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Abstract, The topological entropy in one parameter families @t f, = a-f is studied. An
example is constructed showing that the entropy can be decreasing for some values of the parameter
even in very regular families. However, there is a countable set of kneading invariants which can
be attained in the family only once,

1. Introduction. Lot « be a family of continuous maps from the unit interval
into itself such that every f'e .o/ is concave, f(0) = f(1) = 0, the point % is the
unique critical point of £ and f is symmetric (f(5—y) = f(3+)).

We consider one-parameter families of maps @ = f, = a-f or f, = a+f such
that all f, are in .

Define a fonction h(-) as i(a) = h(f,) where h(f,) is the topological en-
tropy of f,.

We are interested in the following problem: Is h a non-decreasing function
of a?

Some results in this direction have been obtained recently. First Hofbauer
proved for the family @ v+ axi.~x) that there is a countable set of values of 7
which can be attained only once (see [4]). Recently Douady and Hubbard [2] gave
a proof of monotonicity of function & for this family.

Matsumoto [5] considered families ¢ +» a-f with-arbitrary fe s and then
fumilies such that all /, have no homtervals. In both cases he obtained results
similar to those in Hofbaucer's paper but for other values of A

In this puper I give an example showing that h can be decreasing for some
values of the parameter, Then I prove some partial results about the monotonicity
of this function,

11, Example. We shall construct a piecewise lincar map fe o such that, for
small and positive &, A((1+8)-f)<h(f) and h(f+e)<h(f) (where (f+e)(x)
= f(x)+e).

The map / has a fixed point ¢ and a point p of period two such that f(p)<g<p
(Fig. 1), The slopes are:

£y on the interval (£2), (3),
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Fig. 1. Graph of the function /'

By on (%,r) (for some f(p)<r<p),

B2 on (r,p) and a on (p.f(),
where the parameters &, By, B, are chosen so that f; <1, f; - fi<1, fp>1, o+ ffy >1
and @) = p.

Since B,<1/B;, the slope at the fixed point ¢ is larger than one (f"(¢) = ~ B2)
and it is repelling (see Fig. 2).
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Our map is now defined on the interval [f2(4),/()]. Tt can be extended tor
_a piecewise linear and concave transformation from [0, 1] into itsell such that

70 =71) = 0.

It follows from the construction that the kneading invariant (sce [I]) of f is.

equal to RLR®.
We shall prove the following proposition:
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PROPOSITION. There exists an e,>0 such that for every ee(0, &)
(b6 f)<h(f) and  h(f+e)<h(f).
Proof. Let g = (14¢)f. Then
g(m—=1(p) = ef(p), g (P —fXp) = e(p—(1+8) B1 /().

1t follows that g(p)>p for ¢ sufficiently small. Let s be such that g(s) = p
and s>%. Then g(p)<s (Fig. 3).

A

Fig. 3

The absolute value of (g « g)'(x) is larger than one for x & (%, 5) and smaller
than one for x € (s, r) (see Fig. 3).

Furthermore

T 1) = (9 (@) ~a (f@)+a (f@)~f(f@)
= —(1+8)Baeq+eq = eq(l—(L+8)Bs).

Henee g%(g)<q if ¢ is positive and small enough. .

It follows that the map ¢ has no fixed points in the interval (%, ¢). If & is small
enough, then the point g*(4) lies close to f(p). Hence there exists a ko>2 such that
for 2< (k= D<ky:

1<g¥ B <O D),  HiB>E and  gE<E
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Thus the kneading invariant K (g) = K; is such that K; = R, Ky = L, K; = R for
3<i<ko—1, Ky, = L or C and therefore K(g) is smaller than K(f) = RLR".

The map £ has an entropy equal to log(,/2), and it follows from the results of
Guckenheimer [3] that i(g)<h(f).

The argument and estimations for a map f+¢ arc quite similar.

Remark. Modifying this example, onc can construct a smooth and concave
function F such that K(F) = K(f) and F has the same property as f.

The point p is also periodic for F and F'(p) = ~1/By, F'(F(p)) = —By,
F*(p) = p. The map F has a fixed point gp in [F(p), p] and F'(¢y)<~1.

Let us consider a family & +» (1+&)F = F,, (¢l <g;. Then Fy(p)~F(p) = oF(p),

FXp)~FX(p) = F(Fp))—F(F(p)+F{F(0))~F*(p)
= —&By, O F(p)+ep = e(p—Ps, @ F(p)
where f;(g) = —F,(t) for some ¢ lying between F(p) and F(p).
Since lim fy(e) = B,, we obtain
&0

FH(p)=F*(p)
&

0
— F2(P)|s=0 = lim >0.
ds =0

Moreover, if F2 has a fixed point p, e (%, ¢r), then hmp = F(p).
‘We shall use the following technical lemma:

LeMMA. Let us consider a smooth family of smooth mups avs f,, where f, mups
the unit interval into itself. If for some pe(0,1) and aqy

f,m_ ( fao

B =r =1, L2050, i lew>0.
then there exist a &,>0 and a neighbourhood U of p such that for e<g, and
aelay, ag+el [, has no periodic points of period two in U.

We omit the easy proof.

Since the conditions of the lemma are fulfilled for both F,= (1+&)F and
F= F+e¢ F? has no fixed points in (%, ¢5) for ¢ small and positive. The same
arguments as those in the proposition show that then ii(F,)<h(F).

Remark. In our example F has a homterval and a bifurcation oceurs at & = 0.
For some £<0, |F?|’ has a non-zero local minimum. This is impossible for & map
with a negative Schwarzian derivative (see [7]). One can check that, if @ map g has
1o homtervals and the same kneading invariant as F, then for a family g = g+«
the function A(s) is increasing at ¢ = 0.

II1. Some partial results. Now we shall show a fact similar to Hofbauer's result
but in a more general case.

d*f
THEOREM.  Let fe of n C?, 7 <0 forxel0,11, /(&) = 1. Consider the family

icm

Entropy of transformations of the unit interval 239
f, = a-f and fix a positive integer n>0. If fu(}) =% and K(f,) = RLL...LC,

then for a<a, K(f)<K(f,) and for a>a, K(f)>K(fa)
Proof. Let fi(%) =% and K(f,) = RLL ... LC. We shall show that

b
0 Eaf:(%)lm,, <0.

Set by = | fa,(fa®)| for #=1,2,..,n~1. We have

L]

(25 |aman = Z

=1

= "‘(jn,;(%)b b2

L @Y (fa®)

""az

n L"fa,.('l‘)bz u 17 e T :n—l('}.')bn—l'—%)

fa (%) fa (%))
= —fo B biby o by =R by by~ =12
Tl ( b2 buma = 7 g a e B Ful®
Thus we have to show that
fa (%) fa,,(;%)
bl n s bn- -
@ R e Tie
Since fi(3)<fu(d), i =2, .., n, it is sulficient to prove
(3) ble"'bvi"'l"bl"'blwl_ "—'bn—vlbn-—l_bn—l"'1>0‘

Set b = (byhy . b)) V. Because of the concavity of f we have

bypby> .. mbyy  and  (Oibpq ... b )OTV<D.

Hence the following inequalities hold;
by <B"Y biby

— hu—1
bn—l - "

“ By

From the kneading theory we know that f has the same entropy as the subshift
of finite type with the matrix:

00 .01
10 W01
010 ..01
00. 011

The charucteristic polynomial of this matrix is equal to

g = ey e L —x— 1
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Since exph(f,,) is the largest zero of ¢, it is sufficient to show that bzexph(f,).
We shall use the formula

fan(1]2)
1 . .
h(f) = lim— logVarf* = lim - log J 1"y
k»wk koo k
Sa, ()

(see [6]).
The points /(3 (i = 0,1, ...,n—1) and (‘/;,‘"(%))*‘ = [ —f}(}) divide the interval
[f24), fo.(0)] into 2n—3 parts. Write
A= [(RE LD A5 = (T @) (Jad,
A= @AW (=2,.,0=1).

For xe d; (or x € A}), | fu(x)|<b;.
The transformation f,, maps every subinterval 4, (and A7) on the union of
some others, namely

Ju41) = As, fan(Az) =J(;"(Ag) =As, s .f;:n(IAn-Z) ==f;,"(/1,”,(_2) = An-l »
Sa(Au-1) =fa,.(A:—-1) =4 v A3 U Ay

Hence for xe [, fuD]1( f,,’;)’l(x) is not larger than an ordered product of
numbers b; with b; followed by b;., if i<n-2.

I(f;z’:‘)r(x)ls(bi1bi:+1"' bn-—l) (bizbfz+1+ bu—-l) (blbl'i-i R [714.,)
where t<n. Using (4), we obtain:

I(FaY(I<b g <bg"™*  where g = sup | /().
3

yel0,1
Thus
San(1/2)
1 1 - f 1 1
= log(Varfy) = ~log J [(fa) V' < —logb¥y"~* = logb+ —logg" ™"
k k N k k
San(1/2)

Hence h(f,,)<logh. This inequality ends the proof
Remark. For some maps the proof is easier. Write @ = 2f, (4) and g,(xy

a
= E——Zz[x—%]. Let p be the closest point to 0 for which gg“lp =4 (p has an in-

variant coordinate LL...LC). Since f, (x)=gz(x) for x [0, 1], p has to be larger
than ffn&). Moreover, gg‘(j‘;) <ff,(35).

Hence, for (X)) = K(g;) we have

Ki=R K,=L, .., Ki,=L and izn.
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Tt follows that K(f,)<K(gz) and h(f,)<h(g;) = loga. Thus a>exph(f,). If,
moreover,
(5) bn-— 124,

then bzexph(f), which gives the statement of the theorem.
Tt is casy to verify that condition (5) holds in the family a & ax(1—x) for
all £, such that K(f,) = RLL...LC,

T would like to thank M. Misiurewicz for his encouragement and helpful
remarks.

References

[1] P. Collet and J. P. Bekmann, Iterated maps on the interval as dynamical systems, Basto

1980,
21 A. Douady, Systd d) iq holomorphes, Seminaire Bourbaki 599 (1982).
{31 1. Guckenheimer, Sensitive dependence to initial conditions for one di ional maps, Comm.

Math, Phys. 70 (1979), pp. 133~160.

[4] F. Hofbauer, Topological entrapy of the family ax(1—x), preprint.

51 8. Matsumoto, On the bifurcation of periodic points of one dimensional dynamical systems
of a certain kind, preprint.

[6] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotonic mappings, Asterisque
50 (1977, pp. 299-310.

[71 D. Singer, Stable orbits und bifurcations of maps of the interval, SIAM J. Appl. Math 35
(1978), pp. 260~267,

INSTITUTE OF MATHEMATICS
WARSAW UNIVERSITY

00-901 Warszawe, Poland

PKiN, 1X p.

Received 23 Muy 1983


GUEST




