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Hence the coefficients of o, are obtained from 1 and the coefficients of o, by
means of +, » and ~ %, Similarly, the coefficients of . are of the form e(o,(1)e
where ¢ is obtained from 1 and the coefficients of ¢, by means of addition and
multiplication. We observe that the coefficients of o, are independent of the con-
crete choice of the model Cj, the field K, and the ladder for K — they are com-
pletely determined by the diagram of the exponential field C.

By the order of a term ¢ we mean the maximal number of iterations of the

exponential function occurring in #. Thus we have proved

LEMMA 36. Let 1(%,¥ 1, s ¥y) be a term without parameters, let Cy be a model
of T and ¢y, .., ¢,€ Cy. Then, for every he Hy, there exists a term u(yy, ..., ,)
of the same order as t such that

) o't(x,c;,,.‘,cn)(h) = M(Cl, ey L‘,,) .

Levma 37. Suppose a # 0 and h = maxsupp(a,). Then there is a positive ce C
¢
such that \o,—o,(h)h < ;h .

Proof. The lemma is an easy consequence of the fact that x™* is the largest
element of H,, which is less than 1. B

Since 6: a b g, is an embedding of Cy, into €%, Lemma 36 and Lemma 37 yield

THEOREM 38. Let t(x, Y1, ..., ¥y) be @ term without parameters, let Cy be a model
of T and ¢y, ..., ¢y € Cy such that 1(x, g, w., ¢,) is not identically zero in Cy. Then
Cy F“limt(x, ¢1, ..o, € exists” iff Maxsopp (Oyx,eq, wen) S 1

If ceCy is such that CyF “limt(x, ¢y, ..., &) = ¢”, then there is a torm
U(Vy, o, Vo) Of the same order as t such that ¢ = u(ey, ..., ¢,).

COROLLARY 39. Let Cy, C, be models of T containing an exponential field C
and let t be a term with parameters from C. Then, for each ce C L {+w},
C, F“lim¢ = ¢” iff C,F “lim¢ = ¢”. .

Proof. Corollary 39 follows from Lemma 37 and Theorem 38 since the map
a o, is the same for the models Cy and C,. &

References

[DW]1 B. I. Dahn and H. Wolter, On the theory of exponeniial fields, Z, Math. Logik
Grundlagen Math, 29 (1983), pp. 465-480,

[Fu]l L. Fuchs, Partially Ordered Algebraic Systems, Oxford 1963,

[Ri]  D.Richardson, Solution of the identity problem for integral exponential functions, Z., Math.
Logik Grundlagen Math. 15 (1969), pp. 333~340,

[Wil A. Wilkie, On Exponential Fields, Preprint.

Received 24 December 1982

icm

'The automorphism. group of some semigroups
by

Richard D. Byrd (Houston, Tex.), Justin T. Lloyd (Houston, Tex.),
Franklin D. Pedersen (Carbondale, IIl) and James W. Stepp (Houston, Tex.)

Abstract, Let F(Z) denote the collection of all finite non-empty subsets of the integers Z.
F(Z) can be considered as a semigroup with addition defined by A+ B = {a+b| ac 4,be B}
The main result in this paper is the determination of the automorphism group of F(Z). In order
to determine this automorphism group some algebraic results for F(G) where G is a group are
obtained, '

Introduction. Let F(Z) denote the collection of all finite non-empty subsets
of the integers Z. F(Z) can be considered as a semigroup with addition defined
by 4+B = {a+b| ae 4, beB}. M. Deza and P. Erdds considered this set ad-
dition in [2] and G. A. Freiman also uses this notion of set addition in his book [3].
The same idea is used, but mainly for infinite subsets, in the study of sequences, such
as in H. Halberstam and K. Roth [4]. The main question that is considered in this
paper is the determination of the automorphism group of this semigroup.

Since the answer to the main question can be obtained by considering the
subsemigroup of F(Z) composed of all subsets of the non-negative integers which
contain 0, the first section is devoted to determining the automorphism group of
this subsemigroup. It is mecessary to introduce some algebraic results concerning
retractions in order to answer the main question. Thus, the second section is
devoted to providing the necessary facts about retractions in order to verify that
the automorphism group of F(Z) is a splitting extension of Z by the Klein four
group,

Section I.

DrrmiTion 1. For a group G let F(G) = {4=G| 4 # @ and |4|< co}. For the
special case of G =Z let K = {de F(Z)| 0e 4, AcZ*}.

The following lemma is due to Professor A. H. Clifford.

Levva 1. If ye AutK and n is a natural mumber, then {0,n}y = {0, n}.

Proof. Let P, = {0, n}y. Now (n~1){0, 1}+{0,n} = (22—1){0, 1} and thus
(n—1)P;+P, = 2n—1)P;. Let @ ={0,...q} = {0, 1}p~%. Then 0+¢{0,1}
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=24{0,1} and so {0,1}+¢P, = 2¢P;. Therefore, 1+q(maxP;) = 2g(maxP,)
and so g =maxP, =1. Hence P, ={0,1}. We now have (n—1)P +P,
= @n—1)P; = (2n—1){0, 1}. Thus (n—1)+maxP, = 2n—1 and so maxP, = n.
Suppose (by way of contradiction) that there is a pe P, with 0<p<n. Then

(n—2){0,1}+P, = 2n—-2){0, 1},
and applying y~* to both sides, we obtain
(n—=2){0, 1}+{0,n} = 2n—=2){0, 1}.

But n—1e (2n—2){0, 1} while n~1¢ @—2){0, 1}+{0,n}. Thus P, = {0, n}.
Lemma 2. If ye AutK and A e K, then max4 = max(4y).
Proof. Let m = max4. Then m{0,1}+4 = 2m{0, 1}. Thus

m{0, 1}+4y = 2m{0,1}.

It follows that m-+max(4y) = 2m and so max(dy) = m.
) If A€ K and the integers from k to m inclusive are in the set 4, then we say
- that 4 is solid from k to m and denote 4 by

A=1{0,...k w,m,..,n}.

A gap in the set 4 is a sequence of consecutive natural numbers x, x+1, ..., x4t
which are not in the set 4, while x—1 and x+7+1 are in 4. In this case the Jength
of the gap is t+1. A maximum gap in A4 is a gap of largest length.

Lemma 3. Let yeAutK and Ae K. Then the length of a maximum gap of
A equals the length of a maximum gap of Ay.

Proof. Let ¢ be the length of a maximum gap of 4 and s be the length of
a maximum gap of Ay. Then

{0, 1}+4 = (n+1){0, 1}

swhere n = maxd4. By Lemma 1, we have that {0, 1}+4y = (n+1){0, 1}. Thus
-we have that s<t. Applying y~* and using the same argument, we have that r<s
~and so t=ys.

Lemua 4. Let y e AutK with {0, 2,3}y = {0, 2, 3}. Then for k=2 and nz2k—2,
{0,k vuyn}y = {0, k, ., n}.

Proof. By Lemma 1, we have that {0, n}y = {0, n} for all natural numbers 7.
We first consider the case k = 2. {0,2}y = {0,2} and {0,2,3}y = {0,2,3}.
Applying Lemmas 2 and 3 we have that {0,2, 3, 4} has only 4 possible images.
-By computation it can be verified that {0, 2, 3, 4} is fixed by 9. Now let n>5 and
,assume that the result holds for all r such that 4<r<n. Then

0,2,0,8-2}y = {0,2, ..., 02},
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Adding {0, 2} to each side of this equality and usin
; g the fact that {0, 2}y =
we have that {0,2}y = {0, %},

{0,2,csm}y = {0,200, n}.
‘Thus the lemma is true for &k = 2.
Before beginning the general case, we should note that

{0,3,4,5,6, T}y # {0,2,3,6,7).
To see this, we observe that {0,1}+{0,3} = {0, 1,3, 4} is fixed by y and

{0,3,4,5,6,7}+{0,1,3,4} = {0,1, 3, ..., 11}
while
{0,2,3,6,7}+{0,1,3,4} = 11{0, 1}.

Now suppose that k>3, n>2k—2, and the lemma holds for all / such that
2<gi<k. Let ’
A=1{0,k,..,n}
and let Ay = B = {0, ..., n}. Now
A+{0,k—-1} = {0, k=1, .., n+k—1}.
Thus

D =B+{0,k—1} = dy+{0,k—=1}y = (A+{0,k—1})y = {0, k—1, .o, n-+ k—1}.
Note that 1,2,..,k—2¢B while ke B. Now suppose that

2k—2€n<3k~2

and suppose (by way of contradiction) that k—1 € B. Since 4 has a maximum gap
of length k—1, there exists x € B, x>k with x+1, x+2, ..., x-+k—1¢ B while

x+keB. Now

x+1,x+2,..,x+k-1eD.

Since x+1 ¢ B, there exists y € B, y # 0 such that y+k—1 = x+1, Now x+k—1
£n—1<3k—3 and so x<2k—2, Thus y+(k—1) = x+1<2k—1, and so y<k.

‘Thus » =k or y = k—1.

Case 1. y =k—1. Since x+1 = p+k—1= (k—1)+(k—1), we have that
x = 2k~3. Now x+k—1 = 3k—4¢B. Also x+keB and x+k = 3k—3. There-
fore, 3k —3€nik-2, and o n = 3k—3 or n = 3k~2.

Subcase la. n = 3k—~3, Now n-(k—1)=4k—4 and so 4k—-5eD. If
dk—5¢ B, then 4k~5<n = 3k—3, and k<2, a contradiction. Thus 4k—5¢ B.
Therefore, there exists z @ B, = # 0, such that z4+k—1 = 4k—5. But then z = 3k —
~4¢ B and this contradicts the fact that 3k—4 = x+k—1¢B.

Subcase 1b. n = 3k—2. Then we have that n+k~1 = 4k—3. Thus 4k—
~5eD, If 4k—5¢ B, then 4k—5<3k—2 and so k<3. If k =3, then n = 7 and
4 =1{0,3,4,5,6,7} while B={0,2,3,6,7} and this was taken care of in the
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above. Thus 4k—5 ¢ B. Therefors, there exists ze B, z # 0, such that z+k—1
= 4k -5, Again we have that z = 3k—4 = x+k—1¢B.

It now follows that y s k—1.

Case 2. y = k. Then x = 2k—2. Now

' x+k—1=2k—2+k—1=23k-3¢B.
Also, x+k<n and so n3k—2. By assumption 73k —2 and therefore n = 3k-2.
Thus n+(k—1) = 4k—3 and so 4k—4 € D. Now 4k~—4 ¢ B and hence there exists
zeB, z#0, such that z+k—1 = 4k—4. But then z = 3%—3 = x+k~1eB,
a contradiction.

Thus we have shown that k—1¢B. We now prove that B = {0, k, ..., n}.
Assume that-there exists x ¢ B with k<x<n. Then

2k—1<x+k—1<n+k—1
and so x+k—1eD. Since x ¢ B, it follows that x-+(k—1)€ B and so x+k—1

<n<3k—2. Therefore, x<2k—1. If x<2k—1, then x ¢ D, a contradiction. Thus,
x = 2k—1 and it follows that # = 3k—2. Thus

A = {0, Ky wee 3k=2}

and B = {0, ky weey 2k=2, 2k, wuy 3k~2}. Now A+{0,k} = {0, Kk, ., 4k=2} and
B+{0, k} has a gap at 2k—1. By our argument we have that

{0, Ky e, 3k=3}y = {0, K, oy 3k=3}.
Adding {0, k+1} to each side of this equality we have that
{0, K,y weon dkm2}y = {0, E, wuny A2}
and this is a contradiction.
We claim now that {0,k,..,n}y = {0,k,w,n} if (—Dk-2<n<glk-2,
where />3, We have just completed the case for I = 3. The induction step is clear.
LemMa 5. If ye Autk and {0,2,3}y = {0, 2,3}, then y is the identity auto-
morphism of K.

Proof. Let M = {4| 4eK and Ay s 4} and assume that M # @. For
Ae M, define G(4) = maxd+1—|4]. Let 4oe M be such that

G(Ao)+G (oY) = 1o

is minimal. Note that #,>2. Let n = maxd, and p be the largest integer such that
y<n—1 and y¢ 4, or y¢dey. Then Ay = {0,...,y+1, iy n}.

Since we can add to 4, (and 4yy) any set of the form {0, y+1, ..., m}, where
n+y+1<m+1, and preserve the structure of 4, between 0 and y+1, we may
assume that n>3y-+1. Next let

By = dg+{0, ¥, vy ybn} = {0, .., 9,y 20k p} .
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Since 2y—2<n+y, we have by Lemma 4 that
{2,y ytn}y = {0, 3, v, y¥n}.
Thus Bgy = Agy+{0, v, ..., y+n} and hence
G(Ag+{0, 95 w0y yFBD+G(Agy+{0, ¥, vee, yFn}) Sty 1.
By assumption, we have that Ao+{0,y, .., y¥n} ¢ M and so
Ag+{0,y, o, y+n} = Ay +{0,y, e, yFul.

Thus, Ae\{py st} = Agy\{y,s8} and AN, ..., ¥} = AN{0, ..., ¥} We
may assume that ye d, and y ¢ 4;y. Let

Ac=1{0,., 1} = AN{p, e, 1} .

Then dg = A;+{0,y, ., n—t} and hence Aoy = A;9+{0, p, wues n—t}. There-
fore » € Ayy and this is a contradiction. Thus M = @ and so y is the identity auto-
morphism. This completes the proof of the lemma.

Define v from K into K as follows: If {a;,...,a,} € K, where a;< ... <a,,
then {&1,...,a,}v = {a,~a)| i =1,..,n}. It is an easy matter to verify that v is
an automorphism of K.

THEOREM 1. The only automorphisms of K are « and v.

Proof. Suppose that y € AutK. Since maximal elements and lengths of ma-
ximum gaps are preserved by p, we have that {0, 2,3}y = {0,2, 3} or {0, 2,3}y
= {0, 1,3}. Since {0,2,3}v = {0,1, 3}, it follows that y = ¢ or y = v.

Section II.

DerINITION 2. Given a group G, a retraction of G is a semigroup homo-
morphism o, such that: (i) o: F(G) - G, (i) ({gh)o =g. )

For notation purposes AutF(G) denotes the automorphisms of the semi-
group F(G) and X\Y denotes the elements of X which do not belong to Y.

Each automorphism of G induces in a natural way an automorphism of F(G)
and we call such an automorphism a standard automorphism. That is, for f € AutG,
denote the automorphism as ¢, where Ao, = {¢f| a e A}. There are two funda-
mental questions concerning AutF(G). First, does each element in AutF(G) preserve
set cardinality? In gencral the answer to this question has not been given but several
special cases have been answered with a positive answer. Second, does each element
in AutF(G) preserve set inclusion? We prove that the only elements of AutF(G)
which preserve set inclusion are the standard automorphisms. Moreover, we show
that for each torsion free group G, F(G) admits nonstandard automorphisms.

Tn this section we investigate some relationships between group retractions
and AutF(G). A subset S of F(G) is said to be normal if g ~*Sg = S for every g€ G.
A normal subsemigroup S of F(G) is called a G-complement if, whenever Ce S,
ge G and Cges, then g = ¢; and whenever 4 & F(G), there exist Ce S and g& G
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such that A = Cg. Tt is an easy matter to verify that if & is a retraction of G, then
kero = {A| Ae F(G)and 4o = ¢} isa G-complement. Conversely, if §'is a G-com-
plement and 4 e F(G), then there exist unique Ce S and unique g € G such that
A = Cg. Thus if one defines 4o = g, then o is a retraction of G. It was shown in
[1, Corollary 2.11] that there is a one-to-one correspondence between retractions
of G and G-complements of F(G). If S and T are G-complements with TS,
then T = S [I, Theorem 2.9].

The proof of the following theorem is straightforward and will be omitted.

Tuporem 2. If 0 € AutF(G) and S is a G-complement of F(G), then S0 is
a G-complement of F(G).

If o is a retraction of G and o is either an automorphisms or an anti-auto-
morphism of G, then aco~! can be considered as a map from F(G) into ¢ and as
such, is a retraction of G [I, Theorem 5.1]. In the case where o is the anti-auto-
morphism of G given by xa = x™* and ¢’ = o™, then ¢’ is called the dual of .
If S is the kernel of ¢’ and § is the kernel of o, then §' = §™* = {477| A& S}
[1, Corollary 5.2]. In case ¢ = ¢’, we say that c is a self dual retraction of G. If G is
a 2-divisible torsion-free abelian group, then G admits a self dual retraction.

Let < be a total order for the abelian group G, 4 € F(G), and k be a fixed
integer. If we define Aoy = (k-+1)maxd—kmind, then it is easily verified that
o, is a retraction of G. Moreover, gy is not self dual.

THEOREM 3. Let & be a retraction of the abelian group G and for each A & F(G)
define

Ap, = (A6)A(4710).

Then ¢, is an automorphism of F(G) and if o is not self dudl, then ¢, is an element
of infinite order in AutF(G).
Proof. It is easy to see that ¢, is a homomorphism from F(G) into F(G).
The map ¢, given by
Aoyt = (o) tA(4 )
is a two-sided inverse for ¢, and so ¢, AutF(G). It is not difficult to verify that
gl = (o' A (47 0)"

for each natural number #. Suppose that ¢% = ¢ for some natural number 7. Then,
if Aekers = S, we have that

A= Ao = (do)'A(Ad" )" = A(4d" o).

Since S is a G-complement, it follows that (47 %0)" = 1, and since G is torsion-free,
we have that 4™ %¢ = Hence 4™*e S and so S = S Consequently, ¢ is
self dual.

We remark in passing that if ¢ is self dual, then ¢, =
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CorROLLARY 3.1. If G is a torsion-free abelian group, then AutF(G) is infinite.
Note that if ¢ is a retraction of G, o # ¢, and ¢, is given in the statement of
Theorem 3, then ¢, is the identity automorphism on the group of units of F(G)
and so is not a standard automorphism of F(G). ‘
Let ¢ be a retraction of the abelian group G and « € AutG. For each 4 € F(G)
define A4y, , as follows: 4 = Cg for a unique C e kers and unique g € G. Then.

 AYge = Clgn).

It is a simple matter to verify that v, ,€ AutF(G) and V% = ¥, ,—1. We state:
some properties of 1, , in the following two theorems.

THEOREM 4. If o is a retraction of the abelian group G and o€ AutG, then \,, ..
is an automorphism of F(G) that leaves the elements of kero fixed. The map from
AutG into AutF(G) that sends o to v, , is an isomorphism of AutG into AutF(G)..
Moreover, (Wq,up 0 {@gy = t and if o # 1, then \y, , is not a standard automorphism.

THEOREM 5. Let ¢ and < be retractions of the abelian group G and let o € AutG
with o # 1. If Av = max A with respect to some total order of G, then @ Y o0 # Wy, 00z-

An immediate consequence of Theorem 5 is

COROLLARY 5.1. If G is a torsion-free abelian group, then AutF(G) is non-
abelian.

The semigroup F(G) is a partially ordered semigroup with respect to the
relation of set containment. In general, an automorphism of F(G) will not preserve
this partial order. More specifically, we have

THEOREM 6. The only order preserving automorphisms of F(G) are the standard
automorphisms.

Proof. Suppose that 0 is an order preserving automorphism of F(G) and
Iet 5 be the standard automorphism of F(G) induced by 6]G. We proceed by in-
duction on the cardinality of the set A € F(G). If [4] = 1, then 40 = An. Assume
that for all 4 € F(G) with |4|<k; A0 = An, and let |B| = k+1. If D = By, then
let Ce F(G) be such that C = D. Since 0 is order preserving, if b € B, then b
= by e BA. Thus BynsBO. If x e €, then xy = x0 e CH = D = By. Hence, xn = by
for some be B and so x = b. Therefore, C<B. Suppose that C # B. Then |C|
<|B| = k+1 and, by induction C = C0 = D = By. But then C = B. Thus:
0 is the standard automorphism #.

o Tucorem 7. Let G be a torsion-free abelian group and let ¢, v be retractions:
of @ with kernels S and T respectively. There there exists 0 € AutF(G) with S0 = T.
Thus, any two G-complements of F(G) are isomorphic semigroups.

Proof. If 4 e F(G), then 4 = Bg = Ch for unique Be S, CeT,and g, heG.
Define 40 = Cg. It is an easy matter to verify that 0 € AutF(G) and that S0 =T.

TueoreM 8. Let G be a torsion-free abelian group and ¢, t be distinct retractions
of G with kernels S and T respectively. Then there exists 0 € AutF(G) such that
01S = v and O|T # t.
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Proof. Let o AutG be given by xo = x~Y for every x € G. Theén by Theo-
rem 4, UyoS = t. If A€T\S, then 4 = Cg with Ce S, ge G and g # i. Thus
Ay, = Clgn) = Cg™* # Cg = 4.

All retractions of Z are given,by the formula

Agy, = (k+1)max4 —kmind .

-where k is an integer [1, Example 5.6]. The retraction induced by the natural order
of Z is 4 and o_ is the retraction induced by the dual of this order. We shall use ¢y
-to denote the automorphism @, of F(G). Note that K = {deF(Z)0ed, 4=Z*}
is the kernel of o_,. The following lemmas are necessary for the determination
-of AutF(Z).

Lemma 6. For each keZ,

(@) @ =g

In particular, ot = 0o

LemMa 7. For each ke Z,

(kera_l)(pk_l = keroy-4.

Levva 8. Let G be a torsion-free abelian group, S and T be G-complements
in F(G), A be an isomorphism of S onto T, and o € AutG. Then there is an automorphisin
-0 of F(G) such that 8|S = A and 0|G = a.

Proof. If Ae F(G), then 4 = Cg for unique CeS and ge G. Define Ab
= (CA)(go). 1t is easy to verify that 0 has the stated properties. We will denote 0
by 05,0

LemMa 9. Let « be the automorphism of Z given by xo. = —x and define [y, [y,
.and ps as follows:

By = 0;,1: Ly = gv,n Uy = 0v,u-

Then {1, by, ta» Ma} 15 @ subgroup of AutF(Z) which is isomorphic to the Klein four-
-group. Moreover, py Q—yfty = Pos 13ttty = @_q, and 103l e oy = P ]
THEQREM 9. The automorphism group of F(Z) is a splitting extension of Z b;)
the Klein four-group.
Proof. Let e AutF(Z) and K be the kernel of o.,. By Theorem 2, K0
= kera; for jeZ. By Lemma 7, we have that

(kercrj)(p:(ljﬂ) =K.
“Thus K0;4** = K. Now

0p; UK =100 v and 0o {*P|Z = ora.

Tt follows that 0p=9*D e {1, uy, s, s} and hence 0 = nopli'

‘& {1, e, Jas a3}

for some 4
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