take as P[* the following polynomials:

(140) P = (<i<m,

o ey

P;" = Mi-":n-i'l (m<i<m+imm);
then in the increasing order of p (= 1,2,..,m—1) and v
Aya,a®)  (<i%,

(<ip—1, ]‘gjo),
(vsim-l’jsjo))' P

P\'r"nl(cji(aa a(ﬂ))’ ey ij(“» a(#)»

PN (Ejy(a, ), ..., Eyn(a, a®))
so that
iy = m=1 i+ + 2% ) (m—1).

Further, let us order in a sequence all quadruples [a, 8.7, 81, where 1<a<m
1LB<j% 1Y hn-1, 1 K01 and call the vth term of this sequence [x,, By, ¥v» 5]

(v<jp). Let v = [vg, ..., v;,]. Then put for F<in
(141) W= N&™ ' x {0} x NT7H° “4xN*mm*“"*”"‘m-*M")xs,, S
XNZ’m-'l(ﬂj 1y va; LV, Wa,- fo"‘”‘("o ﬁj)+(nﬂ+zjfl"‘ m—3—aj)

and for k<Kl I<ipt o=l

(142) O = Qi (Cpp(a, 4, s

(143) G, ko Dy @) = " s ks D ()
V7 ) 2= Ll (042 0 )@= D+ 20 (B=1) .
If o =1 we take kj := k"‘"1 but if a;>1 we put further, for kSIk;;;“i, %,

:yl):

Oy 1= [0 s

Comla, a®, yy, ...

where Uy b e o>

Kyt kgt o=k, 1<1"'k‘L o= Tjis
(144) QTkl = lejkl (Eﬁﬂ(as a( J))n e E/}jm(a: a(“‘!))’ hZTRE yl) >

(145) Qm<jy k; I) (”) = Qg'_[:ll (”,’I)a where v;" .= [vrj+i‘m..1+1’ ey vrj+21m-;] .
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If j": <j<j"ﬂ+jln"l = j"l we takc

(146) ij - N(;n-—l ><N,(,.”'_‘)(w“mm’”“’"“‘

and for k<kjZy, = Ky, 1<y g o= Lk

(147) Qi = Ni%ia

(148) o™, ke, 1D (8) = 9" (j—jms k, ) (v}, Where

vy i= [vnn s Um-Hm,.‘--il .
Clearly the polynomials P}", Qjk, the sets w)' and the functions ¢"(j, k, Iy are
independent of X, v, and p. We proceed to show that they have all the properties
asserted in Lemma 22 for the polynomials M{™, Nj', the sets y{" and the func-
tions v™{j, k, ).

The relation PMe Cy(m) follows for i<m directly from (139) for all other
i<,y from M™™ e Co(m), and for iz m+ iy, from the properties of 4,, C,, E,,
‘the inductive assumption and Lemma 1. The relation Q% e € (m) follows for
j<jn from the properties of C,, E,, the inductive assumption and Lemma 1, and
for j>ji, from My e Cyim).

If j<j'<j. we shall show that

(149) WiaWwr=0.

Indeed, we have the following possibilities:

1) j<in» D J<In<)y 3) Ju<.

In case 1) we have four subcasés: la) o # op; 1b) oy = ay, B # B 10
=ay, B; = By 19&71' 1d) oy = ay, By = Bps v = 7y 51?551'

‘ In case la) the projections of W}* and W}/, on the axis of mm(ac,, ay)th co-
ordinate are in some order N, and {oo} and hence disjoint.

In case 1b) the projections of W}* and W} on a suitable linear space are Sy,
and S, and hence disjoint.

In case lc) the projections of Wj" and W} on a suitable Jinear space are Wy
and W;’;,' ! and hence dlsjomt by the inductive assumption. A similar argument
applies in case 1d).

In case 2) the projection of W' and W} on the axis of ayth coordinate are {oo}
and N, respectively, and hence disjoint.

In case 3) the projections of W}* and W on a suitable lincar space are Vj7j,
and VP, and hence disjoint by Lemma 22.

In every case (149) follows. On the other hand,

i im va
Uwr=Uwjio U
‘. J=1 J=1 J=ir 1

m
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Now by the inductive assumption and (137)-

e i
U= U5 x (oo x NG e P30 5,

2 - 1By~ 1) m-1 m-—
xNi X Wyt x Wy,
mel B jo o

=U U U U OV x{oo} x NE7H bt 420teit g
a=] f=t yml d=1

1 x Nifm-x(j“"ﬂl)-l-(i“+2]°im_x)(m—-u,—1))

XN.%.""“(” 1y W;ﬂ"'l v W‘;n—l xNiim~1(i°—ﬂ)'l-(i0+zl°im~1)(m"1"1))

m=1 0

U U (NG x{oo}x N

am) =i
N%n-x‘l“ﬂmu(i"ﬂ')"“ (l“+21°1m-1)(m—a—1))

]

L=k dpgt (10 200 1) {a1) % Sp % Ni"m-x(ll— Dy

m—~1

= U (Ng™ % {c0} XNg:—1-u+fmm+(i°+2101,..-1)<a—1)+i+zj°i,',._1+(w+zj°i,,._1)(m-a—1))
m=1
— ( U N()' X{OOIXNM 11— )xNimm+(i°+ZJ°lm_1)(m—-!)
a=]
Jin
U Wm = Ngx*‘l xN_i‘,_mn+(i°+Zj°lm-;)(m—l.)
T '
Hence
Jne m-1 ' ' ’
" N - - - jOi, -
U = (U NG {0 eVITH 7o) 0 NGy sVt (A0
- P

and in order to show that
jm

Uwp = N

j=1
if suffices to notice that

m-

(No x {0} x N¥™47%) U NG~ L= Nt
‘The claim that the functions ¢"{/, k,[) are NO valued of W} follows by (143)
for j<jj, from the fact that "~ *(y;, k, ) and g"~'(8;, k,I) are by the inductive
assumption Ny-valued on W™* and Wy ™" respectively.

If ju <_/-€],,, then by (117) g"'( j, ke, I is Ny-valued on W' since, by Lemma 22,
9" s &, Iy s such on P72y . Assume now that

) = zax'"“"eztxl, FE0

and

(150) v =[BT, s oL € W
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We distinguish three cases:
W' <jms oy =1;
(i) J<m> 5> 15

(i) >
In case (1) we have by (140), (14[) and (150)
ao=0 Cor tes(fof) =0,
[17 l(fxf)):'vs U(Aiu(fr f’))]'esﬁla
S0 [o(PETHCoa(fs S )s v ComlFs s - L
‘ o v(Pim_l(C,,ﬂ(f, I s Colfs f)Y] € W32
Thus
12 ..  deg fi(f,f)<m
and by (138) ‘
e LGRS X)
B; V0 d 2
J(f: f ) #* an (f,f') Bj(f’ f’)
By (139) and (152) © - - :
(s3) Colfs £ = %, Coal £157".

Since charK = 0 or charkK = charR>m>dcgf, each zero of f is a simple
zero of FICE and we have

o
=0
7. ’) }
= card{{ e INP: Cy (f, f, &) = 0}.
By the inductive assumptions and (142), (143), (151) and (153),

card {& e INP: f(£) = 0}

-1 m—1
Ky

vk
= 2, crdlirne, JeR% [ ZH OOt 1

o~ 1 kI
pe vk, by (). I)Iy,1=n,\ = 0}

card{¢ e \P: f(£) = 0} = card{¢ e I\P:

UL YCTR A 3
' %), o < )(w)yl’m

4

= kzl card{[m, N2s - ]E Rj

/\(ijl(f LEVRD
In case (ii) we have by (140) and (150)

M) = 0)}.

a, #0, r1es(f,f)#0
[U(Al(f"f(aj))s

res(f, /) =0,
wis 0(dpe(f, F*)] € Sy,

icm
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(154 [PV (Coalfs 9%, s Cul fs FO), R ;
- S O(PEACaa (F SO, s Col £, SO ] € W32,
(155 [o(PY T (g (S, f‘“’), s Bl £, FE)),
ees 0(PEAER (s S, ey Byl £ SO0 € W35
hence
(156) (fufy=1, (%1, degfl(f,f*)<m
and by (136), (137) .
(157 By(f, S #0,  Dy(f, f®) # 03
. f */l (fs f x_) (®) Ep,(f,f ,x)
as8) o gem = g gy 70 I =T ey
By (139) and (156)
(159) C[I_,(f! f(uj)= x) = 21 Cﬁju(f’ f(al))xm—“’
e
(160) Eylf, £ 5) = ¥, B (S, FERxmh,
; B= .

Since (f,7") = 1 f has no multiple zeros in K, thus

card{¢ e P & =0} ) |
s ;("J))(f) }+card{§ e NP: (f,f) (&) = 0}
= card{& e INP: Cp(f, FE, ) = 0} +card{¢ e INP: Ey(f, Fe, 5) =0}.

By the inductive assumption and by (142)-(144), (154), (155); (159) and (160)-

= card {E e I\P:

we have
card {£e INP: f(6) = 0}
km— 1 m— 1

/\ j-%’ kal (*Cﬁj(f’ f("U)’ x):pom—](”’k’l)(vﬁyl,

m I =
, 7 ks >(w)yl)lu=”z = ()} +

}: card {[n, Ha> 1 ER frh

m~l 1'""1
'J’;l ok nr— 1
o+ Z card {[f(, N2s ]ER Chl 14:\1 LA Qs

= 1okl (0)) _ =0
.*E/U(f, f(“J)‘ x), p* 1(01'k'1>(vj)y;s _"’p‘e N u{yl)|y4=na‘“ 0}

ky . 4l ”
= Y card{[n, M2 .]eR™: /\1Q1k1(’11, e 1) = 0}
k=1 =
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‘In case (iii) we have by (140), (146) and (150)

o # 0: 1.cs(f:f(a)) 7& 0
vo = [o(M"™(f)), ...,

for all positive a<m,
o(Mim(M)] € Viti, ;
thus
r-1

¢ ) =1

a=1-

Applying Lemma 22, we get
card{¢ e INP: f(&) = 0} |
k"‘_"l‘" i
U
= k; Calfd{['lx, f2, ] R’ vj'"k: Tﬁ’j;‘kl(il[, et =0},
where

mm

j—j;"m()‘n ) = .?.WN}"l"j;"kl(f, P?T"mu_j""'k'b(m).l'x, -~~»Pvmm(l—J"’"k"xm}'z) .
By (147) and (148)

N?Tj;nu(}‘u s ) = Q%x(}’n wo VD
and the proof is complete. ‘

LemMaA 24. Let fe Z[x}, h(f) be the height of f. Denoting by p a rational prime,

by a bar the residue map Z,— F, and by a double bar the residue map Z[[1]] -
~ F,mod¢t, p, we have ‘ :

@) =7y
.[/n{l if p>h{f)

\ ord, f(p) = ord, f(t).
Proof. We have ' K

w @) =10 = 70) = 7).
If h(f) =0 then ord,f(p) = ord, f(t) = 0. If p>h(f)>0 then

@) =19, g0 #0, p>hig)=lg(0)

and
ord,g(p) = ord,g(0) = 0 = ord,g (),
ord, f(p) = o = ord, f().
§ 3. Proofs of the theorems.

Proof of Theorem 1. Let r,, 5,, have the meaning of Lemma 17 and j,, k7
of Lemma 23, and for positive integers r<r, let

4= {1,2,..., j e,

icm°
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Let us order all quadruples [B,7,8,¢], where B<r,, y<j.. €4, ee{0,1},
in a sequence and call the jth term of this sequence [B;,7;,d;, &) (j<j*). For
each j<j* let us order all pairs [s, 1], where 1<s<Cs,, 1<t<ky ), and call the
Jkth term of the sequence thus obtained [sy, t;] (k<kj—g;). Then, using the no-
tation of Lemma 23, set i* = i,+m+ | and let 7, N¥—Nir be a function defined
by the formula

(161)

TM(YUI yoeeey U;m) = [Um+2: LEXE} ”l*]+
+ [mdegPT —~w(PT), ..., mdegPp, —w(Pr)n(r, 5) (W),

. U= [y, s Upeal-
Moreover, put
a<gigm+1),

(m+1<i<i®), S

)’"x-—l

R, =
aen P
for the sake of cxpediency N, := {co} and for j<j*
By ‘
(163) X, = ((Up,n (NFx N )X N 0 (N X W A st 54 (Wisy) -

Further, for k<kj—e;, 1<y 1= B PUt

(164) Sjkl = Q:s",(s,.‘)nkh

(165) o (®) = 1By Sy W) +"C8(5 s 1> (th,0,(0) s
if ¢; =1 then put Ing = 1;

(166) Spon(ye) =y, oppn®) = Y
and if kj<k<kj+ky, 1= k;, 1< i, v = Ly then
(167) S = Qp—kin»

(168) apa = 0"y k=K 1.

Clearly the polynomials R, Qe the sets X; and the functions g deﬁned
above are independent of K, v and p. We proceed to show that they have all -tt}e
properties asserted in the theorem. The claim that R; are forms and Sy polynomials
with integral coeficients follows from (162), (164), (166), (1'67? anfi Lemma 23.
In order to prove that the sets X are disjoint let j<j'<j* and distinguish four cases:

1) B; # B> 2) By = By v # Vi 3) By = Bys ¥ = Vs 8 # 8y, 9 Bi= By,
= vy 0y = Oy 8 F 8

In case 1), by Lemma 17, Uy, 0 Uy, = 9, and hence by (163)

(169) XjﬂXj/= a.

In case 2), by Lemma 23, Wy 0 W,, = @, and hence again (169).
In case 3) there exists an s<sy; such that §;(s) # J(s)- Hence by Lemma 23

Wi 0 Wipe = @
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and, since f; = ﬁJ we have also
Tﬂjs(Waj(s)) N, ""p, s(WaJ (s)) =
Whlch by (163) 1mplles (169).
" In case 4) N,'N N, =, which by (163) again implies (169). On the otlier
hand, by (163), Lemma 23 and Lemma 17

J.LJI =40 U U (T, A WEND % NE) o @V Wy o

Py ySJm dedy ue{O 1}

£
n 0% i)

= Ul@naix U N»>)><N'")n NI U W"‘mﬂm(U )
r<ry, o<
A PN AN =(U Uy =

The claim that the functions oy, are Ng-valued on X, follows dlrectly from (165),
(166), (168) and Lemma 23. Assume now ‘that

f=F awren, 40,
and =
(170) v = [o(Ry(), s v(Ris())] € X,

By (161) and (163) we have

u= ["(ao)., ey D(am)]e lfllj ‘

and hence by Lemma 17

%
(171)  card{EeP\{0}: f(&) = 0} = 2’ card{¢ e I\P: f(p™P»"W¢) = 0}
. . R . =1 ’

’l;o compultle )fhe right-hand - side we apply Lemma 23 with [ replaced by
J? o= f(p™Er M%), Since PT'e Cyo(m), Qjia € Cy(m), we have by Lemma 20

my o8 my 2B 1,8 @) (m deg PT — w(p)
Pi (f) = Pi (f)P il ( deg P~ w(P ))’
(172) Q:i'}tl(fs: Yis s V1)

= QR i Ot ),

hence by (161), (162) and (170) ,
‘ N [oEU)s v 0RO = ).
Thus by (163) ,

[o(PTCFY), ...

SOELN e Wy (1<5<sy).

icm
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This implies by Lemma 23 that
173) card{ée INP: f5(¢) = 0}

m

ks () oo Bt . L o
= 2_‘,1 card {[ny, 12 --v-] e RO z/=\1 ,sfg}ifQ:;‘j(sm(f" prOIIL gt
“;pa<ﬁj(5).t,l>(rpjsu-))yl)[“=n = 0} .
Using (171), (173) and (164), (165), we get
- card (& e PN{0}: f(&) =0}
99, ¥ayt5) k. s .
- 2 % el e 1RO N 2 0yl £, PP DIy,
= ...,p"(ﬂ”)(")“('ij(s)”N‘/’fs(")),l’l)ly,‘_,m
Kyt ‘ ‘ ‘ ‘

Z cdrd{[m,nz,. ]GRZ" /\gjkz(f,ﬂxw 1) = 0}"

where for all j, k,!
(174) S’jlcl(f; Py en ¥ 1= yfsjkl(f,Pulkl(U))’11 .o p”’“‘"’y)
If & = 0 we Hlave by (162) and (163) v(a,) € Ny; thus. f(0) = a,, # 0 and

. card{£eP: f(&) = 0} - card {¢ e P\{0}: f(&) = 0}.
If g; = 1 we have by (162) and (163 v(a,) € N, = {c0}; thus f(0) = a, =0 and
by (166)

card{¢ e P: f (&) = 0} ~card{¢ e P\{0}: f(§) = 0} =.1 = card{neR: n = O}
= card{ne R: S;;a(fo 1) =0} .
Since in the lattér case Ijk3 = 1, we have in both case§
K

e -, ;
(175) card{£ e P: f(&) = 0} = kzlcm'd{["" 35 u.]eR“"‘: l/=\15m(f, My e )= 0}

On the other hand, by (163) and (170)
ve Nyt x Wy
hence by (162)
[o(PYCS))s - (PR € W
and by Lemma 23
(176)  card{é e I\NP: f(&) = O}
iy

J o
= Y card{{ns, 13 - R“k 1) =0},
K=1

/\ Q,anlcl(f7 NisNzs o
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Since I = ;4 and by (167), (168) and (174)

Q;f',kz(fa Nis vy M) = gjrl'c‘}-l-kl(f: Niseees 71) 5
it follows from (175) and (176) that

ki Lk
card{feZ: /(6) = 0} = 3 card{fno,na, 1R ASulfiseom) =0,

and the proof of the theorem is complete. C
Proof of Theorem 2. For a polynomial G € Z[x], let 1(G) be the sum of
the absolute values of the coefficients of G. Take
ey (m) = max{I(R), I(Sy)}+m,
c;(m) = max{degR,, deg, S} ,
where the maximum is taken over all polynomials occurring in Theorem 1 for a

given m. Let
m

Flx,t) = 3 a0

n=0
If p>c (m)I(FY>™ we have

h(Ra())<I(R (@) <UR) max 1(a,) 'S <oy (m)I(F)*™ <p;
0gpsm
thus by Lemma 24

a(t) = [aO(t)ﬂ ey anl(t)] .

Q77 ord, R{a(p)) = ord,Ra(1)).
Similarly
(178) ord, S;u,(a(p)) = ord,Sy,(a()),

1
where for 4 = [g;, ..., ¢} Sju, is the coefficient of ] y% in Sj,.
A=1
We apply Theorem 1 twice, namely for K = Q,, v = ord,, P = (p), and for
K= Fp(.(t)), v = ord,, P=(z). In both cases R = F,, but the operations A’
and % in the first case and in the second case are different and we shall denote

them by ', &, and A, &, respectively. It follows from (177) that for p>e,(m)
I(F )Cz(m) >m )

ford, Ry (a(p)), ..., ord, Ru(a(p))] = [ord, Ry(a()}, ..., ord, Rp(a(t))] = v.
Put
(179) Shetlts ¥ 15 ves 1) = Sy a(t), 15O p oy
If ve X; we have by Theorem 1

(180) card {¢eZ,: F(¢,p) = 0}

7] Lire
— 1 P
- k=21 Card{[lh’ 7!2: "'] € Fp'"‘: l/_-—\l!fp 'KpS}kkl(p! P vees J}I)IJ').“'M = 0} R

icm
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(181) card{£e F[[]}: F(&, 1) =0}
ky . Iy .
= "211 Ca.l'd{[l]l, M2 "'] € ijk: l/—\j '9‘03 ‘%ltsjkl(ts Y15 '~-5J’\I)IYA=:I& = 0} '

Now by (178) and (179) ’

ord, SHu(p, V1o wvos 1) = Ordy STt ¥1s ens 1D 5
hence by the definition of the operation %~

Ay SHPs Y1s e VD) = H STty F1s oo Plemp -
Taking in Lemma 24 for f all the coefficients of S}'L, viewed as a polynomial in:
Py oo Y1s WC geL

Ly ySHAP, Yis e 3) = £ HoSTalts Yis s 20 s

and the thecorem follows from (180) and (181).

§ 4. Examples and comments. We shall give explicitly, for m=1,2,3,.
polynomials, sets and functions whose existence is asserted in Theorem 1. By con--
vention v = [vy, U3, ..., U], 00 = Omod6.

me=1:i*=0, %=1,k =1l =1 84, =ay +a;, 6,0 =0.

m=2:i*=4, R =a-; (i=1,2,3), Ry = a3 —dagay;

J* = 6;

X, = {oo}*, ky =05

X, = {ve Ni: vy<min{og, »}}, ko = 0;

Xy = {"ENf: V32U, <o), ky = L 15y =1, 8314 = agx+dy, 0311(0) = V3~ 023

X, = {ve Ni: v, <min{v,, vs}, 04 = 1mod2}, ky = 0;

X; = {ve Ni: v,<min{v,, vy, 0>v, = 0mod2}, ks=1,
= :‘%_'RM o511(0) = Fua;

Xg = {ve NINXy: vy <min{o, 03}, vy = w} ke =1,1s =1, Sex1 = yi-Ry,
oe11(0) = 0.

m=23:i*="T R=a.;{i=1,2,3,4,

Rs = 3(3[10(12—(1f), Ry = 21/?—9a0111112+27a§a3,

Ry = a2al—daduy —haoal +18adyayay — 270543

J*=13;

X, = {o}’, ky = 0;

X, = {ve NJ: vy<min{o, vs, st} k= 0;

X,={ve NI:vyzos<min{og, vpth ks = 1,12y = 1, S5 = a,y1 3, 0311(0)

Isy =1, Ss11

= by=03;
X, = {ve N]: min{v, v} 20,<0;,0, = 1mod2}, kg = 03
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X5 = {veN]: min{vs, 0,} 20, <0;, 07 = 0}, ks = 1, Is; = 1, S51( = 2a,,+
+az, 6511(¥) = v3—03; E
= {ve N]: min{os, v} 25,0, coyuy =0mod2}, ke =1, lgy = 1, g,
= yi—Ry; 0611(v) = vq;

X, = {veN]: v,<min{v,, v5, v}, 00>20>3vs; vs = lmod2}, ky = 1, I,
=1, 871y = Rsy1+Re, 0731(0) = v5—0s;

Xg = {ve N]: v,<min{v,, v3,v,}, 00>206>3vs, vs5 = 0mod2}, kg = 2, lyy
=1, lgy=1, Say = R5y1+-R6) og11() = V6= s, Ss21 = ¥}+Rs,
0821(v) = Jvs; :

Xy = {ve Ni: v,<min{vs, v,, 1J4_} 206<3vs, vg ¥ Omod3}, ky = 0;

X ={veN]: vlsmm{uz, 3, Uy}, WK 3vs, 0> = 0mod3}, kyy = 1, 1101
=1, S10,1,1 = ¥i+Rsyi+Re, 010,1,1(0) = $vg;
Xy; = {veN]: v, <min{vy, vs; 04}, v5 = L0>v5 = Imod2}, ky, = 1, Lign=1,
Si1,1,1 = V15 O11,1,1(0) = 05
X;p = {veN{: v,<min{v,, v3, vy}, vs= 00>0vs = 0mod2}, ky, =1, Han
=la2 =1, Siz,1,1 = ¥1, _012,14(.‘7) =0, Siz21= yi+Rs, 012,2,1(0)
= 4vs; ‘ ‘ .
X5 = {UeN-Z\XI: vy Smin{vy, v3, 04}, v5 = vg = w}, k=1, liap=1
S13,1,1 = V15 013,1,1(0) = '
Let us observe that for m = 3 R, is the discriminant of the cubic form F(x,»
= Z a,x*~%" while Ry and R are constant multiples of the Cayley invariants

of the quartic form yF(x, y). The inspection of the data given above sl}ows that
in every case where k;>1 we have [, ='1. Therefore it is of some interest to exlibit
for m = 4 the case where Iy = 2:
2(ao) =0, v(ay) = 0, Io(a)>}v(y) = dv(ay) e Ny,
v(ay)—3v(a,) > v(a* —daga) —2v(a,) € 2N .
Here k; =1, ; =2,
Spy = 2oy +dy,  0;1,(0) = $v(ay),
Sita = J’2+(4ﬂoﬂ4‘a§), 0712(0) = {v(a5—4aya,) .

Again in this case there is no variable occurring mmu]taneously in S;;( and ;5.

The first case encountered by the writer in which /\ S’J,,,(rh, <., 1) = 0 is a system
of interrelated equahons occurs for m = 6 and f of the type g(x)*+ph(x), g,k
e I[x].

Finally we remark that the method of proof of Theorem 1 leads to a similar
theorem about congruences modulo powers of P. Namely, we have
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THEOREM 3. For every me N there exists a system of forms R (a) (i<i*) and
polviomidals Spa, yis .0, ¥1) (JEJ*, ksk}*‘, I< l}’,‘,) with integral coefficients, a de-
composition

j**
NxNL" = | X}
i=j
and No-valued functions a’fkl(v) defined on X}" with the following property.
If charR = 0 or charR>m,

Jx) = E ax™tellx], f#£0, a=][dg...a,],

=0

v = [n, o(R}(@), ..., v(RE(a))] € X,
and »
Bt Yye v ) = LA Shala, pla®yy, . plawryy

then the congruence
’ f(x) = Omod P"

is solvable in I if oﬁly if for some k<k} the system of equations

Shalty, nm) =0 (I<ISIY)

is solvable in R. . _
The polynomials RY, Sh. the sets X} and the functions a3 are independent
of K,v and p.
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