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Resolutions of spaces and proper inverse systems

in shape theory
by

Kiiti Morita (Tokyo)

Abstract, Tt will be shown. that the two notions in shape theory, resolutions of spaces in the
sense of 8. Mardedié and proper inverse systems in our sense, are essentially equivalent.

1. Tntroduction and statement of results. Let Top be the category of topological
spaces and continuous maps, and Pol its full subcategory of polyhedra. Let us
denote by HTop and HPol the homotopy category of Top and Pol respectively.

Tn the pro-homotopy approach to the shape category of topological spaces,
which was introduced in our previous paper [10], one assigns to each topological
space X an inverse system in HPol which is associated with X in the sense of [10],
while in the approaches of Mardegié-Segal [6] and Fox [2], which are concerned
with compact Hausdorff spaces and metric spaces respectively, these authors assign
to X inverse systems of ANR’s for metric spaces in Top with X as their inverse
limit. To prove the equivalence of our approach with those of these authors for
the respective cases, we have introduced in [10] the notion of proper inverse systems.
Here we recall its definition.

Throughout this paper, let X be a topological space and {X3s paze» A} an in-
yerse system in Top, and let {p,}: X - (X, par, A} be 2 morphism in pro-Top, i.e.,
Pt X =+ X, is o continuous map for each A such that p, = p; par, for A<A Let
us denotc by N the operation of taking the nerve of a cover.

DrNeron | (Morita [10]). {p,} is called proper if condition (P) below is
satisfied:

(P) For any A€ 4, any normal cover ¥ of X and any normal cover # of X,
there cxist a g & A with A< and a normal cover % of X, such that pyl(#7) refines

@, ¥ refines py, (A) and N(#7) is isomorphic to N(p; ' (#)) by the map V i)

for Ve ¥

In [10] this definition was described on the assumption that X is an inverse
limit, but this assumption was not used actually in the statement of the definition
as well as in the proof of [10, Theorem 1.9] and [13, Theorem 3.1]. Thus, it is proved
actually by [10, Theorem [.9] that if {p;} is proper then the inverse system
5*
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{X;, [p:], A} in HTop, which is obtained by the application of the homotopy
functor, is associated with X.

Definition 1’ below is 2 modification of Definition 1, which, however, remains
to be equivalent as will be shown later, and is included here for the sake of com-
parison. ‘

DEFINITION 1. We shall say that {p,} is weakly proper ift (P") is satisfied:

(P') For any 1€ 4, any normal cover & of X and any normal cover # of X;
there exist a u e A with A< and a normal cover ¥ of X, such that p,‘[' +7) refines
g, ¥ refines py, () and p; (V) # @ for each Ve

DerNITION 2 (Bacon [1]). {p;} is called complemented if (By) and (B,) below
are satisfied:

(B,) For any normal cover ¢ of X there exist a Ae 4 and a normal cover %
of X, such that p; () refines .

(B,) For any . and any open neighborhood U of p,(X) in X, there exists
a pe A with A<y such that p,(X,)=U.

The condition (B,) was weakened to (B3) below by MardeSi¢ [4].

(By) For any Ae A and any open neighborhood U of Clp,(X) there exists
a peA with A<p such that p, (X, )= U.

Here we make a further modification of (Bj) which is really distinct from (B3)
as will be shown later:

(B3) For any AeA and any open mneighborhood U of Clpy(X) such that
{U, X;—Clp,(X)} is a normal cover of X, there exists a ue A with A<u such
that p, (X,)cU.

DEFINITION 2*, We shall say that {p,} is weakly complemented if conditions
(B,) and (B}) are satisfied.

Recently Mardesi¢ [4] gave the following definition.

DEFINITION 3. (MardeSi¢ [4]). {p,} is called a resolution of X if conditions (Ry)
and (R,) below are satisfied:

(R,) For any polyhedron P, any open cover % of P and any continuous map
S+ X — P there exist a A€ 4 and a continuous map /1: X, — P such that £ and /ip,
are % -uear. .

(R;) For any polyhedron P and any open cover % of P there exists a normal
cover ¥ of P such that if Ae A and fp, and gp, are ¥ -near for continuous maps
Jfig: Xy— P, then there exists a e A with A<y such that fp,, and gp,, are
9 -near.

Concerning the above notions the following results have been obtained
hitherto.

L If {p,} is complemented, then {p,} is proper (Morita [I3, Theorem 3.1]).

IL If {p;} satisfies (B,) and (BY), then {p,} is a resolution, and cenversely,

if {p,} is a resolution and each X is a normal space, then {p,} satisfies (B;) und

(B3) (Marde$ié¢ [4, Theorems 5 and 6)).

|
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The following theorem, which is the main theorem in this paper, clarifies the
interrelation among the above notions and contains the results I and II above as
immediate corollaries,

TusoreM 1. Let {p;}: X —~ {X,. paz, A} be a morphism in pro-Top. Then the

Jfollowing conditions are cquivalent:

(a) {p,} is a resolution of X.
(b) {ps} is weakly complemented.
(c) {p,} is proper.

(d) {pa} is weakly proper.

Let v be the Tychonofl functor which is the reflector from Top to its full sub-
catogory of Tychonofl spaces (cf. [11, § 11); that is, ©(X) is a Tychonoff space for
cvery topological space X, and there is a natural transformation @ from the
identity functor to 7 such that ¢(X): X —» t(X) is a homeomorphism whenever
X is Tychonofl; here we write @(X) instead of @y in [11, § 1]. Then we have

THEOREM 2. If {3} X = (X, par, A} is a resolution of X, then the morphism
{r(p)}: (X)) - {2(X3), ©(pp), A} is also a resolution of <(X).

Let w be the covariant functor from the category of Tychonoff spaces and
continuous maps Lo its full subcategory of topologically complete spaces which
assigns to cach Tychonofl space X the completion of X with respect to the finest
uniformity of X. Then Theorem 3 below holds.

ToEoREM 3. [f {p}: X = {X,, paxs A} is a resolution of X and if X and each X,
are Tychonoff' spaces, then {u(p)}: p(X) = {u(Xy), p(pi), A} is a resolution
of w(X).

The following theorem generalizes Morita {13, Theorem 3.3] and MardeSic¢
[4, Theorem 7] as far as Tychonofl spaces are concerned, and also. [13, Theorem 3.4]
by Theorem 3 above.

THEOREM 4. Let {py)e X — {X;, paye, A} be a resolution of X. If X and each X,
are Tychonoff’ spaces and if' X is topologically complete, then X = im{X}, psz. A}-

2, Proof of Theorem 1.
Before proceeding to the proof of Theorem 1 we shall first prove Lemma 1
below,

LuMMA L Let % be o normal cover of a topological space Y and let A be a sub-
set of Yo Then there is o locally finite cover W' of ¥ by cozero-sets such that

D refines U,

2) the nerve of the cover {We'| Wn A @} of St(4, W) is isomorphic
10 the nerve of the cover [W o A| We W', WA B} of Abythemap W m WA,

Proaf. Since % is a normal cover of ¥, there exist a metric space T, a continu~
ous map /it ¥ T and a locally finite open cover 4 = {G,| & € Q} of T such that
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hY(@) refines U. Let @ = {aeQ| G, nh(4) # @}. Since T is metric, there exist
open sets H,, we ', such that

1) G, n Clh(A)cH,=G, for
10} G, Clh(A) = H,  Clh(4)  for

G) N{H.Ch) eer} =0 = (\{H]|aey} =0
whenever 7 is a finite subset of €',

e,

e,

Let us put

K, = (T-Clh(A) n G, for aeQ.

Then # = {H,, K, o/ €@, ae Q} is a locally finite open cover of T, and hence
" = h~(#) is a locally finite normal cover of ¥ by cozero-sets which is a rc-
finement of %. Since we have {We¥| Wn A4 # @} = (A7 (H,)| «' e}, the
nerve of {h™1(H,) N A| «' € 2} and {#7*(H,)| «' € Q'} are isomorphic by virtue
of (3). Thus, % has the properties required by Lemma 1.

Proof of Theorem 1. (a) = (b). The proof of [4, Theorem 6] is available
for the present case, because every binary normal cover {Up. Uy} of a topological
space Y admits a continuous map g: ¥ — J (where I = [0, 1) such that g(y) =0
or 1 according as ye Y—U, or ¥Y-U,.

(b) = {c). Assume (b). Let A€ A, and let 4 and A’ be any normal covers of X
and X, respectively. Then by (B,) there exist a u € A with A<pu and a normal cover
4 of X, such that % refines p[:((%’) and p, 1(a) refines 9.

By Lemma 1 there exists a locally finite cover %" of X, by cozero-sets such
that %" refines %, and that the nerve of the cover {We | Wnp,(X) # @} of
St(p,(X). #") is isomorphic to the nerve of the cover {W n p,(X)| We#', Wn
N pX) # B} of p(X) by the correspondence W = W p,(X).

Since {St(p(X), #), X,—Clp(X)} is a normal cover of X, by (B}) there
exists a ve A with u<v such that p,(X;)=St(p(X), #°). Now, let us put

¥ = {p (W) Wett, WapX) # O},

Then ¥ is a locally finite cover of X, by cozero-sets and hence it is & normal cover
of X, by [9, Theorem 1.2]. Moreover, the nerve of ¥ is isomorphic to the nerve
of {VnpX)| Ve¥} of p(X) by the correspondence ¥ + ¥ np (X), since
PulPX0) = PUX) DX =St(p,(X), #7). Thus, ¥ refines p3,)(#), py ' (#) re-
fines % and the nerve of ¥ is isomorphic to the nerve of p; (%) under the map py L
This proves (c).

(c) = (d). Obvious from the definitions.

(d) = (b). Assume (d). Then (B,) follows immediately from Definition 1"
Let Ae A and let U be an open neighborhood of Clpy(X) in X, such that #’
= {U, X,—Clp,(X)} is a normal cover of X,. Then by Definition 1’ there exist
a ped with A<p and a normal cover ¥ of X, such that ¥ refines P (o) and
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Vo pX) # @ for each Ve ", Since ¥ refines p;,(#°), we have either Vepq (U)
or Vepy (Xy—ClpX)) =X, ~ Clp,(X), and hence we must have Vepr(U) for
each Ve . Therefore we have PaX,) = U. This proves (B}) and hence (b) holds.

(b) = (a). Assume (b). To prove (R,), let P be a polyhedron, % an open cover
of P and j: X — P a continuous map. Let L be a triangulation of P such that the
cover .& of P by open stars of vertices of L refines %. Then, since (b) = (c) has
been proved above, by (c) there exist a 1 e A and a locally finite normal cover ¥~
of X, such that p; '(¥") refines f (%), and that the nerve K of ¥ is isomorphic
to the nerve of p; '(¥") under the map py .

For each vertex ¥ of K, let us choose a vertex g(¥) of L so that p;*(¥)
af~1(St(g(V),L)). Then g: K~ L is a simplicial map, because, for Viev,i
=0,1,..,n we have

Nl i=0,1,m} %8 = N {p;" W) i=0,1,.,n}# 0
= N{ St L)l i=0,1,..,n} # @.
On the other hand, since ¥ is a locally finite normal cover of X, there is
a continuous map ¢: X, — |K| such that ¢ ~*(St(V, K))<=V for each Ve ¥

Now, let xeX. Then there is a Ve ¥ such that p,(x)e ¢ *(St(V,, K))-
Since ¢~ ?(St(Vy, K))=V,, we have xep;(Vo)ef ' (St(g(Vy), L)), and hence

f(x) eSt(g(Vy),L). On the other hand, since g: K — L is a simplicial map, we

have gop,(x) € g(St(Vo, K))aSt(g(Vy), L). Thus, {f(x),gepi(x)}=St(g(Vy), L).
Therefore, if we put & = g¢: X, - P, then f and hp, are % -near. This proves (R;).

To prove (R,), let Ae A and let % be any open cover of a polyhedron P.
Let ¥ be a star-refinement of %. Suppose that fip, and f,p, are ¥ -near for two
continuous maps Jfi,fy: X3 —P. Let us put # =7 (MAfSNF), ie, #
= {7V AfS V) Vi, Vae 'l Then # is a normal cover of X,. Since
{St(pa(X), #7), X3~ Clpy(X)} is a normal cover of X;, by (B3) there exists a pe A
with A<y such that p,,(X,) =St(p,(X), #).

Now, let xe X,. Then therc is a W, € % such that Dau(X) € Wo, Wo-nr piXy
# @. Let py(xo) € W, for a point x, € X. Suppose that W, =fT V) nfa (Va)
with Vy, V, e ¥". Since fyp, and f,p, are ¥ -near, there is ¥, € ¥ such that f;p;(xo)
eV, for i = 1,2. Since fip(xg) € V;, we have Vo n V; # @ for i = 1,2. Hence

./llpﬂll(x) € V,CSQ(VO, Vf) .

This shows that f,p,, and fap,, are %-near, Hence (R;) holds. Thus the proof of
(b) = (a) is completed.

3. Proof of Theorems 2, 3 and 4. Throughout this section let us assume that.
{p2): X = {X;, paw» A} is 2 resolution of X; by Theorem 1 we will use this as-
sumption in the form of Definition 1', :

Proof of Theorem 2. It is obvious that {z(p)}: v(X) = {t(X3), t(pa), 4}
is a morphism in pro-Top. Let Ae A and let ¥ and o be any normal covers of
7(X) and 7(X;) respectively. Then @ (X)~*(#) and &(X; )" (o#) are normal covers.
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of X and X, respectively (for the notations used here,.cf. the introﬁuction}. By
assumption (cf. also the proof of Theorem 1), theff exist a veE A. w1£111 j;sv aljld
a locally finite cozero-set cover ¥ of X, such that py " (¥) refines ®(X)™ (%), ¥ re-
fines py, (0(Xy) " (#)) and p(X) NV # & for each Ve . Then by [11, Lcmn,lﬁ
1.1] and [9, Theorem 1.1] there is a normal cover W of T(Xv)“sluch that ¥
= O(X,)"Y(#). Then it follows from the naturality that z(p)™ (¥ 2 refines
@. W refines ©(py)~ M) and T(p)((X)) A W # @ for cach We " Thus,
{e(p}: (X)) = {=(X; D, 1(par), A} is weakly proper. This proves Theorem 2.

Now, let Y be a Tychonoff space. For any open set G of Y, let us put

G* = p(Y)—~Clyy(Y—G)

and for any normal cover ¢ of Y let us put g* = {G¥ Ge¥}. Then Lemmas 2
and 3 below are known.

LEMMA 2. For any normal cover & of Y, 9% is a normal cover of u(Y) (cf. [8, I,
Theorem 1]).

LEMMA 3. Any normal cover of u(Y) is refined by 9* for some normal cover §
of Y (cf. [13, Proof of Theorem 3.4]).

We need one more lemma.

LeMMA 4. Let f: Y — Z be a continuous map between Tychonoff spaces Y and Z.
Then for any open set V. of Z and any rormal cover W~ of Z we have

w(N1IH I e p() T SV, #)%) .

Proof. Since ¥ n u(H V™ = f~Y(¥), the first inclusion relation is obvious,

The second holds since we have )
[f =L ]* e Clyay f V) =St 1Y), 1l 17
cu(f) NSV, W)= p())TH SV, V).

We are now ready to prove Theorem 3.

Proof of Theorem 3. Assume that X and each X, are Tychonofl spaces. Let
Ae A, and let ¥ and o be any normal covers of X and X, respectively. Let % ‘bc
a star-refinement of . Then, since {p,} is weakly proper, tlmrc_elmstw v c—:./l Wlijh
2<v and a normal cover 7" of X, such that ¥ vefines pr (A", py ' (#7) refines 4,
and py(X) n V # @ for cach Ve 4, Then by Lemma 4 ¥™* refines WP A"
and p(py)~1(#'*) refines ¥*. Since

w(p)(B0) n V*2pX)nV # 0,
this completes the proof of Theorem 3 by Lemma 3.

Proof of Theorem 4. Let {g,}: Y~ {X;,pun. 4} be any morphism in
pro-Top. For each point y of Y, let us denote by C(y) the collection of all the sets
j;‘( U), where 2 e A and U ranges over all open neighborhoods of ¢,(»).

Let % be any normal cover of X, and let p; *(U) e C(¥). Then

# ={U, X, — a0}

e ©
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is a notmal cover of X, since X, is Tychonoff, Hence by assumption there exist
ave A with A<v and a normal cover ¥ of X, such that p; *(¥") refines ¢, ¥" re-
fines pri(#) and p;"l(V) # @ for each Ve Let q,(3) eV for some Ve¥.
Then Vepp'(U) and hence py'(U)=pyi(V) # @. Since pri(V)e C(y) and
prt(V)cG for some G e @, it follows that C( y) is a Cauchy family with respect
to the finest uniformity of X. Since X is complete with respect to this uniformity,
the intersection () C(y) consists of a single point, which we denote by g(»). Then
pag = ¢y for Ae A. Let G be any open neighborhood of g(3). Since {G, X—g ()}
is a normal cover of X there is p7 *(U) & C(p) such that g() e p; (U)=G. Hence
yeg™'pi (V) (=¢7 "(U))=g~*(G). Thus, g is continuous. If 7: ¥ — X is a map
such that p;/i = ¢, for each Ae 4, then h(y)e () {p7 'q;(¥)| Aed} = g(3), and
hence k= g. Therefore X = lim{X;, pap, A}

4. Remark. Concerning conditions (B;) and (B}), we have clearly (Bj) = (B}).
However, the reverse implication does not hold as will be shown below.

Let X be a closed subset of a Tychonoff space ¥ which is P-embedded in Y.
Let {X;, s> A} be an inverse system whose terms X, form the totality of all the
open neighborhoods U of X such that {U, Y~ X} is a normal cover of ¥ and whose
bonding maps p,, are inclusion maps, and let {p;}: X — {X,, p,», 4} be a mor-
phism in pro-Top which consists of inclusion maps.

LemMa 5. Let {p,} be defined as ubove. Then {p,} satisfies (By) and (B). If there
exists a closed subset B of Y such that X and B are disjoint but cannot be separated
by open sets, then (B3) does not hold.

Proof. Clearly, (B,) and (Bj) are satisfied. Suppose that there is a closed B
of Y stated in the lemma. Let us put U = Y- B, and let y, be any point of B. Since
{Y—-y,, Y—X} is a normal cover of Y, we have ¥Y—y, = X for some 4, and
ClpX) = XcUc Y—y,. Sincs {V, Y—X7} is not a normal cover of Y for any
open set ¥ of ¥ such that X< V< U, there is no X, with A< u such that p,,(X,) = U.
Therefore (B3) does not hold.

ExampLE. Let W(w,+1) be the space of all ordinals less than w,-+1 with
the order topology, where w is the first uncountable ordinal, Let us put

Y= Wog+1)x Wlo,+1)—{(@, o)},
X = {(x, 0))| o<o,}.

“Then X is closed and P-embedded in Y, and by Lemma 5 {p,} constructed above
satisfies (B,) and (BY), but not (B).
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Borel sets in compact spaces:
some Hurewicz type theorems

by

Fons van Engelen and Jan van Mill (Amsterdam)

Abstract, Let X be a compact metric space, and let 4 be a Borel subset of X We identify
two subspaces S and T of the Cantor set, and prove that:

(1) 4 is not the union of a complete and a countable subset if and only if X contains a Cantor
set K such that KNA~RP and KN AxQx C.

(2) A is not strongly o-complete if and only if X contains a Cantor set X such that K\4
~QOxP and KN AXT.

(3) A is not the union of a strongly o-complete and a countable subset if and only if X con-
tains a Cantor set K such that KNAXQx P and KN AxS.

As an application, we give topological characterizations of QxS and Qx T.

1. Introduction.

All spaces under discussion are separable metric.

In his 1928 paper [6], Hurewicz proved that a Borel subset A of a compact
space X is not a G in X (i.e. 4 is not topologically complete) if and only if there
exists a compact subset K of X such that K n A~ Q (the rationals) and K\NA~P
(the irrationals). A theorem of the same type was proved in 1978 by Saint Raymond
([101): he showed, among others, that a Borel subset A of a compact space X is
not the union of an F, and a G; of X (i.e. 4 is not the union of a o-compact and
a topologically complete subspace) if and only if there exists a compact subspace X
of X such that X m A~ Q x P. However, he did not prove anything concerning X\A.
To the light of Hurewicz’s result, this suggests an obvious question; in this paper,
we will answer this question, and prove some more “Hurewicz-type” theorems.

We identify a ¢ertain zero-dimensional space T, which can easily be visualized
as the remainder of @'x P in some compactification of @x P, and we prove that
a Borel subsct A of a compact space X is not the union of a ¢-compact and a topo-
logically complete subspace if and only if there exists a Cantor set K in X such that
Kn Az QxP and KNA~T. This theorem can also be stated in a slightly different
way. Call a subset ¥ of a space X strongly o-complete if ¥ = U {¥;: 7 € N}, where
each ¥, is topologically complete and closed in ¥; it is easily seen that 2 subset Y
of a compact space X is strongly o-complete if and only if Y is the intersection


GUEST




