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An index and a Nielsen number for n-valued multifunction
by

Helga Schirmer (Ottawa)

Abstract. A multifunction is called r7-valued if all its point images consist of exactly # points.
The fact that the fixed point set of an #-valued continuous multifunction ¢: |K| = |K| from a com-
pact polyhedron |K]| to itself is generically finite is used to introduce a fixed point index for such
muyltifunctions. Fixed point classes of ¢ are defined with the help of the Splitting Lemma which
shows that any restriction of ¢ to a contractible subset is equivalent to » single-valued functions.
Hence a Nielsen number N(g) is obtained which is a lower bound for the number of fixed points
of o, and the homotopy invariance of N(g) is proved.

1. Introduction. A multifunction ¢: X — Y is called n-valued if @(x) consists,
for all x € X, of exactly n points, It is known that n-valued continuous multifunctions
inherit from single-valued functions some of those properties which are basic in
fixed point theory. A multi-valued analogue of the simplicial approximation theo-
rem [7], Theorem 4 can be used to show that the fixed point set Fix ¢
={xeX| xep(®)} of an n-valued continuous multifunction ¢: X - X is
generically finite if X is a compact polyhedron ([7], Theorem 6; see also Theorem 2.2
below). Lefschetz numbers L(p) with the usual property that L(g) £ 0 implies
that ¢ has at least one fixed point have been obtained by B. O’Neill [4] for a class
of multifunctions which includes the n-valued continuous ones as a special case.

Here we are interested in the behaviour of* such multifunctions with respect
to Nielsen fixed point theory. If f: X — X is a map (i.e. a single-valued continuous
function) on a compact ANR, then a Nielsen number N(f) can be defined which
is u lower bound for the number of fixed points for all maps in the homotopy class
of f. Hence N(f) s 0 implics that cvery map homotopic to f has not only one,
but at least N(f) fixed points. To obtain N(f) the fixed points of f are first divided
into finitely many equivalence classes, the so-called fixed point classes, and an
index is associated with cach fixed point class. The Nielsen number N(f) is the
number of fixed point classes which have a non-zero index. (See e.g. [2], Chapter VI,
or [9])

In order to introduce a Nielsen number for n-valued continuous multifunctions
it is therefore necessary to develop first a fixed point index for such functions. This
will be done in §§ 3 and 4. We start with the definition of the fixed point index of
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an isolated fixed point with a Euclidean neighbourhood. 1t follows from the Split-
ting Lemma 2.1 (see also [7], Lemma 1) that an n-valued continuous multifunction
is locally (but not globally) equivalent to n single-valued continuous functions,
and thus the fixed point index of an isolated fixed point can simply be defined as
the fixed point index of an isolated fixed point of a map. We then define the index.
of a multifunction with a finite fixed point set additively, and finally use the Fix-
Finite Approximation Theorem 2.2 (see also [7], Theorem 6) to define the fixed
point index in general. This fixed point index has the properties of localization
(Theorem 4.3), additivity (Theorem 4.4) and homotopy invariance (Theorem 4.5).

Fixed point classes and the Nielsen number are introduced in § 5, and the
Splitting Lemma 2.1 is again a crucial tool in these definitions. The proof of the
homotopy invariance of the Nielsen number in § 6 uses the Splitting Lemma as
well as the work by U. K. Scholz [9]. Some examples of Nielsen numbers are
discussed in the final paragraph.

Many problems remain. If # = 1, then our results reduce to the corresponding
ones for maps, and these exist for maps on compact ANR’s [9], while we consider
multifunctions on compact polyhedra only. We deal neither with the computation
of the Nielsen number N(¢) of a multifunction, nor with its realization, i.e. with
the possible existence of an n-valued continuous multifunction in the (multi-)
homotopy class of ¢ which has precisely N(¢p) fixed points.

The multifunctions considered here are very special ones, and the only other
multifunctions for which a Nielsen number exists, the so-called small ones [5],
are quite different in nature. But fixed points of symmetric product maps can be
interpreted as fixed points of certain finite-valued multifunctions [8] § 6, and a Nielsen
number for symmetric product maps has been obtained by S. Masih [3]. It may
also be possible to extend some of the results of this paper to finite-valued continu~
ous multifunctions for which all point images consist of either one or exactly n
points, especially as Lefschetz numbers for such multifunctions have been defined
by O°Neill [4]. But the definition of a meaningful Nielsen number for acyelic upper
semi-continuous multifunctions, which behave so well with respect to Lefschetz
fixed point theory, seems to be more difficult.

2. Background. We shall start with some definitions and results concerning:
n-valued multifunctions. Of these only Theorem 2.3 is new, the rest of the material
can be found in [7]. A basic reference for multifunctions is e.g. [1], Chapter VI.

A multifunction ¢: X — ¥ from a topological space X to a topological space:
Y is a correspondence which assigns to each point x € X a non-empty subset ¢ (x)
of Y. The multifunction ¢ is called upper semi-continous (usc) if ¢ (x) is closed
for all x € X and if for each open set V with ¢ (x)< Ve ¥ there exists an open set U
with xe UcX and @(U)< V. It is called lower semi-continuous (1sc) if for ecach
xeX and open set VoY with @(x) n V # @ there exists an open set U with
xeUcX and ¢(x") n V # @ for all x' e U. If ¢ is both usc and Isc, then it is
called continuous. By a map we always mean a single-valued continuous function.
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A multifunction ¢: X — ¥ splits into n distinct maps if

() = {fi(), /(). ... £,(x)}

for all x € X, where f;: X' — Y are maps with fi(x) # fi(x) forevery j, k = 1,2, ...,n
and j # k. We shall write ¢ = {f},f,,...,£,}, and simply call this a splitting of ¢,
as only splittings into distinct maps are considered here. The following lemma
([7], Lemma 1) is a basic tool in [7] as well as in this paper.

SPLITTING LEMMA 2.1. Let X and Y be compact Hausdorff. If X is path con-
nected and simply connected and ¢: X — Y is n-valued and continuous, then o splits
into n distinct maps.

Now denote by |K| a compact polyhedron which is the realization of 2 finite
simplicial complex K, and define the distance d(p, ¥) between two multifunctions
¢, X — |K] by

d(p,¥) = sup{o(o(®), ¥ (x))| x X},

where ¢ is the Hausdorff metric on |K| induced by the barycentric metric d. A multi-
function ¢: X — X is called fixfinite if its fixed point set Fixe is finite. The next
theorem will be used in the definition of the fixed point index. It follows from [7],
Theorem 6 and its proof.

THeoREM 2.2 (Fix-finite approximation of n-valued multifunctions). Let |K ], be
a compact polyhedron and ¢: |K| — |K| an n-valued continuous multifunction. Given
£>0, there exists an n-valued continuous multifunction ¢': |K| — |K| with the
Jollowing properties:

@) ¢’ is fixfinite,

(ii) the fixed points of @' are contained in maximal simplexes of |K|,

(iii) d(e, @)<e.

To prove the homotopy invariance of the fixed point index, we shall need an
extension of Theorem 2.2 to homotopies. A (multivalued) homotopy is a multi-
function @: X'xI— Y where I = [0,1], and if X = ¥, then the fixed point set
of the homotopy @ is defined as

Fix® = {(x, t) e XxI| xe &(x,1)}.

@ is called a fix<finite homotopy if the multifunction ¢,: X — X given by ¢,(x)
= @(x, t) is fix-finite for all el A hyperface of the polyhedron [K| is an open
simplex o so that & = ' n &', where ¢’ and ¢'’ are maximal simplexes of |K|
and & denotes the closed simplex corresponding to ¢. (The definition in [6], p. 532
is wrong, and should be corrected.)

THEOREM 2.3 (Fix-finite approximation of n-valued homotopies). Let |K| be
a compact polyhedron, let |Ky|<|K| be a subpolyhedron and let @: [Ky|xI— |K|
be an n-valued continuous homotopy such that @, and @y are fix-finite and have all
their fixed points located in maximal simplexes of |K,|. Given >0, there exists an
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n-valued comtinuous homotopy ®': |Kq|xI— K| from Qo = Qo to @7 = @ with
the following properties:
(1) @ is fix-finite,

(ii) -the fixed points of each @} are located in maximal sifplexes or hyperfaces
of |Kil;

(iii) Fix @" is a one-dimensional finite polyhedron in |K|x I so that no edge lics
is a section |K,|x{t} of |K;|x1, ’

(iv) d(®, ?')<e.

Theorem 2.3 reduces to [6], Theorem 2 if » = 1 and K, = K. The proof of
Theorem 2.3 is fairly long and technical, but requires nothing more than a combi-
nation of the techniques used in the proofs of [6], Theorem 2 and [7], Theorem 6.
It is therefore omitted.

3. A fixed point index for n-valued multifunctions: Fix-finite case. Our aim is
to define a fixed point index for all n-valued continuous multifunctions on compact
polyhedra. For this purpose we first define the index of an isolated fixed point with
a Euclidean neighbourhood, and then use additivity and the Fix-Finite Approximd-
tion Theorem 2.2 to extend the scope of the definition. v

So let ¢: |K| - |K| be an n-valued continuous multifunction on a compact
polyhedron |K| and x an isolated fixed point of ¢ which lies in a maximal simplex ¢.
We use the Splitting Lemma 2.1 to obtain a splitting |6 = {fy, fa, ..., /,}, Where
Ff{x) = x and hence fi(x) # x if k # j. We define the fixed point index of ¢ at x as
ind(e, x) = ind(f;, x), where ind(f;, x) is the ordinary fixed point index of the
map f; at x ([2], p. 122). If ¢ is fix-finite on the open set Uc [K| and if all points of
Fix ¢ n U # & lie in maximal simplexes, we define the fixed point index of ¢
on U as

3@ ind(p,U) = Y.(ind(g, x)| xeFixp n U).

Finally we put ind(¢e,U) = 0 if Fixgp n U = @. Hence ind(¢p, U) is the ordinary
fixed point index if n =1, i.e. if ¢ is single-valued.

The next lemma implies that ind (¢, U) is homotopy invariant. Other properties
of the index will be derived in the more general setting of the next paragraph, but
the definitions and proofs of § 4 will make use of Lemma 3.2, The inequality

d(x, A)<d(x, B)+o(4, B)

for every point x e |K| and subsets 4, B<|K|, which is an easy consequence of
the definition of d and g, will occur in the next and in several later proofs. We
write Cl4 and Bd4 to denote the closure and the boundary of the set A.
Lemma 3.2. Let Uc|K| be an open subset of |K| and ¢, y: |K| — |K| be two
n-valued continuous multifunctions which are fix-finite on U and have all their fixed
points on U located in maximal simplexes. Let @: ClUxI — |K| be an n-valued

continuous homotopy from @, = ¢|ClU to ¢, = Y|ClU so that Fixd n (BdUxI)
= . Then ind(p,U) = ind(y, U).
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Proof. Let pr: ClUxI — CIU be the projection onto the first factor. As
Fix® n (BdUxI) = @ and Fix® is compact, there exists £>0 so that

pr(Fix®)= N(pr(Fix ), &)= U,

where N(pr(Fix®), &) = {xe|.K]Itl(x,pr(Fixd5))§§}, Now let K’ be a sub-
division of K with mesh ;(K')<&/2, and denote by sty.v the (open) star of the:
vertex v in |[K'|. If i .

V = | [stet] stev o pr(Fixd) # 9],
then ¥ is open in |K|, C1¥ is a subpolyhedron of |K’| and
pr(Fix®)= Ve N(pr (Fix®), &)< U.

As pr(Fix®) nBdV = @, there exists 70 so that d(x, ¢(x))>n for all (v, 1)
e BdV xI. We now replace @|ClVxI by a fix-finite homotopy ¢': CIVxI - |K|
with the properties (i) to (ili) of Theorem 2.3 and d(P|CLV I, ?y<n/2. Then
for all (x,#)eBdVxI

A(x, o) Zd(x, 9.0))—e(@:), #ix)>0,

and therefore it follows easily from the Splitting Lemma 2.1 and from [6], Pro--
positions 2 and 3 that :

illd((Po, V) = ind((Pb V) .

But ¢ and  are fixed point free on CLU~V; so it follows from the additive defi-
nition: (3.1) of the fixed point index that

ind(p,U) = ind(p,, V) = ind(p,, V) = ind(¥,U).

4. A fixed point index for n-valued multifunctions: general case. We start the
extension of the definition of the fixed point index with a lemma. It will be stated
for compact polyhedra, but is true for compact ANR’s, and generalizes a well-
known. result for maps [2], p. 40, Corollary 4. We say that two n-valued continu-
ous multifunctions @, ;¢ |K| — |K| are e-homotopic if there exists an n-valued
continuous homotopy @: |K|xI - |K]| from ¢, to ¢ so that d(,, @) <e for all
s,tel The gap y(p) of an n-valued continuous multifunction ¢: X — |K| was.
defined in [7], §3 as

y(@) = inf{d (2l ¥y @(3), X eX,y; % Vs

and if X is compact, then y(¢)>0. _

LemMA 4.1, Let |K| be a compact polyhedron,” Ac|K| a closed subset of K|
and ¢: A — (K| an n-valued continuous multifunction. Given 0<e<y(@)[2, there
exists 0<8<e such that every n-valued continuous multifunction y: A — |K| with
d(p,Y)<$ is e-homotopic to @. :
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Proof. Choose 0<z<7({p)/2. It follows from [2], p. 39 that §>0 can be de-
-termined so that there exists a map w: WxI— [K]| on the space

W= {(x, x") e |K|x|K]|| d(x,x")<d}

with wle, ¥, 0) = x, wi,x,1) =x" and d(w(x,x,s5), wlx,x',1))<e for all
x,x €|K| and s, t eI Clearly, 6<e.

For any xc A let ¢ (x) = {y1, V20 ., Vu}- AS d(e, V) <5 <y(p)[2, there exists
. unique indexing of the image points in ¥ (x) = {z;, 23, ..., z,} so that d(y;, z) <4
if and only if j = k. Define ¢,: 4 = K| by

(p,(X) = {w(yln 21y t)a W(J’z: Z2s t)s e w(yna Zns t)}

for all tel. Then
dw(y;, 2z, 8), w(yp, 25, 1)) <e
and
d(w(yj, Zj: t)a W(J'ks Zs t))>'}’((P)_'26>0 fOI' «'.l.ll ’ :7é k

imply that the multifunction @: 4 x I — |K| given by $(x, 1) = ¢@(x) is the desired
.£-homotopy.

We now call the triple (K|, ¢, U) admissible if ¢: |K| —|K| is an n-valued
.continuous multifunction on a compact polyhedron |K| and U an open subset
of |K| so that Fix¢ n BAU = @. We shall define the fixed point index ind (¢, U)
generically.

If U# @, let ¢ =inf(d(x, o(x))] xeBdU) and & = min(e’, y(p))>0, where
7 () is the gap of ¢. We now use Lemma 4.1 to select 0 <J<g/2 so that any n-valued
continuous multifunction ¥: |K| — |K| with d(p, )< is g/2-homotopic to ¢.
“Then we use the Fix-Finite Approximation Theorem 2.2 to obtain a fix-finite
n-valued continuous multifunction ¢': |K| — |K| so that all fixed points of ¢’ are
situated in maximal simplexes of |K| and d(¢, ¢")<d/2. For all xe BAU

d(x, ¢'(9)=d(x, p () —e(e (), ¢'(¥))>e~5/2>0,
50 ind(e’, U) exists. Therefore we define for any admissible triple (|K], ¢, U),
the fixed point index of ¢ on U by
4.2) ind(p,U) = ind(¢’, U) .

Tt is necessary to show that this definition is independent of the choice of ¢,

Hence let @}, where 1 = 1,2, be two such choices. As d(¢p, @) <5/2, we have
(¢}, 3)<5, so @i and @} are g/2-homotopic. We call this ¢/2-homotopy &',
Now for all (x,#)e|K|xI

elo(), pix))<e(e (), i) +0(9i(x), ¢i(x)

<O[2+8/2<36/4
So if (x,t)eBAUXI, then

d(x, ¢i())Zd(x, p(%))—e(e(x), ¢}(x)>0,

icm

An index and a Nielsen number for n-valued multifunctions 213

which shows that &' is fixed point free on BAUxIZ, and therefore ind(p},U)
= ind (g5, U) is a consequence of Lemma 3.2.

We finally define ind(p, &) =0.

We now show that ind(¢,U) shares some of the properties of the fixed point
index of maps. There is no commutativity, as the composite of two n-valued multi-
functions need not be n-valued, but this property is not needed in the definition
of the Nielsen number and in the proof of its homotopy invariance in § 5 and § 6.
(Compare [9], p. 84, Remarks.) )

THEOREM 4.3. (Localization). Let (K|, ¢,U) and (\K|, ¥, U) be admissible and
@(x) = Y (x) for all x e ClU. Then ind(¢p,U) = ind(y, U). .

Proof. We may assume that U % @. Let & = inf(d(x, p(x))] xeBdU}
= inf(d(x, ¥ (x))| x € BAU) and 0<e” = min(e, (), (%)), and use Lemma 4.1
to determine 0<Jd<e’'/2 so that any two n-valued continuous multifunctions from
ClU to |K| with distance <& are &’/2-homotopic. We then use the Fix-Finite Ap-
proximation Theorem 2.2 to obtain fix-finite approximations ¢',¥": |K|— |K|
of ¢ and V¥ so that (e, ") <82 and d(¥, Y')<5/2. Hence the restrictions of ¢
and ' to CIU are " /2-homotopic. If &': CIUX I — |K| is this homotopy, then
for all (x,¢)eBdUxTI

d(x, p)=d(x, () —e(e(), ¢'(X)— ('), ¢i))
e —52—e"[2>0,

g0 @' is fixed point free on BAUx I, and thus the result follows from Lemma 3.2.
TueOREM 4.4 (Additivity). Let (K|, ¢, U) be admissible and Uy, Uy, ..., Us

mutually disjoint open subsets of U so that ¢ has no fixed points on CIU—]L_)IUJ..
Then -

ind(p,U) = Y, ind(p,T).
j=1

5
Proof. We select 0<5<y(p) so that d(x, ¢ (x))=y for all xeCl U—jpl U,
and choose the fix-finite approximation ¢’ of ¢ in the definition (4.2) of ind (e, U)

so that d(p, ¢')<n. Then x e ClU — |J U;implies that
J=1

d(x, o' (x))=d(x, p(®))—ole ), o'(®)>0,
and it follows from the additive definition (3.1) of ind(¢’, U) that
ind(p, V) = ind(¢’, U) = ), ind(¢’, Up) = Z’ind((p, Up.
J=1 j=
TueoreM 4.5 (Homotopy). Let ®: |K|xI— [K| be an n-valued .cantimmus
homotopy such that (K|, @.,U) is admissible for all tel. Then ind(pe, U)
= ind (g5, U).

.2 — Fundamenta Mathematicae CXXIV/3
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Proof. It is sufficient to show that for every admissible triple (K|, ¢, U) there
exists a 6>0 so that if (|K|, @,U) is admissible and d(p,¥)<9, then ind(p,U)
= ind(, U), as compactness of I then implies Theorem 4.5.

So let (IK|, ¢, U) be admissible, let >0 be determined as in the definition
(4.2) of ind(e,U), and let >0 be selected with the help of Lemma 4.1 so that
any two n-valued continuous multifunctions on |K| with distance <4 are g/4-homo-
topic. If the fix-finite approximations ¢’ of ¢ and ¢ of ¥ in the definitions (4.2)
of ind(¢,U) and ind(y,U) are chosen so that d(p, ¢')<d and Ay, y'y<s, then
d(p,y)<6 implies that there exists a 3s/4-homotopy &': [K|xI— K| from ¢"
to y’. Hence we have for all (x,7)e BdUxI

d(x, oN=d(x, ¢’ (%)~ (¢’ (), ¢ix) Ze—3e/4>0,
so we can use Lemma 3.2 to obtain
ind(e,U) = ind(¢’, U) = ind(y’, U) = ind (¥, U).

We conclude this paragraph with two corollaries, which follow from The-
orems 4.4 and 4.5 in the standard way. (See e.g. [2], p. 53, Corollaries I and 2.)

COROLLARY 4.6. If (|K|, 0,U) is admissible and ind(@,U) # 0, then ¢ has
a fixed point on U.

COROLLARY 4.7. If ¢: |K| — |K| is n-valued and continuous and if ind(¢p, |KT}
% 0, then every W2 |K| = |K| related to ¢ by an n-valued continuoys homotopy has:
a fixed point. :

5. Fixed point classes and the Nielsen number. We now define fixed point classes
and the Nielsen number of an n-valued continuous multifunction ¢: |K| — |K[
on a compact polyhedron. The restriction to polyhedra is necessary as we do not.
have an index in a more general setting.

So let x, x' e Fixp and let p: I — |K| be a path from p(0) = x to p(l) = x'.
According to the Splitting Lemma 2.1 the multifunction @ op = {g1, g2, -+ Guf
splits into » distinct maps. We say that x and x' are @-equivalent if there exist such
a path p and splitting of ¢ o p so that one g; is a path from g;0) = x to g,(1) = x"
which is homotopic to p by a fixed end-point (single-valued) homotopy. It is clear
that @-equivalence is an equivalence relation on Fixg, and we call these equivalence:
classes the fixed point classes of ¢. If n.= 1, then @-equivalence reduces to the
usual f-equivalence on Fixf induced by a map [2], p. 86.

The proof of the next theorem needs a rather technical lemma, which follows.
from the proof of Theorem 1, [2], p. 86.

LeMmA 5.1. Let U be an open subset of the compact polyhedron |K| arc’ [+ CLU

— |K| a map. Given §>0, there exists 0<n<8 so that x, x" € Fixf and d(x, x'y<n
imply that x and x' are f-equivalent, and that a path p: I — |K| from p(0) = x to
s(1) = x' which is homotopic to fop by a fixed end-point homotopy can be chosem
do that d(p(s), p(t))<6 for all s,tel
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THEOREM 5.2. Any.n-valued continuous multifunction ¢: |K| — |K| on a compact
polyhedron has finitely many fixed point classes.

Proof. Let y(¢p) be the gap of ¢ and x e Fixp. We choose 0<¢<y(p)/2 so
that CIN(x, &) is contractible, and use Lemma 2.1 to obtain a splitting ¢|CIN(x, &)
= {f1, /2, ..., Jo}, indexed so that f;(x) = x and hence f;(x) # xif j 1. By uniform
continuity we can find 0<d<¢ so that d(x, x')<é implies d(f;(x), f;(x")) <¥(@)/2
for j=1,2,..,n We now select 0<n<4d according to Lemma 5.1, where f; and
N(x, &) replace f and U. If X’ e CIN(x,n) n Fixg and j=2,3,....n, then

d(x, fi(x"N 2 d(filx), f(x) —d(x, x)—d (f(x), fi{x)
2y(p)—n—y()2>0,

so x’ e Fixf;. Hence it follows from Lemma 5.1 that x and x’ are fi-equivalent,
and that the path p from x to x’ which is end-point homotopic to f; « p can be
chosen so that p(I)=N(x, ). Therefore ¢pop = {f1 op,f2cp, ..., o p}, and so x
and x' are @-equivalent. The proof of Theorem 5.2 can now be completed in the
same way as the proof of the corresponding theorem for maps [2], Theorem 1,
p. 86 by using the fact that each fixed point class of ¢ is open and Fix ¢ is compact.

Using Theorem 5.2 we can find for each fixed point class F of ¢: |K| - |K]
an open set U containing F so that Fixgp n ClU = F. We define the index of the
fixed point class F by

(5.3) ind(F) = ind(e,U) .

The independence of ind(F) from the choice of U follows from Theorem 4.4, i.e.
from the additivity of the index, in the same way as in the single-valued case. (See [2],
Theorem 1, p. 87.) If ind(F) # 0, then we call F an essential fixed point class. The
Nielsen number N(@) of the n-valued continuous multifunction ¢: |K| — |K]| is
defined as the number of essential fixed point classes of ¢. The following theorem
is an immediate consequence of the definition.

THEOREM 5.4. Any n-valued continuous multifunction ¢: |K|— |K| has at
least N(¢) fixed points.

6. Homotopy invariance of the Nielsen number. We shall prove here that N(¢,)
= N(gp,) if there exists an n-valued continuous homotopy ¢: |K|xJ — [K| from
@0 to ;. The proof follows the pattern in [9], pp. 8384, but also depends heavily
on the Splitting Lemma 2.1. The next lemma, which concerns splittings, is new to
our situation, We shall write p=~p’ if p, p’: I - |K| are fixed end-point homotopic
paths in |K].

LEMMA 6.1. Let @: |K| - |K| be n-valued and continuous, let x, x' € Fixe and
let p,p': I |K| be two paths from p(0) = p'(0) = x ro p(l) =p'(1) = x' with
pp’. If @op=1{g1,ga ., gu} and gy=p, then there exists a splitting ¢ o p’
= {91. 9% -... g} S0 that gy ~p'.

a%
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Proof. Let H: IxI - |K| be a homotopy with
Hs,0)=p@), HED=p6
HO,t)=x, H(l,t)=x

‘We index the spliting @ o H = {Fy, F,, ..., F,}: IxI = |K] so that Fi(s, 0) = g,(s)

for all seland j=1,2,..,n, and define gj: J— |K]| by gi(s) = Fys, 1). As
Fi(0,1) = F,(0,0) = g,(0) = x
F(1,1) = F(1,0) = g,(1) = &'

for all (s,t)elxl.

for all tel,

we see that F, induces g, g}, and hence we have gy=p’.

We now use ®@: |K|xI~|K|xI to denote the n-valued continuous multi-
function given by ®(x, ) = (d(x, 1), 1), where &: [K|xI~ |K] is an n-valued
continuous homotopy. The z-slice of a set A<=|K]x I is the set 4,=|K| defined by
A, = {x] (x,1)e 4}.

Levma 6.2. Let &: |[K|xI— |K| be an n-valued continuous homotopy and F
.a fixed point class of ®. Then for each t € I either F, = @ or Fis a single fixed point
<lass of ¢,.

Proof. Let tel It is clearly sufficient to show that two points (x, ¢) and
{y, t) are @-equivalent if and only if they are ¢;-equivalent.

If (x,?) and (y,7) are $-equivalent, then there exist a path p: I— K] %I
and a splitting @ o p = {G}, Gy, ..., G;} so that G((0) = p(0) = (x, 1), Gy(x, 1)
= p() = (¥,t) and G,=p. We write p(s) = (P'(s),p’"(s)) and define the path
P I |K|xIbyp'(s) = (p'(s), t). Clearly p~p’, and so it follows from Lemma 6.1
that there exists a splitting @ o p’ = {G}, G, ..., G} with Gi=p'. If pr: |KjxI
— |K| is the projection onto the first factor, then pr(x,?) = x, pr(y, ) =y and
prop' = p'. Hence if we define G}: I - |K| by G} = pro Gyforj=1,2,..,nthen

@ op =pro®op = {Gi, Ga, ..., Gi}.

As Gi~p’ implies G;~p’, we see that x and y are ¢-equivalent.

If, on the other hand, x and y are ¢,-equivalent, then there exist a path ¢: I - |K|
and a splitting @, 0 g = {1y, hy, ..., b} so that 2y(1) = q(0) = x, Iy (1) = g(1) =y
and hy~q. If we define the path ¢: I — |K[xI by q(s) = (q(s), t) and maps h;: [
— |K|xI by Bys) = (hy(s), ¢) for j= 1,2, .., n, then B og = {hy, ks, ..., b,} and
& g, so (x,t) and (y, ) are @-equivalent.

LevMa 6.3. Let @: |K| %I — |K| be an n-valued continvous homotopy and let F',
for a given t 1, be afixed point class of ¢,. Then there exists a unique fixed point
class F of @ so that F' = F,.

Proof. If x' e F’, then (x, t) € F. Hence if F is the unique fixed point class
of @ with (x,?)eF, then F’' = F, according to Lemma 6.2.

LemMA 6.4, Let @: |K|xI — |K| be an n-valued continuous homotopy and let F
be a fixed point class of ®. Then ind(F,) = ind(F,).
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Proof. As I'is compact, it is sufficient to show that for every r e I there exists
an 7>0 so that se and |r—s/<#y imply ind(F,) = ind(F,).

We choose an open set Uc|K|xI so that FeU and ClU nFix® = F. If
rel, then F,c U, and ClU, n Fixg, = F,, hence ind(F,) = ind(g,, U,) according
to definition (3.3). The set A = pr(F)—U, is compact and A4 N Fixp, = @, and
so we can choose £>0 with d(x, @(x))>¢ for all xe 4. Now & is uniformly
continuous on A x17 (see [1], p. 127, Corollary), therefore there exists an #>0 so
that |r—s|<n implies that g(¢.(x), @,(x))<¢ for all x € 4, and hence

d(x, o x)Zd(x, ¢,00)—e(ex), @(x))>0.

Thus 4 N Fixg, = @. But F,cpr(F) and F,n A4 =@, so F,cU,. As CiUn
nFix® = F, it follows that ClU, nFixe, = F,, and so ind(F,) = ind(p,, U,
by definition (5.3).

We define the n-valued continnous homotopy @™°: |K|xI - |K| from o,
to @, by &"%(x, 1) = &(x, (1—t)r+rs). Then Fixe]'* nBdU, = @ for all t€],
and so

ind(F,) = ind(¢,,U,) = ind(¢,, U,) = ind(F,)

follows from the definition (5.3) and the homotopy invariance of the index (The-
orem 4.4). )

THEOREM 6.5. Let &: |K|xI— |K| be an n-valued continuous homotopy. Then:
N(@o) = N(py).

Proof. Any fixed point class of ¢, is the O-slice of a fixed point class of &
by Lemma 6.3. So it follows from Lemma 6.4 that ind (F) = ind (¥,), hence F; is

essential if F is, and N(pq) <N(gp,). Similarly N(p,)<N(p,), and so Theorem 6.5
is true.

7. Some examples. In order to illustrate our definitions we compute the Nielsen:
number of some simple multifunctions. The first examples are obtained as special
cases from Theorem 7.1. A selection f: X — Y of a multifunction ¢: X — Y is.
a map with f(x) e ¢(x) for all xe X.

THEOREM 7.1. Let |K| be a compact polyhedron and ¢: |K| — |K| be n-valued
and continuous. If ¢ has a selection f, then N(p) = N(f)+N()), where y: |K|— |K|
is the (n~1)-valued continuous multifunction given by Y(x) = ¢ (x)—{f(x)} Sfor
all x € |K|.

Proof. It is clear that ¢ is (n—1)-valued, and easy to check that it is continu--
ous and that Fix¢ is the disjoint union of Fix f and Fixiy. We now clarify the re--
lation between ¢-, f- and ¥ -equivalence.

Let x, x' € Fixp and p: I — |K| be a path from p(0) = x to p(1) = x'. We:
can use the Splitting Lemma 2.1 to write

Pop= {91, G5 eees gn—i’f".p} ’ where l/l op = {gli G255 gn—l} .


GUEST


218 H. Schirmer

If x,x'eFixf and x,x' are @-equivalent, then fop(0) = x implies g, 0) # x
for j=1,2,..,n~1, so g;=p is impossible and therefore we must have fo pap,
ie. x, x' must be f-equivalent. As f-equivalence of x and x’ clearly implies ¢-equi-
valence, we see that x, x" e Fixf are (})—equivalent if and only if they are f-equi-
valent. The proof that x, x' e Fixy are ¢-equivalent if and only if they are y-equi-
valent is similar., If x € Fixf and x' e Fixy, then fop(l) # x" and g;(0) # » for
j=1,2,..,n—1, and therefore x and x’ cannot be g-equivalent. Hence the set
of fixed point classes of ¢ is the disjoint union of the sets of fixed point classes of f
and fixed point classes of .

It remains to show that a fixed point class of ¢ is essential if and only if it is
essential as a fixed point class of f resp. ¥. So let us assume that F is a fixed point
class of ¢ and F<Fixf, and let U be an open set with F= U and Fixp n C1U = F.
Then Fixy n CIU = @, and hence d(x, y(x))>¢ for all xe ClU and some £>0.
Let >0 be determined as in the definition (4.2) of ind(p, U), and let f* and /' be
fix-finite approximations of f and i/ obtained with the help of Theorem 2.2 so that
d(f.f<nand d(y, ¥')<n, where n = min(§/2, ¢, y(¢)/2). Then the multifunction
@’ given by ¢'(x) = {f'(x)} v {/(x) for all xe|K]| is n-valued and continuous,
and is a fix-finite approximation of ¢. As Fixy' n ClU = @, it follows from the
definitions (3.1), (4.2) and (5.3) that

ind(F) = ind(¢,U) = ind(¢’, U) = ind(f’, U) = ind(f,U),

so Fis an essential fixed point class of ¢ if and only if it is.an essential fixed point
class of f. The proof for F=Fixy is similar, and thus Theorem 7.1 is true.

Remark. Theorem 7.1 easily extends to the case where ¢ splits into two
distinct multifunctions ; which are nj-valued (j = 1,2) and continuous, with
ny+n;, = n.

We now state some corollaries of Theorem 7.1. The first one, which follows
by induction, is also an immediate consequence of the definition of splitting.

COROLLARY 7.2. If |K| is a compact polyhedron and ¢ = {fy, fa, ..., [y} K|

n

— |K| a splitting of the n-valued continuous multifinction @, then N{@) = Y, N (i
=1

CorOLLARY 7.3. If |K| is a compact polyhedron and ¢: |K| — |K| an n-valued
continuous multifunction which is constant, then N(p) = n.

Proof. If p(x) = {¢y, €3, ..., ¢,} for all xe|K], then ¢ splits into n constant
maps f;: |K| - |K] given by fi(x) = ¢;. But the Nielsen number of a constant
maps is one.

Next we apply Theorem 7.1 to multivalued identities, i.c. to multifunctions
which have the identity map as a selection. The Euler characteristic of K| is de-
noted by x(K).

CorOLLARY 7.4. If |K]| is a compact polyhedron and ¢: \K| — |K| an n-valued
continuous. identity, then N(@) = 0 if x(K) = 0 and N(p) = 1 if x(K) # 0.
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Proof. The identity map id: |K] — [K] is a selection of ¢, and if Yx) = o(x)—
—{id(x)}, then x ¢ ¥ (x) for all xe|K|. So N(p) = N +N@) = N(id). (Com-
pare [2], p. 96, Exercise 4.)

The reader may start to wonder by now whether all n-valued continuous
multifunctions split. But they need not do so if [K| is not simply connected, and this
is precisely the situation in which the Nielsen number is more powerful than the
Lefschetz number. We finish by discussing a simple example.

Let S* = {exp(t])] 0<1<2n} be the unit circle in the complex plane, and let
@i S*— S* be given by

p(exp(t) = {exp(—1ti), exp((n—11)i)}

for all 0<#<2n. Then ¢ is 2-valued, continuous, and does not split. Its three fixed
points occur at t = 0, ¢ = 2x/3 anf 7 = 4x/3, and it is easy to check that each fixed
point has index one and that no two fixed points are @-equivalent. Hence N(¢) = 3
and any 2-valued continuous mulifunction in the homotopy class of @ has at least
three fixed points.
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