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Investigating the ANR-property of metric spaces
by

Nguyen To Nhu (Warszawa)

Abstract. A characterization of ANR-spaces is established and is applied to show, among
other things, that if X' ANR then the family Z1(X) of all non-empty subsets of X consisting of"
at most & points, topologized by the Hausdorff metric, is an ANR -space for each k € N w {0},

o

where F o(X) = kU] Fu(X).

This answers affirmatively a problem of Borsuk.

Let {#,} be a sequence of open covers of a metric space X. Let % = | %,.
neN
By J (%) wo denote the nerve of %. We write X<{%,} iff X is a subcomplex of
N (@) and for each o e K we have o=, U %4, for somic n e N (recall that sim-
plices in X are finite subsets of % = U %,). For each ¢ e K we put
neN

n(o) = max{ne N: o<W, U Upsy}-

In this paper we show that a metric space X ¢ ANR if and only if there exists
a sequence of open covers {%,} of X such that for each K<{%,} and for each
selection f: K° — X there is a map g: K — X such that for any sequence {ov} of
simplices of X with n(oy) = co we have

8(e) = sup{d(g(x), [(V)): xea, Ve op} = 0.

Wo then give the following applications of this fact.
In § 2 we show that if X'e ANR then the symmetric powers F,(X) of X are
ANR-spaces fov all k & N. This provides a positive answer to a problem of Borsuk

- [Bo]. Let us note that in the compact case the result was established by Jawo-

rowski [J].

In § 3 we prove the following fact which extends the earlier result of Bessaga
and Pelozyski [BP2]: If X is a complete metrizable space then the space M(X)
of all meusurable functions of [0, 1] into X is homeomorphic to a Hilbert space.
Let us note that this result was pointed out to us by Torunezyk [T3].

Further applications of our characterization are given in [NL
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§ 1. A characterization of ANR-spaces. In this section we prove the following
-theorem

1-1. THEOREM. For a metric space X the following conditions are equivalent

(i) X € ANR.

(i) There exists a sequence of open covers {a,} of X such that for eaclh K<{,}
and for each selection f: K° — X there is an extension g: K — X such that for any
sequence {oy} of simplices of K with n(ey) — oo we have diamg (o) - 0.

(iii) There exists a sequence of open covers {@,} of X such that for cach K
<{%,} and for each selection f: K9 — X there is a map g: K — X such that for any
sequence {cy} of simplices of K with n(oy) — % we have

5(oy) = sup{d(g.(x),f(V): xeoy, Ve ap} 0.

Proof. (i) = (i) Assume that X'e ANR. Consider X as a closed subset of
a convex set Z lying in a Banach space. Let W be a neighbourhood of X in Z and
let r: W — X be a retraction. For each ne N take a cover 77, of X' consisting of
open convex ‘sets in W such that
(1) convV<=W and djamr(convV)<27" for each Vest¥,.
{2)  Vyr1 <7, for.each ne N,

Let us put

U=V X: Vet,}.

Now let K<{%,} and let /1 K° =X be a selection. For each simplex o

= Vi, -, Vip €K we define glo by the formula

x 13
g(x) = r(iz1 Lf(vy) for each x = Y #,V;.
£ =
Then g}K® = f and from (1)(2) we get

k
g (), g(V) = d(if V), r(ith;f(V{)))<2" o),

Therefore diamg(e)<2™"*! for each e K.
(i) = (iii) is trivial.
(ili) = (i) Consider X as a closed subset of a metric space Z, We shall show

that X is a retract of a neighbourhood of X in Z.
For each open set UcX we put

BxtU = {xeZ: d(x,U)<d(x, X\U)}, sec [K].
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Tt is casy to see, [K], that
3) ExtUnV=ExtUnExtV.

The proof of the implication is based on the following fact.

1-2. Facr. For any sequence of open covers {u,} of X there exist a sequence
of neighbourhoods {(W,} of XinZand a locally finite open cover ¥ of Wi X with
the following properties

(@) d(x, X)<1l/n for each x & W,,

(i) W, =W, for each neN,

(i) If Ve and VAW, # @ then VeW,—y and there exist @(V)e ¥,
and a point ale(V))e (V) such that VeExto(V) and

d(x, a(p(V)))<5d(x, X)

Proof. The proof follows from the proofs of Lemmas 4-3, 4-4 and 4-5 of
[Hu] (see [Hu], p. 127-128).

Now let us pass to the proof of the implication (iii) = (i) of Theorem 1-1.

Assume that there is a sequence of open covers {#,} as in 1-1 (iii). Using 1-2
we take a sequence of open neighbourhoods {W,} of Xin Z and an open cover ¥~
of W\X satisfying the conditions 1-2(i)-(ii}). We will show that X is a retract
of Wy.

For each Ve?, put n(V) = sup{n: VW, # O}

By 1-2(iii) there is a @ (V) € %) and a((p(V)) € (V) such that ¥ < Exto (V)
and

for each xe V.

d(x,a(p(V)<5d(x,X) for each xe V.

Let us put
' K® = {pV): VeVt = U%,.
neN
We define a simplical complex K with vertices K° by letting
o = {o(Vy), .o e(V)yek it Vi Vp e 4 ().
Then from (3) and 1-2(iii) we get

r
ﬂl(P(Vz) 4 @  whenever (Vi ...V, pe A ().

i=
Therefore X is a subcomplex of A (%). Let us show that K< {@,}. For cach simplex
r
o = {p(Vy), s p(V)) € K we have () V; # @. Thus there is a ke N such that
t=1

Vo (WoWis) # @ foreachi=1,...p.
From 1-2(iii) it follows that
k<n(V)<sk+1

) for each i=1,..,D.
4 — Fundamenta Mathematicae CXXIV/[3
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Therefore
(VD) eU Y Ures

Consequently K< {%,}.
We now define a selection f: K° = X by the formula

flo) = a(p(¥)) for each ¢ (V) e K°.

From 1-2(iii) it follows that f'is well defined. By hypothesis there is a map g: K X
satisfying the condition 1-1(iii). We define a retraction r: W, =X by the formula

r(x)={x if xeX,
gPh(x) if xe WX
where h: W \X — A (¥) is the canonical map and ¢: A (¥") ~ K is the simplical
map induced by ¢. Let us show that r is continuous.

For each x € W\X, say x € Wy \Wymys1s 1t 0 = (¥, .
of A (¥") containing h(x). It is easy to see that

foreachi=1,..,p.

w, Vpy be a simplex

@ (0) < %n = Y ﬂl/n(x) +1s
where

(F(U) = <(P(V1)= ey (P(Vp)> € K
Thus we have n(p(0))=n(x). Consequently

d(x, r(x)) = d(x, gph(x)<d(x, ap (V) +d(fo (Vy), gph(x)))
< 5d(x, X)+5(0(0)) .

Since n(p(e))=n(x) > o0 as x —+x,€X we infer that r is continuous. This
completes the proof of Theorem 1-1.

1-3. Remark. Let us note that if X is separable then the nerve A (¥") of ¥
can be chosen to be locally finite. Therefore from the proof of Theorem I-1 it
follows that a separable metric space X is an ANR iff the condition 1-1(iii) is
satisfied for any locally finite simplical complex K~ {%,}.

§2. Hypérspaces of finite sets of an ANR-spaces. For a metric space X lot 2%

denote the hyperspace of all non-empty compact sets in X topologized by the
Hausdorfl metric

d(4, B) = max{maxmind(a, b), maxmind(a, b)} for A, Be2*
acd beB beB asd
For each ke N let us put

FX) = {de2¥: cardd <k}, F X)= kUN FX).

Borsuk [Bo] (see [Bo] p. 215 Problem 4-2) asked whether the functors
. ke N preserve the property of being ANR -spaces. Jaworowski [J] has shown
that the answer to this question is positive if X is compact and k< oo (see [F] for
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a new proof of this fact). In this section we resolve Borsuk’s problem in the general
case.

2.1. THEOREM. If X € ANR then #(X)e ANR for each ke N U {0}.

2.2. Remark. It is easy to see that if X is contractible then # (X)) is contractible
for each ke N v {w}.

Therefore Theorem 2-1 gives

9.3, COROLLARY. If X € AR then F(X)e AR for each ke N u {0}

Proof of Theorem 2-1. Consider X as a closed subset of a convex set Z
lying in a Banach space. Let W be a neighbourhood of X in Z and let r: W— X
be a retraction. For each ne N take a cover ¥, of X consisting of open convex
sets in W such that

4) convVeW for each Vesty’,.

(5) max{diamconv ¥, diamr(conv¥)}<27"  for each Vest? .

(6) Ve <V, foreachneN.

Let us put
Uy ={VnX: Vet,}

and for each finite family of open sets {Uy, ..., U} of X we let

q
S(Uygy oy U = {d e FYX): Ac U U; and 40 U@ fori=1,..,4q},
i=1

= {S(Uy, .., Up): Ure ¥, and if U; # Uj then dist(U, UD>427"},
e = ) U

izn

We shall show that the sequence {%’,ﬁ} satisfies the condition 1-1(iif) for F «(X).
Let K< {@} and let f: K® = F3(X) be an arbitrary selection. For each
V= S(U,,...U)eK® take a set {a;(V), ..., a(V)} =S (V) such that

{a,(V)y s a0 Uy
is a one point set for ecach i=1,..,p. Let us put
gy = {a;(V), s a(V)}
and for each simplex o = (¥, ..,V,p e K with V; = S(UL, ..., UL, write
Ala) = {{ay, s ap}: ;e g (V) 0 U, Ule (UL, ..., Ui} for
i= 1,.‘.,1)and("]7 Uiz Qﬁ}

, i=1
Note that for cach simplex ¢ = (¥y, ..., V,» € K, for each i€ {l,...p} and

for each ¢, g(V,) there exists {as, ..., a,} € A(0) such that a; € {@g, o> Gy}

4%
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Let us show that card 4 (¢)<k for cach o€ K. In fact, put
np = max{n: %% o® # O}

and let ¥, = S(UL, .,.,U,i,) € @fu. Since cardg (V;) <k, it suffices to show that for
each a;& g(V;) there exists unique {ay, ..., a,} € A(o) such that a;e {uy, ey Uyl

If it is not the case, then there would exist two distinct members {ay, ..., ,}
and {gj, ..., ap} of A(¢) such that

@€ {agy s @} O {4y s dp}

We may assume that a, # d} and a4, a5 € g(V}) = g(S(U1, v URD). Let a, € U,
d; € U}, and a,€ U}, Then we have

UinUj #9 and
Note that if S(UL, ..., Us) e 4%, then
dist(U}, Ul) 427" 2427",

UlnU} # 8.

Since diam Uf<2™™, the above is impossible.
We now define g: K — F(X) by the formula

g(x) = {r(iiliaz): {ay, .. a,} € d(0)}

r
for each x =iZ AV;eo. It is easy to see that g is continuous,
=1

Note that for each simplex o = (V,...,¥,» €K and xe o we have

d(g (), f(V)<d(g(x), g(V)+d(g (V. f(V))

<2—n(w)+1+2—-n(a)+1 = 2-11(«)»0—2.
for each i = 1, ..., p. Therefore
8(0) = sup{d(g (x),f(")): x €0, Veg®}g2 "2

for each o & K. Thus by Theorem 1-1 we have F,(X)e ANR.
This completes the proof of the theorem.

From Theorem 2-1 we also get

2-4 COROLLARY. F(l,) & I, for each k& N.

Proof. Since F(,) € AR, by [DT] it suffices to establish the following fact
{#+x)  For each 6>0 there exists a >0 such that for every compact set % < F(/,)

there is-an e-homotopy 7,: A — F(l,) such that /iy = id and
dist(h, (A), A)23.

P.roof of (wx). Given £>0. Since B(g) = {x&/,: ||x||<¢} is not compact,
there is a 6>0 such that no compact set of /, is a §-net for B(e).
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Now, given a compact set 4 < F (L), put
K=U{d: deA)<cl,, K*=K-K={x—y:x,yeK}ch.

Then K* is compact. Take @ € B(g) such that d(a, K*¥)>§. We define 2 homo-~
topy hy: A& — F(ly) by the formula

h{d) = A+ta for each AeA and z€0,1].

Obviously % satisfies the desired condition.

§ 3. Spaces of measurable functions. Let X be a metrizable space. By M(X)
we denote the space of all measurable functions of [0, 1] into X equipped with.
the topology of convergence in measure. We identify f = g iff

l{rel0,11: f(t) # ()} = 0.

Here |4} denotes the Lebesgue measure of 4 in [0, 1].
Bessaga and Pelezyfiski [BP1] [BP2] showed that M (X) = [, iff X is a complete
separable metrizable space having more than one point. Here we have

3-1. THEOREM. M(X) is homeomorphic to a Hilbert space for any complete
metrizable space X.

Let us note that Theorem 3-1 was mentioned by Toruficzyk [T3].
Since M(X) is homeomorphic to the countable Cartesian product of itself
[T3], by [T4] in order to prove Theorem 3-1 it suffices to establish the following fact

3.2. PROPOSITION. M(X) e AR for any metrizable space X.

Proof. For the reader’s convenience we first present the proof in the separable
case. The same idea will be used in the proof of the general case.

Let d be a compatible metric of X bounded by 1. Then the formula

1
rl(f,g)=dfd(f(f),g(f))dt for f,geM(X)

defines a compatible metric of M(X).

Since M(X) is contractible, it suffices to show that M(X)e ANR. Let us
verify the condition 1-1(iii). Take a sequence {@,} of open covers of M(X) such
that diamU<2~" for cach Ue®,. Let K<{%,} be a locally finite simplical
complex and let /2 K®—M(X) be a selection. Take a map go: K° - M(X) such:
that go(¥) is piecewise constant for each Ve K° and

W] d(f(V),gQ(V))<2""‘V) for each Ve K°

where n(V) = sup{n: Ve,}. o
For cach simplex o e K, let A(c) denote the set of all vertices of simplices.
with o as a face. Since K is locally finite, 4(0) is finite for each o€ K.
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We shall define inductively a sequence of maps g,: K" o M(X) with the
following properties

@) gJK" Y =g, for each n>1,

(9) for each ¢ e K™ there exists an m(6) € N such thatkfor cach x €0 U A(0)
there exist intervals Ay, ..., 4, k<m(o) such that1U1Ai =10,11, 47 n 45
= @ for i # j and g,(x)|4; is constant for each i =1, ..., k,

(10) for each o e K™, for each he go(4 (¢)) and for cach x € ¢ we have
d(h, g,(0)<max{d(h, fo(V)): Ve 6%} +(1—2"" diamgo(0®) .

Obviously, g, satisfies the conditions (9), (10). Assume that g,.; has been

defined with the properties (8)-(10). Let us define g,: K® - M(X) as follows.

For each o e K™ take k(o) € N such that

Y {m(V): Ve A(o)}+max{m(s): o' is a face of ¢}

diamgy(c®) ’

1)} k(@)zn+1+log,

Put

A(0),1) = (275, G+ 1)27%9)  for  i=0,..,27=L.

Let ¢ be an interior point of the simplex ¢. We put

g"(C) = gn—-l(VO) = gO(VO)

where ¥, is a vertex of o.

Note that for each x € g, x 5 ¢ there exist a unique se[0,1] and ye o (the
boundary of ¢) such that x = sc+(1—8)y. We define gu(x) as follows: If
9.4014(k(0), 1) and g,-1(3)|4(k(0), ) are constant then we put

0.0 = {gn(c) @ if te[i27H, (145275,

2 g @) If e [(+27H, (14+1)27).

Otherwise we subdivide 4(k(o),7) into the family of subintervals {4} such
that 7,(c)|s and g,_,(»)|, are constant and that each 4 e {4} is maximal, that is,
if 4’2 A4 then either g,(c)la or g,-1()s is not constant. We define g,(x)l4 by
the formula (12) with 4(k (o), i) replaced by 4. Obviously g, satisfies the conditions
(8), (9). Let us check (10).

Given x € ¢ with x = sc+(1—s)y for some se[0,1], y& a, put
4= U {4(k(0),7)<0, 11: go—1(2)|4(k (), £) is not constant for some z e A(s) U

v},

A =1[0,1N\.
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‘We subdivide 4 = 4* U A** 5o that
and

gn(x)ldu = gn—-l(y) .

Let us note that 4, 4, 4%, 4%* depend on o and y. Then for each h & go(4(0))
we have

1
Aa(h, 9,%) = J A(h(2), galx) ()t
A.[ ah @), gux) (f))dt'l*dftd (1), gu)®)d+ | a(h(t), g.0x) (1)) dt

gn(x)ldt = gn(c)

i

i

d((2), g() ) dt+(L=3) [ d(h(2), -1 (D)D)t +

s
4

+ [ d(h(), g, (@) at
1

5§
0

1
=5 [d(h(®), g,,(c)(t))dt+(1—s)0j A(r(), gur (P (D)t +
+§ {d(h(), gu0) (1)) —5d (B (2), 9, (1)) = (L =5)d(R (1) > 9u-1(3) (@)}t
4 H
< sd(h, g,(€))+ (1 —5)d(h, g.-1(»)+214]
< max{d(h, ,(6)), d(h: gur ()} +214].
Note that
141<27 (T {m(V): Ve (o)} +max{m(c"): o' is a face of a}).
Therefore from (11) we have
|Aj<27 "1 diamgy(a®) .

Let o' € K1 denotc a face of ¢ containing y. Then by inductive assumption
for every h e go(d(e”) we get

d(h, gu-1()) <max{d(h, go(V)): Ve 6%} +(1 —2-5*1) diamgq(o'®)
<max{d(h, go(V)): Veo®}+( —2"" Yy diamgy(c®) .
Since A(a")>A(0), for he go(4(c)) we obtain
d(h, g0 <max{d(h, g.(0), d(k, gu-1ON}+214]
<max{d(h, go(V)): Ved®}+(1-27" diamgo(c®) .

Hence the condition (16) holds.
Finally we define g: K — M(X) by the formula

g(x) = limg,(x) for cach xe K.
ne o
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Then glK® = g, and for each xe o e K and Ve ¢ from (7), (10) we get

(g (), F7)<d(g(x)5 go(V))+d(go(V) JS)
<2diamgo(c®)+2" " <527
Hence
5(0) = sup{d(g(®),f(V)): xeo, Ve 6} 527",

Hence by Theorem 1-1 we have M(X)e ANR.

The general case. In the non-separable case, the simplical complex K is not
Tocally finite, therefore the set 4(0) is, in general, infinite. However, we cun provide
a new metric 4 on M(X) for which the condition (10) holds true for all clements
he M(X). The metric d is defined as follows: For f, ¢ e M(X), wrile

w(k,1)(f, g) = sup| A({ i)d(f(t), x)dt— N;fi) d(g (1), x)dt|

where 4(k, i) = [i27% (+1)27% for i=0,...,2"~1,

20e—1

aff, 9) = ;,ZBWUQ (/9

s = 327401.0).

It is easy to. see that d is a compatible metric on M(X).

Let us note that, when using the metric 4 instead of d, the sequence {g,} con-
structed in the proof of the separable case satisfies conditions (9) for each xe o
and (10) for each he M(X). i

In fact, we take

max{m(c"): ¢’ is a face of o}
diam go(c°)

(11%) k(o)>n+3+log,

Then, for each k<k(s) and for each ze X we have
| d(g0@), 2)dt
Ak, 1)
= 4(£,x)d(g”(c)(t)’ z)dt-+(1—s) A(Q")d(gn-l(y) (1), 2)di+
+ Z({ i){d(gn(x) (t) 3 Z) '“S(Z(Q,,(C') (t) ’ Z) - (1 '-S)d(gu- 1(y) (2) H Z)} dt
where
A, i) = U{d(k(0),1)=d(k,i): pld(k(s),i) is not constant for some
¢ € {g5-100), 9O} } -

icm

Investigating the ANR-property of metric spaces 253

Henee, using the condition (11%) we obtain, for each k<k(o)
dgax), DYE8d (g, () )AL = 8)dif gy (), B)+27" " diamgo(a®) .

Therelore
dlg,(x). by = 3 27 difg,(x), h)
[zt

Z_‘, 2 .kdlc(gn(x); h) + . %:, kadlc(gn(x) > h)
>k(o)

b hitor)
< 8 (a()o D) (1 =) d (g1 (9), B)+27"" diamgo(o®)+275
= max {d(g,(e), 1), d{gy-1(¥), B)}+2""diamgy(c°) .

Consequently using the inductive hypothesis we get condition (10).

3.3, Remark, The proof of Proposition 3-2 also shows that the space M (X}
consisting of piccewise constant functions in M(X) is an AR for any metrizable
space X.

Added n proof. After this paper has been accepted for publication V. V. Fedorchuk kindly-
informed us that for & < o Theorem 2-1 has been obtained earlier by M. R. Cauty (C.R. Acad.
Sc. Paris 276 (1973), pp. 359-361). However, as in the proof of Jaworowski, the proof of Cauty
uses the fact that if pairwise inlersections of ANR’s are ANR’s then a finite union of them is also-
an ANR’s (sce Fedorchuk, Soviet Math, Dokl. 22 (1980), pp. 849-853).

Yxavere Let X = BN\ {Bi: i€ N} where B == {ze C: <1} X[ is the unite ballin R®and
{B1} is o null-sequence disjont balls in B centered at points of 0X 0% [0, 11 Then X #ANR but
X can be wrilten as the union of thres AR’s Xj such that Xi n Xj€ AR for iz (take Xi
= XAl e B ag@eldwd, a@+ D).
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Uniqueness results for the ax4-b group
and related algebraic objects

by

Robert R. Kallman (Denton Tex.) *

Abstract. The ax-+b and related groups have a unique topology in which they are complete
separable metric groups. Several other topological algebraic structures have their topology uniquety
determined by their algebraic structure.

Let G be the set of all pairs (, b), where a is a nonzero complex number and
b is a complex number. G is a group with the multiplication (ay, by)- (a2, b2)
= (dydty, d;by+by). G of course can be made into a complete separable metric
group in a natural manner. Let Gy be the subgroup of G for which a is positive
real and b is real, let G, be the subgroup of G for which a is nonzero real and bis
real, and let G'3 be the subgroup of G for which « is of modulus one and b is complex.
Each G, is a closed subgroup of G and thus is a complete separable metric group
in 2 natural manner. Tt is well known that the field of complex numbers has 2% dis-
continuous automorphisms, cach of which gives rise to a bizarre topology on G.
However, this is not the case for the Gys. For each positive integer n>1, let X, be
either Gy, Gy, G,, or the identity, and let K = LI1 K,. K is a complete separable

nz

metric group in the product topology. The purpose of this note is to prove the
following theorem. ‘

Tusorem 1. Let H be a complete separable metric group and let y: H—> K be
an abstract group isomorphism. Then W is a topological isomorphism.

This theorem scems to be new oven if there is only one nontrivial factor in K.
The only precedent that T am aware of is Tits ([5], Proposition 6.2), who proved
an analogue of Theorem. | for K = Gy and H a second countable Lie group.

Consider first the case for which K = Gy, Let A be the set of all elements
of G, of the form (¢, 0), where ¢ is a positive real number, and let B be the set of
all elements of G, of the form (1, b), where b is a real number. 4 and B are maximal
abelian subgroups of Gy. Hence, 4; = y}(d4) and B, = y~*(B) are maximal
abelian subgroups of M, and so arc closed, Note that ‘

[(1, %] x>b] = [(1,8) (@, 0)(1, 1)(2, 0" (a,0)e4].
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