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Abstract, A, subset 4 of a space X is P-embedded (M-embedded) in X if every continuous
mapping f* A = B of A into a Banach space B (convex subset B of a Banach space) is extendable
over X. A subset 4 of a space X is m-embedded (ma -embedded where £ denotes a non-empty class
of spaces) if for every completely regular space Z (for every space Ze Z)and every continuous
function f: Ax Z - I there exists an extension of f over Xx Z. It has been proved by M. Starbird
and E. Michael that every closed subset of a compact space and every closed subset of a metric
space is zr-embedded. K. Morita has shown that every locally compact, paracompact and P-em-
bedded subset of a topological space is z-embedded. In connection with these results T. C. Przy-
musinski raised the following two problems: 1) Is every closed subset of a paracompact p-space
m-embedded ? 2) Is every Cech-complete paracompact and P-embedded subset of a topological
space w-embedded? The first question was also raised by Starbid. In this paper we give
an example which provides a negative answer to both ¢ uestions. We also investigate the relationships
between s -embeddings for various classes of spaces & (metric, compact, and paracompact
p-spaces) and between 7g -embeddings and M-embedding.

§ 0. Introduction. Throughout this paper by a topological space we shall mean
a completely regular space and by a function or mapping — a continuous function;
by an extension we ‘always mean a continuous extension. Also, all pseudometrics
are assumed continuous. The symbols &, 4, €, 4 x% and 2 denote the
classes of finite spaces, metric spaces, compact spaces, products of a metric and
a compact space, and paracompact p-spaces, respectively. By P we will denote
the set of all irrational numbers and by Q — the set of all rational numbers in I;
and I, will denote the Michael line (see [E], Example 5.1.32).

The author js much indebted to T. C. Przymusiski for providing simpler
proofs of Theorems 1.12 and 2.4 and for his help in the preparation of this paper.

§ 1. my-embeddings and 7-embedding. Let us recall that a subset A4 of a space
X is P-embedded in X if every pseudometric defined on 4 is extendable onto X or —
equivalently — if every mapping f A — B of 4 into a Banach space B is extendable
over X (see [Sh] and [Py]). :
~T. C. Przymusinski introduced the notions of nz-embedding and n-embedding.
‘We, recall these definitions: S
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DerINITION 1.1 [P,]). Let & denote a non-empty class of spaces. A subspace 4
of a space X is ng - embedded in X if for every Z € & and for every function f: AXZ —T
there exists an extension f: X xZ — J of f over X xZ.

DermamioN 1.2 [P;]. A subspace A4 of a space X is n-embedded in X if it is
ngx-embedded in X where % denotes the class of all spaces.

It is known that 74.,-embedding is equivalent to C-embedding ([MH],
[P,]), 7 -embedding is equivalent to C*-embedding ([P,]) and that m,-embedding is
equivalent to P-embedding ([P,]). Accordingly, a space X is normal if and only
if every closed subset 4 of X is nz-embedded in X, or — equivalently — if and
only if every closed subset 4 of X is 7,4.g-embedded in X. T. E. Gantner in [G]
and H. Shapiro in [Sh] have shown that the space X is collectionwise normal if
and only if every closed subspace 4 of X is ng-embedded in X, Consequently, it
seems interesting to investigate spaces whose every closed subset is 7-embedded.
Two classes of such spaces were found by M. Starbird and E. Michael, who proved
the following theorems (see [S,]). ‘

THEOREM 1.3 (M. Starbird). Every closed subset of a compact space is mw-em-
bedded. &

THEOREM 1.4 (E. Michael). Every closed subset of a metric spdce is w-em-
bedded. m

K. Morita strengthened Theorem 1.3.

THEOREM 1.5 [M,]. Every locally compact, paracompact and P-embedded sub-
space of a topological space is n-embedded. W

In connection with these results T. C. Przymusifski raised in [P5] the following
two problems:

Is every closed subset of a paracompact p-space 7-embedded?

Is every Cech-complete, paracompact and P-embedded subset of a topological
space m-embedded?

The first problem was also raised by M. Starbird in [Sy]. Let us observe that
in this problem paracompact p-spaces can be equivalently replaced by products
M % C, where M is metric and C is compact. According to Theorem 2.8, the second
problem is equivalent to the question whether there exist a paracompact Cech-
complete space X and its closed subset F which is not n-embedded in X,

The following theorem, proved by M. Starbird, sheds some light on the first
problem.

THEOREM 1.6 [S1]. Let X be a closed subset of Cx M where C is compact and
M is metric. If Mx Y is normal then X x ¥ is C*-embedded in CxMx Y. m

Thus, the first problem is equivalent to the question whether in the above
theorem the assumption that Mx Y is a T4-space can be omitted. The following
example shows that this assumption is essential, thus answering the first problem
in the negative. The example provides also a negative answer to the second question.

ExamprE 1.7. There exists a closed subset X of the space N xP and a con-
tinuous function f: X'x Iy — {0, 1} which is not extendable to a function F: SN x
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xPxlIy— I Thus, a closed subset of paracompact p-spaces need not be m-em-
bedded.

Proof. For notational convenience we shall construct our set X in the space
BOXN)xP, where Q is considered with the discrete topology. .

For each ge Q\{O} choose an increasing sequence {p,,}sey of irrational
numbers converging to ¢ such that the set {(p,.,¢>: g€ O, ne N} is discrete in
I°\4, where 4 is the diagonal of I?, and let

A={{g,n, Pyt €0, ne N}cQxNxP = NxP

lop

and
X = AP B(OXNYxP = BNxP.
top

Then for each {g,n) & Ox N pick up an open interval T,, with irratior%al
end-points such that T, contains ¢ and does not contain p,,, and the fan}lly
{{Pgn} ¥ Ty g€ Q, ne N} is discrete in J>\4. Now we can define the function
fr AxIy - {0,1}. Let i

0, ift¢T,.,
@ m: P 1) = {1, freT,,.

One can easily check that f is continuous.
We shall prove that there exists an extension fr XxI, —»{0,1} of f over
X %I, and there is no extension F: B(Q x N) xP xIp > Iof fover B(Q x N)x P xIp.
At first we shall prove the existence of 7. Define

By =f"%0) and B, =)
We have Ax I, = By L By. Since

— Bl T PxI
XxIy = AWy ) = TN *PxTe - Bl@xMxPxIg ; GHOXMXPxIg

it is enough to. show that closures of B, and B, in (@ % N) xPx I,y are diSjOl?t.
It is obvious that B, and B, are disjoint open and closed subsets of ;x 2-
Let {zg, Do, to) € X\A where z, € f(@x NIN(QXN), Po eP ar‘xd to 'ehIQ. ‘:h a;e
going to find a neighbourhood of {zo, po, toy Whose mtersect;on Zt er wi o
i i e ar i i f,eP or the Q.
or with B, is empty. There are two possible cases: fo .
If o€ P, put Co = {{q,n): to¢ T,,} and C; = g, n): 1o € Tyt We have
Cyn ¢, = @ Consequently CE@*™ A CL@*™ = @, and there is a neighbour-
‘ | = O : he b
hgod U of z, in f(Qx N) such that Un Co = @ or UnC =8 ~We~ can a:q;r?rel
that Un'Cy = @. Then G = UxPx{to} is a neighbourhood of {zg, Po. %o
BOXNYxPxI, and G By = @. )
! QIF tve 0. v(:e have 1y % po and therefore, by the fact that the family

{{pq,n} XTq.n: qe Q7 ne N}

is discrete in I°\4, there exists a neighbourhood ¥ x W of {pq, toy in PxIy

that the set C = {(g, n): {Pgn} X Ty 0 V' W # @} contains at most one element.

such
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Then U= (B(@XNNC)XVxW Iis
Un B = @.
. 'We have proved that there is an extension f of f over X xTj.
Now we shall show that there is no extension F: B(Q X N)xPxIy = I of f
over B(OXN)xPxIy . : o
Suppose that there is such an extension and let ¢ be a continuous pseudo-
metric on Px I, defined by the formula (B

a neighbourhood of {z, pj, 1) "and
coide

o ({p, 13,4 1)) =~ sup |F(z,p, 1) —F(z,p', ).
zep(Q=N)

For each p e P there exists an m, € N such that the o-diameter of the set
(P~ (p—=1/m,, p+1/m))x{p}

is less than 4. Therefore, there exist an integer m e N, a rational g& Q and a se-
quence {pihey Of irrational numbers such that for every k € N we have =y
‘and the sequence {p;};.y converges to g.

Let ne N satisty |g—p, | <1/2m. We can assume that for every k e ¥ we have
{4, pgnt=(pi—1/m, py+1/m). There exists an /e N such that the o-diameter of
the set {p,.} x(g—1/l, g+1/I) is less than % and an ie N such that |p;—g|<1/L

My, =1

T ’ i
i
| Tount
grlf ] {
B =t 1
qr-——""rrr——""1
1
Aot : )
| |
[ SN L !
-7 | f
I
by {
P I
| i ‘
Pon P G

Take an n'>n such that p, ¢ T, (such n' exists because the family
P} x Ty g€ @, ne N}
is discrete in I*\4) and a j such that pieT, . n(q~1/I, g+1/I). Thus we have
0 Bas 29+ {Pase 1) -
SOKPaws P> Pans P+ 0 Paus P Psus BN P 15 Py D)< <1 -

. On thelother hand, we have ({4, 1, Py, p;) = 1 and £({g, 1, pgu, pid) = 0}
nsequently, ¢ ({pguw2:); {Pgw»P;) = 1, which yields a contradiction. M
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Notice that JNxP is not only a paracompact p-space but in fact a Cech-
complete Lindelof space; and that Jp is a hereditarily paracompact first countable
space; thus we have the following corollary. i o

‘COROLLARY 1.8." 4 closed subset of a Cv'eclz;complete Lindeléf space need not
be my-cmbedded, where A denotes the class of all hereditarily paracompact first
countable spaces. W ) :

“We have shown that a closed subset of a paracompact p—spé.ce need not be
n-embedded. This result and Theorems 1.3 and 1.4 lead to the following problem:

ProBLEM 1.9 [P;]. Characterize those spaces whose every closed subset is
n-embedded. :

The following problems are also interesting.

ProsLeM  1.10. Characterize those spaces whose every closed subset is
ns-embedded. :

Prosiem 1.11. Characterize those spaces whose every closed subset is
7,4 ~embedded. )

It is obvious that a closed subset of a paracompact p-space is ng-embedded.
(because the product of two paracompact p-spaces is normal); thus, Example 1.7
shows that mp-embedding does not imply n-embedding. Obviously m-embedding
implics 7»-embedding. More generally, if & <&, then 14 -embedding implies ma~
embedding, For the classes of finite spaces, metric spaces, compact spaces, products
of a metric and a compact space, and for paracompact p-spaces we have the
following diagram: :

A N\ .
T Ty = Ngyxg > Mo Tatng > N7 -
v \775‘,”/7’

Most of the arrows in the above diagram cannot be reversed. Some of them
can be reversed only for dense subsets. The relationships between vatious kinds.
of embeddings for dense subsets are different from those for closed subsets.
Existing relationships for dense subsets are described in’ [P,]. We are going to
discuss them only for closed subsets. . )

Since mgn, T yng- ADA ne-embeddings are equivalent to C*-, C- and P-embed-
‘dings respectively, for closed subsets none of the implications 7g = Tyne = 75
Gan be reversed. We have already mentioned that the implication 7 — 7 cannot
be reversed either. According to Example 2.5 ng-embedding does not imply
74-embedding, T. C. Przymusinski showed in [P,] that for dense subsets.z-em-
bedding is equivalent to 7.4, -cmbedding. Tn a forthcoming paper we prove, how-
ever, that in general 7 L xeg-embedding does not imply mp-embedding we prove
also that 7 4, ¢-embedding implies Ty xg-embedding. Below we prove that for
every subset of a topological space _yus-embedding implies some substitute of
7y x¢~embedding. : .

Tueorem 1.12. If AcX is mg-embedded and 7_4-embedded in X, M is metric
and C compact, and A x M is normal, then Ax Mx C is C*-embedded in X x M x C.
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Proof. Let us first note that it is sufficient to find for a function f: A x M'x C—T
a function F: X' x M xC — I satisfying the inequality |F(a, m, c)—f(a, m, o)]<}
for every {a,m, c) € Ax MxC. Indeed, the function F yields a g¢: XxMxC
- [}, 3] such that /™1 (0)cg~*(}) and f~*(1)cg~'(3). Now, using the technique
developed in the proof of the Tietze-Uryson theorem (see [E], Theorem 2.1.8),
we can show that every function from 4 x M x C to I is extendable over X x M x C.

Now we are in a position to construct the function F. Let & be a o-discrete
‘base in M. Define a pseudometric o on 4 x M by the formula o ({a, m), {a’, m'))
= sup|f(a, m, z)—f(a',m', )| and take a o-discrete cover % of Ax M consisting

zeC '

of balls of diameter less than %. It follows from [Pa] that the product 4xM is
rectangular, thus, there is a o-locally finite refinement ¥~ of % consisting of cozero
rectangles, i.e., sets of the form ¥, x ¥, where ¥, and V, are cozero sets in 4 and M
respectively. We can assume that B e 4 for every V' xBe ¥, Thus for every Be
‘there exists a g-locally finite family ¥ "5 consisting of sets functionally open in 4
such that " = {V'xB: Be#, Ve ¥ p}. Since 4 is P-embedded in X, for every
B # there is a o-locally finite family # 5 of sets functionally open in X such that
Wa <V pand YWy, =¥y Déflhe # = {WxB: Be®, We W5} Then
U # is functionally open in X'x M and contains 4x M. At the same time 4 x M
is C-embedded in X x M, and thus there exists a functionally open set G such that
Xx MNU# <G (Xx MINA xM). Let ¥ = # v {G}. The fanily ¢ is a o-lo-
cally finite covering of X'x M consisting of functionally open sets. Moreover,
% axy is a refinement of %.

Let {f;}ses be a locally finite partition of unity subordinated to % and let S,
= {se8: 710, 1]) n (4 x M) # B}. Foreach s € S, choose {x,, y;» €f; ((0,1]) n
N {AxM) and let g,: G — I be obtained by letting

945 = f(xs, 75, 2), if 5€8,,
- 0, if 5 S\S,.

Define F: Xx M xC — I by the formula F(x,y,z) = ¥ f{x, ) g{z). Then for
se§
every {(x,y) € AXM we bave |F(x,y, 2)—f(x,y,2)|<% M

CoroLLARY 1.13. If AcX is n y,q-embedded in X, M and C are a metric and
a compact space respectively, P is a closed subset of M x C, and Ax M is normal,
then AxP is C*-embedded in X x M x C.

Proof. Let f: AxP — I be an arbitrary function. Since 4 x M is normal,
using Theorem 1.6 we can extend f over 4 x M x C and then using Theorem 1.12
extend it further over XxMxC. M

CoroLLARY 1.14. 4 closed subspace of a perfectly normal space is P-embedded
if and only if it is ng-embedded.
Proof. Let 4 be a closed subset of a perfectly normal space X. Since for every

metrizable space M the product X x M is perfectly normal ([M,]), 4 is n,4-em-~
bedded in X. Applying Corollary 1.13, we obtain our corollary. M
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3

Since a closed subset of a collectionwise normal space is P-embedded ([P,]),
Corollary 1.14 implies the following

CoroLLARY 1.15. 4 closed subset of a perfect collectionwise normal space is
71 -embedded.

§ 2. Relationship between 1z -embeddings and M-embedding. Strengthening the
notion of P~embedding, L. Sennott introduced the notion of M-embedding.

DerNITIoN 2.1 [Se;]. A subset A of a space X is M-embedded in X if every
mapping /: A — K of X into a convex subset X of a Banach space B is extendable
over X.

Moreover, she gave characterizations of M-embedding in terms of P-embedding
and pscudometrics:

TueorEM 2.2 [Se,1. For every subset A of a space X the following conditions
are equivalent:

() A is M-embedded in X

(i) A is P-embedded in X and for every pseudometric ¢ on X there is a function-
ally closed set I such that

AcFe{xeX: there exists an ae 4 satisfying @(x,a) = 0};

(iii) For every pseudometric @ on A there exists such an extension ¢ of o over X
that 9(x, A) = 0 if and only if there exists an a€ 4 satisfying o(x,a) = 0.

Obviously, M-embedding implies P-embedding; Example 2.4 from [H] shows
that M-embedding is not equivalent to P-embedding. It is natural to ask about
the place of M-cmbedding in the diagram on page 31. A partial answer was given
in [Se,].

TueoreM 2.3 [Se,]. Every closed and w4 q-embedded subset of @ normal space
is M-embedded. @

We can strengthen this result to the following

THEOREM 2.4, Every w4 ¢-embedded subset of a topological space Is
M -embedded.

Proof. It is enough to show that the theorem holds for dense as well as for
<closed subsets.

At first we assume that 4 is a dense subset of a space X. Let ¢ be an arbitrary
pseudometric on A and & an extension of ¢ over X. We shall verify that for every
x e X there is an € A such that 9(x, @) = 0. Assume the contrary. Then there is
an x, € X such that for every ae 4 we have 2 (%4, @)>0. Then the function fiA-R
obtained by letting £(x) = 1/@(xq, ) is well defined and has no extension, because
for every sequence {a,},ey Of elements of A converging to x, in the @-topology
we have f(a,) — co. A contradiction. ‘

Notice that the above observation implies that the notions of P-embedding
and M-embedding coincide for dense subsets.

3 — Fundamenta Mathematicae CXXIV/L
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Now, let us assume that 4 is a closed subset of a space X, and let p be a pscudo-
metric on X. We shall find a functionally open set U such that

AcX\UcT = {xeX: there exists an ¢ €4 satisfying o(x, ) = 0}.

Let (M, o) be a metric space associated with the pseudometric space (X\7 o)
and let p: X\T ~ M be a natural quotient mapping. Define

4 = {{x,p(x)y: xe INT}cXx M.

Obviously 4 is functionally closed in X'x M and disjoint from 4 x M. Hence, since
A x M is C-embedded in X x M, there exists an f: Xx M — I'such that 4 = f~'({0})
and Ax M<f~H({1}).

Take a o-discrete base {Bg}..s in X with g-topology, and let

Sp = {se8: BNT # O}.

For each se S, choose a bye B, n (X\T). Let ¥, = {xe X f(x,p(b))<}} and
let U, = B, n V,. Then the sets U, are functionally open in X and contained in
X\4. Moreover, the family {Ugp,.s, is o-discrete in X. Hence, the union U

-= |J U, is functionally open and contained in X\A4.
seSo

It remains to verify that X\T'<U. .

Let xo € XN\T. Then (xq, p(xo)p € 4, (o, p(%0))) = 0 and there exists an
&>0 such that {xo} xB(p(xo), &)=/ ([0, 1)). Then f({xo, (b)) <3, and % € V.
Hencexoe Uy =B,nV, B

‘We can now include M-embedding into our diagram:

\

/M - Ty = P\ o
- - — = (C— =
T Ty = Tyxe ™ Tyuw \ } ~ Tune = C— Tg
v

One can ask whether the converse to the above theorem is true. L. Sennott
posed this problem in [Se,]. She also proved there that if 4 is M-embedded in X
then Ax Y is M-embedded in X'x ¥ for any locally compact paracompact space Y.
As we shall show below, the assumption that ¥ is locally compact cannot be
omitted, and so the answer to the above question is negative.

ExAMPLE 2.5. There exists a Lindeld{ space X containing a closed Gj-subset
which is M-embedded but is not 7 4-embedded in X.

Proof. Let us represent the interval I as the union of two disjoint sets B and D
such that |Bf = | D] = ¢ and every compact space contained either in B or in D is
countable (see [K], Chapter III, § 40). Assume that Q=B. Let X = I? be the
square where points of the form {(b, 0), for b e B, have neighbourhoods as in the
Niemytzki plane (see [E], Example 1.2.4) and all other points have the usual
Euclidean neighbourhoods. The subspace Ix{0} of X is homeomorphic to the
space I (see [E], Example 5.1.22), and we shall identify I'x {0} with Ip.
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Tt is obvious that Jp is a closed G,-set in X. Thus, I, is M-embedded in X
(see [P,]). Now we shall prove that I is not n_4-embedded in X.

Let {day, dy), {ds, a3y, ... denote the end-points of all intervals removed from
AcT? in the construction of the Cantor set {{c,c)e 4: ce C}=I* on A.

Let 4 = {@,: ne N} and define the function f: I, x B — I, where B has the
topology of a subspace of 7, by the formula

fx=a,,

fmax{O, 1—-n|x~y},
0, if xeNA4.

Jx,09) = \

1
/
1 \
h.__i_j_‘__ ,

Obviously, f is continuous. We shall show that f is not extendable over XxB.

Suppose that f: X'x B — I is an extension of f. We cannot represent the set
B A C as a countable union of subsets nonwhere dense in C, and so we cannot
represent the set (B\4) n C as such a union either. Therefore there are an integer
ne N and a set U open in C such that the set

(veBn U B(e, 1nd, 1n)x (e=1fn, x+1/m = f 70, D)}

is dense in U (where B((x, 1/n),1/n) is the disc of radius 1/r tangent to Ix {0}
at {x, 0)). ‘

Take an @ & 4; every neighbourhood ¥ of the point {{a, 0y, a>e X x B inter-
sects the set f ([0, 4)) and at the same time we have F(a, 0y, @)= fa,a)) =1,
which yields a contradiction. B

It scems interesting to characterize M-embedding for some particular classes
of spaces, for example paracompact p-spaces or metric spaces. It turns out t.hat‘
in these cases M-cmbedding is equivalent to mg-embedding and n‘-embeddmg,
respectively. This fact is a corollary to the theorem that we are now going to prove.
3
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THEOREM 2.6. For a subset A of X the following conditions are equivalent:

(i) A is a paracompact p-space and A is M-embedde od in X;

(ii) There is a paracompact p-space Z such that X<Z and A is closed in Z.

Moreover, if in (i) we assume in addition that A = M x C for a metric M and
a compact C, then in (ii) we can claim that Z is a product of a metric space M’ and
a compact space C’, where M = McM’, C = CcC’, and that there is a homeo-
morphic embedding h: X —Z = M'xC’ such that /fjxe = idp,, Xide
MxC—MxC'.

Proof. Clearly (i) implies (i). It remains to prove that (i) implies (i), We
shall first prove the second part of our theorem.

Let A = MxCcX and let 4 be M-embedded in X. Since A is paracompact,
there is no space containing 4 as a dense and P-embedded subspace (see [E],
Problem 8.5.13.b), and 4 is closed in X. Take a metric ¢ on M and define a pseudo-
metric ¢ on A by letting o({my, ¢1), {my, ¢3)) = o(my, my). Extend ¢ to such
a pseudometric ¢: X xX — R that
(¥) o(x, 4) = 0 if and only if there exists an ae 4 satisfying olx,a) =0,
Denote by (M’, o') the metric space associated with the pseudometric space (X, )
and by g: X - M’ the natural quotient mapping. Of course, Alag = M and, by
virtue of (x), M = McM'.

Let R be the equivalence relation on X defined by letting

x.Rx,ifand onlyif x, = x, 01 x; = {my, ¢,y € 4, %, = (Ma ey e Aand ¢, = ¢,

Let ¥ = X/R. Then we have 4 /R Cc Y. We shall show that Y is completely
regular.

If xe YNA/R and U is a neighbourhood of x.in Y then of course there exists
a continnous function f: ¥ — I such that f(x) = 1 and f~'((0, 1))=U.

Let yo = [cqle A/R=Y and let Uc Y be a neighbourhood of y, in ¥. Then
there exist open ¥V, Wc C such that co e VeVaeWeC and Mx Wep™NU) n 4,
where p: X — Y is the natural quotient mapping. For each {m,c)e M xV take
a functionally open G,,c, such that Gy oy p~(U). The set M x Vis paracompact
and M-embedded in X, and thus there exists a locally finite family ¢ of functionally
open in X sets such that the union J% is contained in p~*(U) and for cach Ge ¥
one of the sets G, contains G. Therefore we have M x VG p~Y(U), where
MxV is M-embedded and (J# is functionally open in X. Consequently, there is
a continuous function f;: X — I such that M x Ve f '({1}) and ¥ = f7'((0, 1]).
Now, take the function f,: C — I such that f3(co) = 1 and j',:“‘(((), 1)) V. Define
fai 4 - I'by the formula f3({m, ¢)) = fo(c) and let f3: X - I'be an extension of f3
over X, The function f, = f5fi: X — I is continuous and constant on the fibres
of p. We also have M x {co} =fx {({1}) and £ (0, 1) UF <p~" (V). The function
f: Y — I determined by the - equality f, = fop is continuous, f(y,) = 1 and
7Y, 1)=U. The proof that ¥ is completely regular is concluded.

Therefore, ‘there exists a compact space C’ such that Y= C’; hence, we have
AR = C= CaY=C'. We also know that M = McM'.
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Let /i X —Z = M'XC' be the function obtained by letting = A(x)

= {q(x), p(x)>. It is not difficult to verify that 4 is a homeomorphic embedding.

Moreover, h‘ mxe = 1dpppy X idc'|c- We have proved the second part of our theorem.

Now, let 4 = A= M x C be an arbitrary paracompact p-space M-embedded
in X. Obviously, 4 is closed in X. Let X' = X U, MxC where iy: A— A is the
identity mapping (see [E], page 127). Then M x C is closed in X'. We shall show
that Mx C is M-embedded in X'.

Let ¢ be a pseudometric on M x C. Denote by g’ the restriction of g to 4 and
by 2’ an extension 9[“ @' over X satisfying 0'(x, 4) = 0 if and only if there exists
an ¢ € A such that ¢'(x, d) = 0. For x,ye X" define

g(x,y), if x,ye MxC,

Q'(x, ), ifx,yeX,
inS(Q’(x,z)+Q(z,y)), ifxeX and ye MxC.
ZE

é(x’},) =

One can easily check that @ is a pseudometric and that it satisfies the con-
dition: g(x, MxC) = 0 if and only if there exists an {m, ¢) e MxC such that
o(x, {m, ep) = 0.

We have shown that M x C is M-embedded in X’. As we have already proved,
there is a paracompact space Z such that X'cZ and M xC = Mx C<Z. Since
XcX and 4 =AdcMxC, we have X<Z and 4 = Ac=Z. The proof is com-
plete. B

Remark 2.7. If one does not need the second part of the above theorem,
the first part can be proved in a simpler way. The following proof was com-
municated to the author by T. C. Przymusidski.

Let f: A — M be a perfect mapping onto a metric space M and let # be an
absolute retract for metric spaces such that M = M =M (see [B], Chapter III,
Theorem 8.1). There is an extension f: X — M of f over X. Then % = fai: X
— M xI%, where it X — I is an embedding, is also an embedding. Now, let Z
= MxI*. It suffices to show that h(4) = h(d)cZ. But hy = faijs A —» MxI®
and fis perfect, hcnce IzJ 4 18 perfect and h\A(A) = h|A(A)cM x I, At the same

It is known (see [F]) that a topological space 4 is paracompact and Cech-
completc if and only if there exists a perfect mapping of 4 onto a completely metriz-
able space. Arguing as in Remark 2.7 and assuming in addition that M is a com-
pletely metrizable space and ¥ is a Banach space, we obtain the following theorem:

THEOREM 2.8. For a subset A of X the following conditions are equivalent:

(i) 4 is a paracompact Cech-complete space and A is P-embedded in X;

(ii) There is a paracompact Cech-complete space Z such that X<Z and 4 is
closed in Z, B

Since a closed subset of a paracompact p-space X is mg- -cmbedded in X,
Theorems 2.6 and 2.8 imply the following two corollaries:
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COROLLARY 2.9. A paracompact p-space AcX is M-embedded in X if and
only if it is wp-embedded in X. B

COROLLARY 2.10 [Se,]. A paracompact Cech-complete space AcX is P-em-
bedded in X if and only if it is ng-embedded in X. B

The next corollary is a consequence of Theorem 2.6 and the fact that the sub-
set MxC of a space M'xC', where M'e#, C'e€%, M =McM', and C
= CcC’, is n-embedded in M’ x C'.

COROLLARY 2.11. The product Mx CcX of a metric space M and a compact
space C is M-embedded in X if and only if it is w-embedded in X.

COROLLARY 2.12. A metric space M is M-embedded in X if and only if it is
w-embedded in X.

We have found classes of spaces for which n,-embedding is equivalent to
M-embedding and a class of spaces for which z-embedding is equivalent to M-em-
bedding. This leads to the following problems:

ProsLEM 2.13. Characterize spaces for which n,-embedding is equivalent to
M-embedding.

PrOBLEM 2.14. Characterize spaces for which n-embedding is equivalent to
M -embedding.
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