

Entropy of transformations of the unit interval

by

Anna Zdunik (Warszawa)

Abstract. The topological entropy in one parameter families $a \mapsto f_a = a \cdot f$ is studied. An example is constructed showing that the entropy can be decreasing for some values of the parameter even in very regular families. However, there is a countable set of kneading invariants which can be attained in the family only once.

I. Introduction. Let \mathscr{A} be a family of continuous maps from the unit interval into itself such that every $f \in \mathscr{A}$ is concave, f(0) = f(1) = 0, the point $\frac{1}{2}$ is the unique critical point of f and f is symmetric $(f(\frac{1}{2}-y) = f(\frac{1}{2}+y))$.

We consider one-parameter families of maps $a \mapsto f_a = a \cdot f$ or $f_a = a + f$ such that all f_a are in \mathscr{A} .

Define a function $h(\cdot)$ as $h(a)=h(f_a)$ where $h(f_a)$ is the topological entropy of f_a .

We are interested in the following problem: Is h a non-decreasing function of a?

Some results in this direction have been obtained recently. First Hofbauer proved for the family $a \mapsto ax(1-x)$ that there is a countable set of values of h which can be attained only once (see [4]). Recently Douady and Hubbard [2] gave a proof of monotonicity of function h for this family.

Matsumoto [5] considered families $a \mapsto a \cdot f$ with arbitrary $f \in \mathscr{A}$ and then families such that all f_a have no homtervals. In both cases he obtained results similar to those in Hofbauer's paper but for other values of h.

In this paper I give an example showing that h can be decreasing for some values of the parameter. Then I prove some partial results about the monotonicity of this function.

II. Example. We shall construct a piecewise linear map $f \in \mathcal{A}$ such that, for small and positive ε , $h((1+\varepsilon)\cdot f) < h(f)$ and $h(f+\varepsilon) < h(f)$ (where $(f+\varepsilon)(x) = f(x) + \varepsilon$).

The map f has a fixed point q and a point p of period two such that f(p) < q < p (Fig. 1). The slopes are:

 β_1 on the interval $(f^2(\frac{1}{2}), (\frac{1}{2}))$,

Fig. 1. Graph of the function f

 β_1 on $(\frac{1}{2}, r)$ (for some f(p) < r < p),

 β_2 on (r, p) and α on $(p, f(\frac{1}{2}))$,

where the parameters α , β_1 , β_2 are chosen so that $\beta_1 < 1$, $\beta_1 \cdot \beta_2 < 1$, $\beta_2 > 1$, $\alpha \cdot \beta_1 > 1$ and $f^3(\frac{1}{2}) = p$.

Since $\beta_2 < 1/\beta_1$, the slope at the fixed point q is larger than one $(f'(q) = -\beta_2)$ and it is repelling (see Fig. 2).

Fig. 2

Our map is now defined on the interval $[f^2(\frac{1}{2}), f(\frac{1}{2})]$. It can be extended to a piecewise linear and concave transformation from [0, 1] into itself such that f(0) = f(1) = 0.

It follows from the construction that the kneading invariant (see [1]) of f is equal to RLR^{∞} .

We shall prove the following proposition:

PROPOSITION. There exists an $\varepsilon_0 > 0$ such that for every $\varepsilon \in (0, \varepsilon_0)$

$$h((1+\varepsilon)\cdot f) < h(f)$$
 and $h(f+\varepsilon) < h(f)$.

Proof. Let $g = (1+\varepsilon) \cdot f$. Then

$$g(p)-f(p) = \varepsilon \cdot f(p), g^2(p)-f^2(p) = \varepsilon (p-(1+\varepsilon)\beta_1 \cdot f(p)).$$

It follows that $g^2(p) > p$ for ε sufficiently small. Let s be such that $g(s) = p^s$ and $s > \frac{1}{2}$. Then g(p) < s (Fig. 3).

Fig. 3

The absolute value of $(g \circ g)'(x)$ is larger than one for $x \in (\frac{1}{2}, s)$ and smaller than one for $x \in (s, r)$ (see Fig. 3).

Furthermore

$$\begin{split} g^2(q) - f^2(q) &= g\big(g(q)\big) - g\big(f(q)\big) + g\big(f(q)\big) - f\big(f(q)\big) \\ &= -(1+\varepsilon)\beta_2\varepsilon q + \varepsilon q &= \varepsilon q\big(1-(1+\varepsilon)\beta_2\big). \end{split}$$

Hence $g^2(q) < q$ if ε is positive and small enough.

It follows that the map g has no fixed points in the interval $(\frac{1}{2}, q)$. If ε is small enough, then the point $g^4(\frac{1}{2})$ lies close to f(p). Hence there exists a $k_0 > 2$ such that for $2 < (k-1) \le k_0$:

$$\frac{1}{2} < g^{2k}(\frac{1}{2}) < g^{2(k-1)}(\frac{1}{2}), \quad g^{2k-1}(\frac{1}{2}) > \frac{1}{2} \quad \text{and} \quad g^{2k_0}(\frac{1}{2}) \le \frac{1}{2}.$$

Thus the kneading invariant $\underline{K}(g) = K_i$ is such that $K_1 = R$, $K_2 = L$, $K_i = R$ for $3 \le i < 2k_0 - 1$, $K_{2k_0} = L$ or C and therefore $\underline{K}(g)$ is smaller than $\underline{K}(f) = \mathrm{RLR}^{\infty}$.

The map f has an entropy equal to $\log(\sqrt{2})$, and it follows from the results of Guckenheimer [3] that h(g) < h(f).

The argument and estimations for a map $f+\varepsilon$ are quite similar.

Remark. Modifying this example, one can construct a smooth and concave function F such that $\underline{K}(F) = \underline{K}(f)$ and F has the same property as f.

The point p is also periodic for F and $F'(p) = -1/\beta_1$, $F'(F(p)) = -\beta_1$, $F^2(p) = p$. The map F has a fixed point q_F in [F(p), p] and $F'(q_F) < -1$.

Let us consider a family $\varepsilon \mapsto (1+\varepsilon)F = F_{\varepsilon}$, $|\varepsilon| < \varepsilon_1$. Then $F_{\varepsilon}(p) - F(p) = \varepsilon F(p)$,

$$\begin{split} F_{\varepsilon}^{2}(p) - F^{2}(p) &= F_{\varepsilon}(F_{\varepsilon}(p)) - F_{\varepsilon}(F(p)) + F_{\varepsilon}(F(p)) - F^{2}(p) \\ &= -\varepsilon \beta_{1}, \, (\varepsilon)F(p) + \varepsilon p = \varepsilon (p - \beta_{1}, \, (\varepsilon)F(p)) \end{split}$$

where $\beta_1(\varepsilon) = -F'_{\varepsilon}(t)$ for some t lying between F(p) and $F_{\varepsilon}(p)$.

Since $\lim_{\epsilon \to 0} \beta_1(\epsilon) = \beta_1$, we obtain

$$\frac{\partial}{\partial \varepsilon} F_{\varepsilon}^{2}(p)|_{\varepsilon=0} = \lim_{\varepsilon \to 0} \frac{F_{\varepsilon}^{2}(p) - F^{2}(p)}{\varepsilon} > 0.$$

Moreover, if F_a^2 has a fixed point $p_a \in (\frac{1}{2}, q_F)$, then $\lim_{\epsilon \to 0} p_\epsilon = F(p)$. We shall use the following technical lemma:

LEMMA. Let us consider a smooth family of smooth maps $a \mapsto f_a$, where f_a maps the unit interval into itself. If for some $p \in (0, 1)$ and a_0

$$f_{a_0}^2(p) = p$$
, $\frac{\partial f_{a_0}^2}{\partial x}(p) = 1$, $\frac{\partial f_{a_0}^2}{\partial x^2}(p) > 0$, $\frac{\partial}{\partial x} f_a^2(p)|_{a=a_0} > 0$,

then there exist a $\varepsilon_0 > 0$ and a neighbourhood U of p such that for $\varepsilon < \varepsilon_0$ and $a \in [a_0, a_0 + \varepsilon]$ f_a has no periodic points of period two in U.

We omit the easy proof.

Since the conditions of the lemma are fulfilled for both $F_\varepsilon=(1+\varepsilon)F$ and $F=F+\varepsilon$, F_ε^2 has no fixed points in $(\frac{1}{2},q_F)$ for ε small and positive. The same arguments as those in the proposition show that then $h(F_\varepsilon)< h(F)$.

Remark. In our example F has a homterval and a bifurcation occurs at $\varepsilon=0$. For some $\varepsilon<0$, $|F_{\varepsilon}^2|'$ has a non-zero local minimum. This is impossible for a map with a negative Schwarzian derivative (see [7]). One can check that, if a map g has no homtervals and the same kneading invariant as F, then for a family $g=g+\varepsilon$ the function $h(\varepsilon)$ is increasing at $\varepsilon=0$.

III. Some partial results. Now we shall show a fact similar to Hofbauer's result but in a more general case.

Theorem. Let
$$f \in \mathcal{A} \cap C^2$$
, $\frac{d^2f}{dx^2} < 0$ for $x \in [0, 1]$, $f(\frac{1}{2}) = 1$. Consider the family

 $f_a = a \cdot f$ and fix a positive integer n > 0. If $f_{a_n}^n(\frac{1}{2}) = \frac{1}{2}$ and $\underline{K}(f_{a_n}) = \text{RLL} \dots \text{LC}$, then for $a < a_n \ \underline{K}(f_a) < \underline{K}(f_{a_n})$ and for $a > a_n \ \underline{K}(f_a) > K(f_{a_n})$.

Proof. Let $f_{a_n}^n(\frac{1}{2}) = \frac{1}{2}$ and $\underline{K}(f_{a_n}) = \text{RLL} \dots \text{LC}$. We shall show that

(1)
$$\frac{\partial}{\partial a} f_a^n(\frac{1}{2})|_{a=a_n} < 0.$$

Set $b_i = |f'_{a_n}(f^i_{a_n}(\frac{1}{2}))|$ for i = 1, 2, ..., n-1. We have

$$\begin{split} a_n \frac{\partial}{\partial a} \left(f_a^n(\frac{1}{2}) \right) \Big|_{a=a_n} &= \sum_{i=1}^n f_{a_n}^i(\frac{1}{2}) \left(f_{a_n}^{n-1} \right)' \left(f_{a_n}^i(\frac{1}{2}) \right) \\ &= - \left(f_{a_n}(\frac{1}{2}) b_1 b_2 \dots b_{n-1} - f_{a_n}^2(\frac{1}{2}) b_2 \dots b_{n-1} - \dots - f_{a_n}^{n-1}(\frac{1}{2}) b_{n-1} - \frac{1}{2} \right) \\ &= - f_{a_n}(\frac{1}{2}) \left(b_1 b_2 \dots b_{n-1} - \frac{f_{a_n}^2(\frac{1}{2})}{f_{a_n}(\frac{1}{2})} b_2 \dots b_{n-1} - \dots - \frac{f_{a_n}^{n-1}(\frac{1}{2})}{f_{a_n}(\frac{1}{2})} \right). \end{split}$$

Thus we have to show that

(2)
$$b_1 b_2 \dots b_{n-1} - \frac{f_{a_n}^2(\frac{1}{2})}{f_{a_n}(\frac{1}{2})} b_2 \dots b_{n-1} - \dots - \frac{f_{a_n}^n(\frac{1}{2})}{f_{a_n}(\frac{1}{2})} > 0.$$

Since $f_{a_n}^i(\frac{1}{2}) < f_{a_n}(\frac{1}{2})$, i = 2, ..., n, it is sufficient to prove

(3)
$$b_1b_2...b_{n-1}-b_2...b_{n-1}-...-b_{n-2}b_{n-1}-b_{n-1}-1>0$$
.

Set $b = (b_1 b_2 \dots b_{n-1})^{1/(n-1)}$. Because of the concavity of f we have

$$b_1 \ge b_2 \ge \dots \ge b_{n-1}$$
 and $(b_i b_{i+1} \dots b_{n-1})^{1/(n-1)} \le b$.

Hence the following inequalities hold:

(4)
$$b_i b_{i+1} \dots b_{n-1} \leq b^{n-1}, \quad b_1 b_2 \dots b_{n-1} = b^{n-1}.$$

From the kneading theory we know that f has the same entropy as the subshift of finite type with the matrix:

$$\begin{bmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 1 \\ 0 & 1 & 0 & \dots & 0 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 & 1 \end{bmatrix}.$$

The characteristic polynomial of this matrix is equal to

$$q(x) = x^{n-1} - x^{n-2} - \dots - x - 1$$
.

Since $\exp h(f_{a_n})$ is the largest zero of q, it is sufficient to show that $b \geqslant \exp h(f_{a_n})$. We shall use the formula

$$h(f) = \lim_{k \to \infty} \frac{1}{k} \log \text{Var} f^k = \lim_{k \to \infty} \frac{1}{k} \log \int_{f_{a_n}^2(1/2)}^{f_{a_n}(1/2)} |(f^k)'|$$

(see [6]).

The points $f_{a_n}^i(\frac{1}{2})$ (i = 0, 1, ..., n-1) and $(f_{a_n}^i(\frac{1}{2}))^* = 1 - f_{a_n}^i(\frac{1}{2})$ divide the interval $[f_{a_n}^i(\frac{1}{2}), f_{a_n}(\frac{1}{2})]$ into 2n-3 parts. Write

$$\begin{split} A_1 &= [(f_{a_n}^2(\frac{1}{2}))^*, f_{a_n}(\frac{1}{2})] \,, \qquad A_i^* \,=\, [(f_{a_n}^{i+1}(\frac{1}{2}))^*, (f_{a_n}^{i}(\frac{1}{2}))^*] \,, \\ A_i &= [f_{a_n}^i(\frac{1}{2}), f_{a_n}^{i+1}(\frac{1}{2})] \qquad (i=2,\ldots,n-1) \,. \end{split}$$

For $x \in A_i$ (or $x \in A_i^*$), $|f'_{a_n}(x)| \leq b_i$.

The transformation f_{a_n} maps every subinterval A_i (and A_i^*) on the union of some others, namely

$$f_{a_n}(A_1) = A_2, \ f_{a_n}(A_2) = f_{a_n}(A_2^*) = A_3, \ \dots, \ f_{a_n}(A_{n-2}) = f_{a_n}(A_{n-2}^*) = A_{n-1},$$

 $f_{a_n}(A_{n-1}) = f_{a_n}(A_{n-1}^*) = A_1 \cup A_2^* \cup \dots \cup A_{n-1}^*.$

Hence for $x \in [f_{a_n}^2(\frac{1}{2}), f_{a_n}(\frac{1}{2})] \mid (f_{a_n}^k)' \mid (x)$ is not larger than an ordered product of numbers b_i with b_i followed by b_{i+1} if $i \le n-2$.

$$|(f_{a_n}^l)'(x)| \le (b_i, b_{i_1+1} \dots b_{n-1})(b_{i_2}b_{i_2+1} + \dots b_{n-1}) \dots (b_l b_{l+1} \dots b_{l+l})$$

where t < n. Using (4), we obtain:

$$|(f_{a_n}^k)'(x)| \le b^{k-t} g^k \le b^k g^{n-1}$$
 where $g = \sup_{\mathbf{y} \in \{0, 1\}} |f'_{a_n}(\mathbf{y})|$.

Thus

$$\frac{1}{k}\log(\operatorname{Var} f_{a_n}^k) = \frac{1}{k}\log\int_{f_{a_n}(1/2)}^{f_{a_n}(1/2)} |(f_{a_n}^k)'|' \leq \frac{1}{k}\log b^k g^{n-1} = \log b + \frac{1}{k}\log g^{n-1}.$$

Hence $h(f_{a_n}) \leq \log b$. This inequality ends the proof

Remark. For some maps the proof is easier. Write $\bar{a}=2f_{a_n}(\frac{1}{2})$ and $g_{\bar{a}}(x)=\frac{\bar{a}}{2}-\bar{a}|x-\frac{1}{2}|$. Let p be the closest point to 0 for which $g_{\bar{a}}^{n-2}p=\frac{1}{2}$ (p has an invariant coordinate LL...LC). Since $f_{a_n}(x) \geqslant g_{\bar{a}}(x)$ for $x \in [0, 1]$, p has to be larger than $f_{a_n}^{2}(\frac{1}{2})$. Moreover, $g_{\bar{a}}^{2}(\frac{1}{2}) < f_{a_n}^{2}(\frac{1}{2})$.

Hence, for $(K_i) = \underline{K}(g_{\overline{a}})$ we have

$$K_1 = R$$
, $K_2 = L$, ..., $K_i = L$ and $i \ge n$.

It follows that $\underline{K}(f_{a_n}) < \underline{K}(g_{\overline{a}})$ and $h(f_{a_n}) < h(g_{\overline{a}}) = \log \overline{a}$. Thus $\overline{a} > \exp h(f_{a_n})$. If, moreover,

$$(5) b_{n-1} \geqslant \overline{a} ,$$

then $b \ge \exp h(f)$, which gives the statement of the theorem.

It is easy to verify that condition (5) holds in the family $a \mapsto ax(1-x)$ for all f_a such that $K(f_a) = \text{RLL...LC}$.

I would like to thank M. Misiurewicz for his encouragement and helpful remarks.

References

- [1] P. Collet and J. P. Eckmann, Iterated maps on the interval as dynamical systems, Bosto 1980.
- [2] A. Douadý, Systèmes dynamiques holomorphes, Seminaire Bourbaki 599 (1982).
- [3] J. Guckenheimer, Sensitive dependence to initial conditions for one dimensional maps, Comm. Math. Phys. 70 (1979), pp. 133-160.
- [4] F. Hofbauer, Topological entropy of the family ax(1-x), preprint.
- [5] S. Matsumoto, On the bifurcation of periodic points of one dimensional dynamical systems of a certain kind, preprint.
- [6] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotonic mappings, Asterisque 50 (1977), pp. 299-310.
- [7] D. Singer, Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math 35 (1978), pp. 260-267.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY -00-901 Warszawa, Poland PKiN, 1X p.

Received 23 May 1983