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Uniqueness results for the ax4-b group
and related algebraic objects

by

Robert R. Kallman (Denton Tex.) *

Abstract. The ax-+b and related groups have a unique topology in which they are complete
separable metric groups. Several other topological algebraic structures have their topology uniquety
determined by their algebraic structure.

Let G be the set of all pairs (, b), where a is a nonzero complex number and
b is a complex number. G is a group with the multiplication (ay, by)- (a2, b2)
= (dydty, d;by+by). G of course can be made into a complete separable metric
group in a natural manner. Let Gy be the subgroup of G for which a is positive
real and b is real, let G, be the subgroup of G for which a is nonzero real and bis
real, and let G'3 be the subgroup of G for which « is of modulus one and b is complex.
Each G, is a closed subgroup of G and thus is a complete separable metric group
in 2 natural manner. Tt is well known that the field of complex numbers has 2% dis-
continuous automorphisms, cach of which gives rise to a bizarre topology on G.
However, this is not the case for the Gys. For each positive integer n>1, let X, be
either Gy, Gy, G,, or the identity, and let K = LI1 K,. K is a complete separable

nz

metric group in the product topology. The purpose of this note is to prove the
following theorem. ‘

Tusorem 1. Let H be a complete separable metric group and let y: H—> K be
an abstract group isomorphism. Then W is a topological isomorphism.

This theorem scems to be new oven if there is only one nontrivial factor in K.
The only precedent that T am aware of is Tits ([5], Proposition 6.2), who proved
an analogue of Theorem. | for K = Gy and H a second countable Lie group.

Consider first the case for which K = Gy, Let A be the set of all elements
of G, of the form (¢, 0), where ¢ is a positive real number, and let B be the set of
all elements of G, of the form (1, b), where b is a real number. 4 and B are maximal
abelian subgroups of Gy. Hence, 4; = y}(d4) and B, = y~*(B) are maximal
abelian subgroups of M, and so arc closed, Note that ‘

[(1, %] x>b] = [(1,8) (@, 0)(1, 1)(2, 0" (a,0)e4].
T Supported in pait by a North Texas State University Faculty Research Grant.
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Hence,
Y1, 0] x>b]) = WHA, B)py (1, D) p~Y pedi,

an analytic set in B,. From this conclude that the inverse image under i of any
Borel set in B lies in the o-field generated by the analytic subsets of B;. Next, apply
a standard argument to show that y: B; —» B is a topological isomorphism, as
follows. Results from Kuratowski [2] imply that | B, has the Baire property, and so
there exists a residual set B’ contained in B, such that y|B’ is continuous, It follows
that  actually is continuous on all of B;. To see this, let g, (n=1) and g be clements
of B, such that g, — ¢g. The union g~ (B;—B") and gy (B —B) (nz1) is a set
of first category. Hence, there exists an element % in the complement. Then gh is
in B and g,h is in B’ (n>1). But g,h — gh and so ¥ (g, /) — W (gh). Hence, ¥ (g,)
— r(g). Hence, 1/ is continuous on By. Souslin’s theorem says that W~1|B is a Borel
mapping, and hence y~!|B has the Baite property. We conclude as before that
Y~1|B is continuous. This proves that y: B, — B is a topological isomorphism.

Define g: 4 — B by o((a, 0)) = (¢,0)(1, D(a,0)* = (1,4d). ¢ is continuous
and one-to-one. Hence, Souslin’s theorem implies that ¢ is a Borel isomorphism
onto [(1,x)] x>0]. Next note that y: A; — A is a Borel mapping, for it is the
composition of the Borel mappings p — py (1, D)p™ = w(p)(L, D (p)™*
=0 YA, DY ()™ = Y(p), 4> By — B—>A. Let v be the Borel iso-
morphism (&, g) — hg, Bx A - K, and let 7, be the inverse to the Borel isomorphism.
(h,g) = hg, By x A, — H. Note that ¥ = t o (/|By, ¥|4;) o 7;. Hence, 1/ is a Borel
mapping. Argue as before that i then is a topological isomorphism. This proves
Theorem 1 for XK = G;.

Consider next the case for which K = G,. It is easy to check that Gy consists
of all of the squares of elements of G,. Hence, ¥~ *(G,) consists of all the squares
of elements of H. Hence, i ~1(G,) is an analytic subgroup of H. But there are only
two cosets of ¥~*(G,) in H, each of which must be of second category in H. Hence,
Banach ([1], Theoreme 1, p. 21) implies that ¥ ~*(G,) must be open and closed
in H. But ¥: ¥~YG,) - G, is a topological isomorphism. Hence, ¥: H — G, is
a topological isomorphism. This proves Theorem 1 for K = G,.

Consider next the case for which X = G,. Let T’ be the set of all elements
of G, of the form (¢, 0), where ¢ is a complex number of modulus one, and et C be
the set of all elements of G, of the form (1, ¢), where ¢ is a complex number.
T and C are maximal abelian subgroups of G;. Hence, T = ¥~ (T) and C
= "1(C) are maximal abelian subgroups of H, and so are closed.

Let r>0. Note that

YA, w2 ] = [z = 1) = (I, rsgrs)] Isy] = lsal = 1])
=¥ (ls1, 0)(L, 1) By, 0)+ (52, 0)(L, 1) B2, O} sl
= s = 1])
= [tap 7ML, M)t (L, M)t 2y, 1y atein T4]

* ©

icm

Uniqueness results for the ax+b group 257
an analytic subset of C;. But a simple geometric argument shows that
[wA4z| W] = |z| = r] is the closed disk about O of radius 2r in the plane. These
disks and their translates generate the Borel structure of the plane. Hence, if B is
a Borel subsct of C, then y~1(B) is in the ¢-field generated by the analytic subsets
of C,. Hence, as before, y: C; — C is a topological isomorphism. One can now
conclude the proof of Theorem 1 for this case, K = G, in a manner similar to which
one concluded Theorem 1 for the case K = G;.

Define H, = 1~ '(K,). Note that each K, is its own double centralizer in K.
Hence, each H, is also its own double centralizer in H, so each H, is closed in H,
and y: H, - K, is a topological isomorphism. Let U, be open in K, (I<a<gN),
and let Ly = T[] X, be the intersection of the centralizers of the U, (1<n<N).

nzN+1

Hence, |~ Y(Ly), the intersection of the centralizers of the Y YU, (1<n<N), is
a closed subgroup of H. Hence,

YU % o x Uy xLy) = (U)o UV )

is an analytic subset of H. Sets of the form Uy x ... x Uyx Ly ate a basis for the
topology of K, and they generate the Borel structure of K. Therefore, if B is a Borel
subset of K, y~!(B) is in the ¢-field generated by the analytic subsets of H. Hence,
as before, : H — K is a topological isomorphism. This proves Theorem 1.

On a topic that appears to be somewhat related to Theorem 1, recall that any
ring homomorphism of the reals into itself must gither be identically O or the iden~
tity. The proof is easy, for if the homomorphism is not identically 0, it must fix the
rationals, and sinco it takes squares to squares, it must be order preserving, and
thus the identity. The following proposition seems to be a bit more difficult to
prove, however.

PROPOSITION 2. Let R be the ring of real numbers, topologized as usual, let H be
a topological ring, whose topology is given by a complete separable metric, and' let
Wi H— R be an abstract ring isomorphism. Then  is a topological isomorphism.

Proof.

Yo Dezb]) = ¥ (v = b+y? yeR) = [T (B)+)" ye Hl,

which is obviously an analytic subset of H. Hence, the inverse image under  of
any Borel subsct of R lies in the o-field generated by the analytic subsets of H.
One completes the proof of Proposition 2 by the techniques used in the proof of
Theorem 1.

With Proposition 2 in hand, one can go on and show that & thole host of'
algebraic topological structures have their topology uniquely determined by their
algebraic structure. The following theorems are just a hint of the sort of results
one can prove in the direction. _

For each positive integer n, let K, be a finite dimensional nonassociate algebra
with identity over the reals whose center consists of the reals, or let X, be the'algebra
consisting of 0. For example, K, might be the reals, or the real quaternions, or
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the full ring of jxj matrices with entries in, the reals or real quaternions, or the

8-dimensional split Cayley algebra over the reals. (See Schafer [4] for a clear intro-

duction to these motions.) Let K = 1 K,. Define a nonassociative topological
nxl

ring in the obvious manner. X in a natural manner is a complete separable metric
nonassociative topological ring.

TreoreM 3. Let L be a complete separable metric nonassociative topological
ring, and let W2 L — K be an abstract nondssocidtive ring isomorphism. Then V 1s
a topological isomorphism.

This theorem seems to be completely new even if K has only onc nontrivial
factor. The analogous theorem for nonassociative algebras with identity over the
complexes is obviously false since the complex numbers have discontinuous auto-
morphisms.

First, suppose that X has only one nontrivial factor, so that K is a finite di-
mensional nonassociative algebra with identity over the reals. Let R denote the
reals. Center(L) is closed in L, and y: center(L) = R-J= R is an abstract ring
isomorphism. Hence, Proposition 2 implies that ¥ is a topological isomorphism
onto R-I. Let I, X, ..., X, be a basis for X over R, and define I' = y~Y(), X{
=YX, ..., X = ¢ (X,). The mapping

oI+ a, Xy + oo+ 8, X, > Y @I+ Xyt +a,X,)
=y Ma I YT ) X T @) X b K L

is a Borel isomorphism of complete separable metric (additive) abelian groups,
for it is a composition of the Borel isomorphisms :

aol+a, X+ ... +a, X, — (@0, A, oo0s @) ¥ *(a0), Y (ag)s s ¥ Ha))
S YT a) I+ Ha) X+ o+ ¥ Ha) X, K = R — (conter (L))" ** - L. ,

The first mapping is a topological isomorphism by the definition of the topology
of K, the second mapping is a topological isomorphism by facts we have just observed,
and the third is a Borel isomorphism by Souslin’s theorem. Techniques used in the:
proof of Theorem 1 now show that ¥: L — K is a topological isomorphism.

To handle the general case, for each positive integer 321, define P, as follows.
If K, = (0), set P, = 0. If K, % (0), let P, be that clement of K which is the identity
of K, i the nth component and 0 element in the other components, For cach posi-
tive integer n>1, define P, = 4~ *(P,) and L, = LP;. Bach L, is a closed subset
of L since P, is a central idempotent, and /: L, - K, is an algebraic, and therefore
a topological, isomorphism. ‘

Let N1 be a positive integer. Let U, be open in K; (1</<N). Each ™' (U)
is open in L; and hence is a Borel set in L.

[l K. =ITin K| TP, = 0, 1Si<N].

n2N+1
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Hence,
Y J1 k) =IT in Lj TP, = 0, 1<i<N],
nZN+1

a closed subset of L. Uy + ...+ Uy+ T[]
nEN+1

K) = 0 U+ O+ TT KD
nzN+1

K, is a basic open set in X, and

YU+ + Uyt

. nEN+1
is an analytic subset of L. Hence, if B is a Borel subset of K, then Y1(B) is in the-
o-field gencrated by the analytic subsets of L. Hence, as before, y: L — K is a topo-
fogical isomorphism. This proves Theorem 3.

Tt is clear that the finite dimensional nonassociative algebras that occur in
Theorem 3 must in general possess an identity. For example, the analogue of
Theorem 3 for the Lie algebra of the 3-dimensional Heisenberg group is false.
However, the following two theorems exploit special situations to give an analogue
of Theorem 3 even when there is no identity.

View R® as a nonassociative ring with the standard addition and with multi-
plication given by the cross product of 3-vectors. Thus, R?® has the usual generators.
i, j, k with the multiplicative relations: ixj = k, jxk =1 kxi= J,ixi=0, etc.
For each positive integer n3>1, let K, be R? with this nonassociative ring structure,
or let K, be 0. Let K = [[ X,. K in a natural manner is a complete separable:

nzl

metric nonassociative topological ring.

ProrosimioN 4. Let L be a complete separable metric nonassociative topological
ring, and let \y: L — K be an abstract nonassociative ring isomorphism. Then ¥ is
a topological isomorphism.

First, suppose that K has only one nontrivial factor, so that K is the non-
associative ring R%. Define i’ = y~'(@), j' = ¥~4(j), and k' = ¥~ *(k). Notice that.
Ri = [v in R3 vxi=0]. Hence, L' = W (Ri) is closed in L, for

L'=[vin L] vx'i’ =0],

where x' denotes the ring multiplication in L. Put a new ring structure on L”
compatible with its topology as follows. Leave addition unaltered, and if v, w are
in I/, define oow = (K %' vy x' (w x'j). If @) = ai and Y (w) = bi, an easy
computation shows that W (v-w) = abi. Hence, L' with this new ring structure is.
isomorphic as an abstract ring with the real numbers, Hence, : L' — Ri is a topo-
Jogical isomorphism. Similarly, ¥: YR~ Rj and ¥ W~ Y(RK) =+ Rk are
topological isomorphisms of complete separable metric (additive) abelian groups.

Souslin’s theorem implies that, as a complete separable metric (additive) abeha‘n
group, L is Borel isomorphic to Y iRy~ (R)@Y " (RK), which in turn is
topologically isomorphic, via ¥, to Ri©Rj®Rk = R®. Hence, y: L~ K is a Borel
isomorphism of complete separable metric (additive) abelian groups, and so, as
before, 1 is a topological isomorphism.
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To handle the general case, note that each K,, is the intersection of the centralizers
of all the K,’s, m # n. Hence, ¥~ (K,) is the intersection of the centralizers of
all the Y~ Y(K,)s, m #n, and so Y~*(K,) is a closed subring in L. Hence,

Y UK, — K, is a topological isomorphism. Note also that v Tl KD
nZN+1

is the intersection of the centralizers of the 1 ~*(K;) (1 <i<N), and so is also closed,
One now completes the proof of Proposition 4 in the same manner that one com-
pleted the proof of Theorem 3.

Finally, let G; and G be as in Theorem 1. Recall that the Lie algebra of G,
is a 2-dimensional vector space over R with a basis X, X, so that [X, X,] = X,
and [X;, X;] = [X,, X,] = 0. The Lie algebra of G5 is a 3-dimensional vector
space over R with a basis X, X, and X so that [X3, X,] = X;, [Xy, X3] = ~ X,
and [X;, X3] = [Xy, X{] = (X3, Xo] = [X5, X531 = 0.

For each integer n31, let K;, be cither the Lie algebra of G, or the Lic algebra

of Gg, or 0. Let K = [] K,. K in a natural manner is a complete separable metric
n>1
‘nonassociative topological ring.

PRrOPOSITION 5. Let L be a complete separable metric nonassociative topological
ring, and let Yr: L — K be an abstract ring isomorphism. Then 1 is a topological
-isomorphisni.

First, suppose that X is the Lie algebra of G;. Let 4 = RX,, 4' = y~1(4),
"B = RX,, and B’ = ~1(B). Notice that

A=[Xin K| [X,X,]=0] and B=[Xin K| [X,X,]=0].

Hence

-~

A =[Yin Ll [y ' (X)) = 0] and B'= [¥in L} [V, 1(X)] = 0]
are closed in L. Observe that

[aX,} a=b,a,b in R] = [b+cH)X,| b, c in R]
= bX,+[[eXy, eX5]| ¢ in R]
= bX,+[[eXy, dX,]l [eXy Xsl—dX; = 0, ¢. d in R].

Hence,

V™ H[aX,] a=b,a,b in R))
=YX+ [T Z) [V Y (X)]~Z =0, Yin 4, Z in B]

is an analytic subset of B'. As before, this implies that y: B’ — B is a topological
isomorphism of complete separable metric (additive) abelian groups. Observe that
ithe mapping 1: Z - [Z,X,;], A— B, is a topological isomorphism. Hence,
Y- [V (0] - (), Xo] > (Y), A" —» B+ B— A4, is a Borel isomor-
phism by Souslin’s theorem, for it is the composition of one-to-one Borel mappings.
But L is Borel isomorphic to 4’@®B’ and X is Borel isomorphic to A@.B. Hence,

icm
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y: L = K is a Borel isomorphism of complete separable metric (additive) abelian
groups, and so, as before, is a topological isomorphism.

Next, suppose that K is the Lie algebra of G;. Let 4 = RX;, A' = ¢ ~'(4),
B = RX,. B' = y"YB), C = RX,, and C' =y }(C). 4" is closed in L since 4 is
maximal abelian in K, and B'+C’ is closed in L since B+C is maximal abelian
in K. Also, since

B =4 X)] Yin 4] and C' =[[V¢ "Xl Yin 4],
B' and C’ are analytic (additive) subgroups of L. The natural mapping 4’ x B’ x
xC' = A'+ B +C' = L is continuous, one-to-one, and onto. Hence, Souslin’s
theorem implies that this mapping is a Borel isomorphism, and so B’ and C' are
Borel (additive) subgroups of L. The set A’+C’ is a Borel subset of L by Souslin’s
theorem, and it is a Borel transversal for the quotient space L/B’. Hence, B’ is

closed (Miller [3], Theorem 1). Similarly, C' is closed.

Notice that

[aX,| a=b,a,b in R] = [(b+c*)X,| b, ¢ in R]
= bX,—[leX;, cXz]l ¢ in R]
== sz—[[('Xx,z{X3]] [eXy, X,1—dX3; =0, ¢, d in R] .

Hence
Y N{uXal a2b, a, b in R) =y~ 0X)~[[Y, Z1 [Y.¥ ' X)]-Z =0,
Yin 4, Z in C]

is an analytic subset of B'. As before, this implies that y: B'— B is a topological
isomorphism. As very similar argument implies that ¥: C'— C is a topological
isomorphism. The mapping ©: ¥ = [¥, X;], 4 » C, is a topological isomorphism.
The mapping Y — [V, YD - W(Y), Xl = Y (YY), A~ C'»C— A4, is
a composition of one-to-one Borel mappings, and therefore itself is a Borel mapping.
Hence, i: L = A'+ B +C'— A+B+C = Kis a Borel, and therefore a topological,
isomorphism of complete separable metric (additive) abelian groups.

One handles the general case and completes the proof of Theorem 5 just as
onc completed the proof of Theorem' 4.
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Resolutions of spaces and proper inverse systems

in shape theory
by

Kiiti Morita (Tokyo)

Abstract, Tt will be shown. that the two notions in shape theory, resolutions of spaces in the
sense of 8. Mardedié and proper inverse systems in our sense, are essentially equivalent.

1. Tntroduction and statement of results. Let Top be the category of topological
spaces and continuous maps, and Pol its full subcategory of polyhedra. Let us
denote by HTop and HPol the homotopy category of Top and Pol respectively.

Tn the pro-homotopy approach to the shape category of topological spaces,
which was introduced in our previous paper [10], one assigns to each topological
space X an inverse system in HPol which is associated with X in the sense of [10],
while in the approaches of Mardegié-Segal [6] and Fox [2], which are concerned
with compact Hausdorff spaces and metric spaces respectively, these authors assign
to X inverse systems of ANR’s for metric spaces in Top with X as their inverse
limit. To prove the equivalence of our approach with those of these authors for
the respective cases, we have introduced in [10] the notion of proper inverse systems.
Here we recall its definition.

Throughout this paper, let X be a topological space and {X3s paze» A} an in-
yerse system in Top, and let {p,}: X - (X, par, A} be 2 morphism in pro-Top, i.e.,
Pt X =+ X, is o continuous map for each A such that p, = p; par, for A<A Let
us denotc by N the operation of taking the nerve of a cover.

DrNeron | (Morita [10]). {p,} is called proper if condition (P) below is
satisfied:

(P) For any A€ 4, any normal cover ¥ of X and any normal cover # of X,
there cxist a g & A with A< and a normal cover % of X, such that pyl(#7) refines

@, ¥ refines py, (A) and N(#7) is isomorphic to N(p; ' (#)) by the map V i)

for Ve ¥

In [10] this definition was described on the assumption that X is an inverse
limit, but this assumption was not used actually in the statement of the definition
as well as in the proof of [10, Theorem 1.9] and [13, Theorem 3.1]. Thus, it is proved
actually by [10, Theorem [.9] that if {p;} is proper then the inverse system
5*
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