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A generalization of the Shoenfield theorem on X! sets
by

Zofia Adamowicz (Warszawa)

Abstract. We generalize the Shoenficld theorem about the absoluteness of Xy predicates in
the Baire space with respect to inner models to the case of certain £ predicates in certain unseparable
spaces. We show that there is a similarity between the Shoenfield proof and some forcing con-
structions.

The theorem of Shoenfield is t}{e following: If 4 is 1} or 3}, A< o® then there
is a tree TSw ™ x wT® such that 4 is a projection of T, i.e.

xed = (Ef)Kx,f) is a branch of 7) see [3].

All known generalizations of this theorem concern higher projective classes and
higher ordinals than w,; for example under the assumption of 43 determinancy we
have: If A is IT3 or X1, Acw® then thereis a x and a tree TS ~? x % ® such that 4
is a projection of T see [1].

Another example is a theorem of Mansfield [2]: If » is measurable and A4 is
IT3(23), then A is a projection of a tree on w x%. Our generalization is in another
direction. Tt deals with a class of predicates 4 being of a IT; form but in other topo-
logical spaces (not necessarily the Baire space). The class of possible spaces will
be defined. For a special class of predicates 4 (containing the class of I7] predicates)
we shall prove that they are projections of a tree in another topological space (see § 1),
not necsssarily the space w®xx® for a x.

We shall not use any set-theoretical assumptions except of ZFC.

We discuss the topological notions that we need in the paper, especially the
notion of the continuity of a relation in § 1. In § 2 we prove our theorem. In § 3 we
give applications of our theorem. The main application. is to show a connection
between the Shoenfield theorem and forcing constructions. We fix ourselves on the
exposition of this connection and we are not interested here in new independence
proofs.

§ 1. In this section we discuss the topological notions used in the paper. Let
ke On. Let X =x®, % =%, 0 be a basis of a topology in &, ¢’ in . Assume that 0, @'
contain usual Baire basis restricted to &, %.
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DermniTioN 1.1, Let RS& x%. Let DomR = {xeZ: (Ey)Kx,y> e R)}.
We shall say that R is continuous in (%, 0) w.r.1. {%, 0") iff for every g € ¢, R™Y(g)
is relatively open in DomR in .

Remark 1.1. If R is a function, then this is the usual notion of continuity.

DerNrTION 1.2, Let TSOx 0'. Let {p’,¢'>, {p,qpeT. Let {p’,q><{p,q
if p’Sp,q’'sq. Then T with the ordering < is called a tree in the space (%', 0 x
x<{¥, 0.

DerINITION 1.3. Let T be a tree. Let {x,y) e & x% be called a branch of T
iff (P)o(@)er» ‘
(xep & yeq) » (Bp)o(Bgde (xep' & yeq & p'sp & q'Sq & p',qYeT).

DernaTioN 1.4. Let T be a tree. Let T be called continuous if {p,q)eT&
&p'cp& (Ex,y)({x,y) is a branch of T&xep’) - {p',q>eT. .

DERINITION 1.5. Let RE% x @. Let us say that R has a continuous treé if there
is a continuous tree 7 such that R(x,y) = {x,y) is a branch of T. )

LemMma 1.1. If R is closed in & x% in Ox 0" and continuous, then R has a con-
tinuous tree.

ExaMpLE 1.1. Let & = 0®. Let pe 0 iff (Es)y<o (p = {xe.%” s=xy}). In the
sequel let this topology be denotcd by ", Let # = o and let @' be discrete. Let
Rycow™xw and let R(x,n) = Ro(xs, m). Then R is closed and continuous.

We need two topological notions.

DErFNITION 1.6. Let @ be a basis of a topology in . We say that 0 has the
Moore property if there is a sequence (0,),, such that 0,0 for every n and
0,+:<0, and 4

1) U 0, = Z for every n,

2) for every p € 0, x € p there is an n such that (p")O,(xep’ = p'Sp). Th1s is

a slight modification of the Moore property defined in the literature. Notice that (J O,

is a basis of the same topology, and so without loss of generality we can always
identify 0 with {J O,.

Remark 1.2. If 0 has the Moore property in M, then there is a function rank:
0 - U {w} in M such that ~

1) if xe & then (m)(Ep)(xep&rankp = n),

2) if x e Z and (p,)eo 1S @ descending sequence of neighbourhoods of x such
that rank p,,;>rank p, or rank p, = w, then (p,),e, is 2 basis in x.

Proof. Define

max{n: pe 0,} if defined,

rankp = {co if, for every n, pe O,.

‘We have: I) follows from 1) of Def. 1.6. To see 2) let (p,),.,, D& 2 sequence with
the required properties, and let x € p, for every n. Let p be any neighbourhood. of.
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Then there is an #, such that (p'), v €p' = p'Sp). Let n be such that rank p, >n,.
Then p, € O,, and so p,=p. Thls proves 2). &

ExAMPLE 1.3. Let 2 = 0, ¢ = »™“. Then @ has the Moore property. Indeed,
let 0, = {s: lhszn}. Then rmks Ihs.

DeFiNITION 1.7, Let (%, 0> be a topological space. Then @ has the cen-
tralization propeity iff every subfamily @' of @ which is centralized (finite inter-
sections of elements from @' are non-empty) has a non-empty intersection.

Let us consider a few facts about the notions that we have introduced.

Lemma 1.2, Let (&', 0),{¥, 0") be complete metric spaces. Let RS x¥
be G5 and continuous in @ w.r.t. @', Then DomR is Gs.

This lemma is due to A. Louveau.

Remark 1.3, Let &', 0),(¥, 0" have the Moore property. Let R % x¥
have a continuous tree 7" and let R be continuous in @ w.r.t. ¢'. Then R is G,.

Proof. Indeed define 4, = {(p,q)eT: rankp, rankg>n}. Then {J 4, is
open in &' x%. It is clear that R={) 4,. B :

In the sequel we will be interested in spaces (%o, @), <%, 0,> {¥, 0,> with
the Moore property and the centralization property, relations Ry x %, X %5
with a tree and continuous in @, x @; w.r.t. @, and in predicates 4 =%, defined as
A(xy) = (x)(EY)R(X, X, ¥).

We shall prove our generalization of the Shoenfield theorem for this class of
predicates.

By Remark 1.3 and Lemma 1.2if (%}, 0>, <%, 0, are metric complete, then 4
is of the form

' Alxo) = (1) Ry(x0%y)
where R; is Gj.

Thus if (%;,0,>, {¥, 0,) are subspaces of the Baire space (v®, »*“) then we
can use classical Shoenfield methods to show that A is a projection of a tree P. In
this case we have:

A(xp) = (T, is well founded) for an appropriate tree T,,.

This is essential to define P and then we have

(%x)  ExoA(xy) = P is not well founded.

However for arbitrary spaces satisfying our assumptions () is no longer true
for any P as we shall see in § 3. Hence classical methods do not suffice for our theorem.
As we shall see in § 3 predicates 4 from the class that we have defined occur in
mathematical practice, hence it is justified to study them. They are interesting mainly
in the case where the spaces are not separable.

Let -us restrict ourselves to the case where %o =&, =% = x* and
Oy = 0, = 0, = x*°. As we have said if 4 is of our form then 4 is of the form

(x;)R{(xox{) where R; is G;.
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Also conversely a predicate 4 (xo) = (x;) Ry(xox,) where R, is G; is of our
form. . . :

Indeed Iet (55)se, b an enumeration of %“%x %~ Let us identify s, with the
neighbourhood that it determines. Then we have

A(xg) = (x) ) (E) R (g x11, &)
where

R, =4, and R'(xox;n,& =5S4,8&{Xox>€8.:

»
Hence there is an R7Sx “xx“®xwxx such that
R'(xgx;n, &) = R"(X0pdomsgs X1 pdomsgs o.

Then A(xo) = (xl) (Ey) (n)RN(xO fdom Sy(n) > Xy pdom Sy(n)» n, y(”))*

If we define R(x,x; ¥) as (n) R"(x, pom Sy()> X1 pdomSy(n) » > y(m), then R is closed
and continuous in x“®°xx~® w.r.t. x~° and hence it has a continuous tree
T %% x%"®,

Now we shall prove our theorem and in § 3 we shall see examples of predicates 4
satisfying our assumptions and we shall see that they go beyond the case where one
can use classical methods. Our proof does not use the Shoenfield theorem and that
theorem hence follows.

§2.

THEOREM 2.1. Let (&, 00, {Z1,0:), {¥1, 0, be topological spaces. Let 0; have
the centralization property and the Moore property. Let REX (X % x¥ have a con-
tinuous tree TS0y x 0, X0, and let R be continuous in 0y x 0y w.r.t. 0,. Define

A(xg) = (x)g (Ea R(xox1y) .

Let 0y x 0, x0, = x. Consider the space (x¥)* with the Tichoriow topology 0,
where in ¥ we consider the discrete topology. Then there is a tree P in {a®, 0y
x{xt*, 0> such that

xo€ A = (Bf)(xo,f> is a branch of P).

Remark 2.1. The above theorem generalizes the case where 0, = 0, = »*°
and &, = &; = o, (¥, 0,> is o with the discrete topology and 4 is II}. Then
x =0 and P is a tree in (0%, 0 ) x{w?, w;®) the Tichonow topology.

Remark 2.2, If {Z%;,0;) are Polish with the centralization property, then they
are as required in the Theorem by § 1. In this case the theorem can be simplified
to the following: if R is G; and continuous then ZR is Gy; hence 4 is I1}.

Remark 2.3. All spaces x° for x € On with the Tichonow topology satisfy
the assumptions.

Proof of Theorem 2.1. First notice that we can assume that the tree T for R
has the following property {p, ¢> €T = pADomR= R (g) because if T is a tree
for R and

T’ = {{p,q)eT: pn DomR=R Y(g)},
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then T is a tree for T. Indeed let R(x, y) and x, 3> edp, q). Let <p',q">e T be
such tlhat <x,¥>ep,q'><={p, g). Let p" = p’ be such that x ep”and p”’ n DomR
SR7(g’). Then by the contimiity ot T, {p",q'>eT and hence {(p”,¢'>eT".
Thus {x, y> is a branch of T”. Conversely if {x, ¥) is a branch of T” then it is a branch
of T'and thus R(x, ).

For the sequel assume that T has the property: {p,q> €T — p nDomR
SR (g).

We have to define several new objects.

DerNiTION 2.1.

Let T= {{p,q,m)>: {p,q>eT& rankpzm, rankg=m} .

Let <p',q',m'><{p,q,m) = p'<p,q'<q, m'>m.

Let Ttxg, x) = {Jq, m)>: (Bp)({xo, x> € p&{p, ¢, m) e T)}.

Let p' e 0.

Let T(xo, p") = {<q, m): (Ep®)(xo € p°) & {{p°'>, g, m>eT}.

Let T'(xo) = {<p*, g, m)>: (Bp®)(xo € p°) &<{p%*>, g, mpeT}.

Let <p~%, ¢, m'><<p', q,m) = p~'<p,¢'<q, m'>m.

Let pe Oy x 0.

Let p, € O,.

Let T(p) = {<qg, m>: {p,q,m) e T}. T(poy= {{p'qm}>: {pop'qm) e T}.

Let {g'm'><{g,m) = ¢'<q& m'>m.

The next definition is less typical:

Let T'(xq, ", ¢, k)
= (B my: PP <Pt & TWELL', kD)1 inl<ds K'Y < (g, k) & rank 5* > m}.

Let (B', m'><<(p',md = i< p' &m'>m.

Let T'(p°*, q, k)
= {{F',m>: P <p & TELG D)1 59(Kd', K'Y <<q, k) & rank p* > m}.

Lemvia 2.1. We have (%) (BY)R(xg, X1, ) = (KP*, @, KD 1isoy T (%0, P*, 4, &) is
well-founded.

This lemma is essential for our considerations.

Proof. Assume that (x,)(Ey)R(xo;x,»). Suppose that I"(x,,p%, ¢,k) is
not well-founded and {p?, ¢, k) € T(x;). Let ({pL, M )sew be a descending se-
quence in T'(x,, p', q, k). Let x, € () pL. We have (BEy)R(xq,x,,»). By the fact

n

that <p',q, k) e T(xy), that x; ep' and by our assumptions on T, we have
(Ey)gR(xo, X1,¥). Lot {¢', k') be such that k'>k, rankg'>k', ¢'<q and yeq'.
By the fact that (), <, i5 a basis in X, (we have rankp}=m,), there is an n such
that {¢’, k'> € T(xq, ph). :

But then {py,m,> ¢ T'(x,,p", ¢, k). Contradiction.

Assume conversely that (Ex)(3)71R(xg, x;,»). We shall show that
T'(x9,p", ¢, k) is not well-founded for a {p%,q, k) in T(x,).

Remark 2.4. There is no descending sequence {p%, g,, k,> in T(x,) such that
x; € () ps. Indeed, suppose that (p}, q,, k,> form such a sequence. Let p® be such
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that <<p,,p,,> Gns k,, eT& x, ep,, Let ye ﬂ q,. We shall show that {xq,xy, >

is a branch of T. Indeed, let {xox;), ¥ > € {p, ¢). By the properties of ranks there
is an » such that <(p,,p,‘) a.><<p, q> (wehave rankpl =k, rankp) >k,, rankg,
>k, for every n). Hence {x,x;,y) is a branch of T and thus R(xqx,,y). Contra-
diction. By the remark there is a {p', ¢, k> which is minimal with the property:
{p, 4, k> e T(xo) & x; € p*. Let us show that T* (xo,p q, k) is not well- founded
Let {(p}, m,> be such that rankplzm,, X, ept, Pl <Py, Mygy>m,, = pl.
Suppose

(B<G KN e y(d's K> <Lg, k) for  nz1.

Then {pi,q’,k">eT(x,), x;ep, and (pt, g, k'y<{p, q,k). Contradiction.
Thus for n>1, {p,m,y € T'(xo,p*, ¢, k) and thus T'(xo,p*, g, k) is not well-
founded.

Now we are ready to define the required tree P. .

Let for a po & 0g, K,,S(0; X0, x 0) x (0 x w) be defined as follows:

K,y = {{<p", g, my, <P, Wi {p*,q,m) € T(Po)
for a Po>p, and (B', m) e T"(p%, p*, g, m)}.

Let (V;),ex be an enumeratien of |J K,

poelo
Let pe Piff p = (po,t)> where py € Py, rgt=»* domzcx, domz is finite and

if £, nedomt and ¥y, ¥, € Kpy and (Vg = (Vy)o, V1 <(Vy)y in T'(po, (¥2)o),
then (&) <t(n).

LemMA 2.2, We have T'(x,p*, q,k) is well founded for every

(P, q,ky € T(xy) = (Bg),+#({X0, 9> is a branch of P).

Proof. Assume first that (xo, g> is a branch of P. Let {p', g, k> e T(x,).

Define

9(}71, q,k> as g(pl,q,k)(<ﬁls my) = g(n)
where ¥, = {{p*gk),<p" ﬁ)>. Let us show that T’((xopl, q, k))gdomg“l.,b,,).
Let <p*, M) € T'(xq, p%, q, k). Let p° be such that x, € p® and {p?, q, k> eT(p°).
Let 7° be such that (p',m)>eT'(p° p',q,k) and x,ep® and p°<p® Then
Lpth g, k>, <P, m>>eK;,u. Hence there is an 5 such that

Lpha. by, (P myy =V,

Thus g s 0, 15 defined at <p',m) as g(n).

We shall show now that T'(xo,p", q, k) is well founded. We shall show that
g<,,1,qk> T'(xgp*g, k) —»* order preserving. Let {5, ), (F*, > € T'(xop*, ¢, k)
& (F*, M)y <{p*,m). Let p° be such that

Lt g, k>, By, (P, k), <Y, m>>eK,,o
and x, e p°. Using the fact that {x,g) is a branch of P, there is a p°<p® and
a tcg such that (7°t> € P and ¢, 7 e dome where {(p*, ¢, kY, (F', D> = V,
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(p* a0, k), <P', Ay = V,. But then ¥}, ¥, e Kzo. Hence #(&)<t(y) and thus
Ieota k)((p 5 m))<g<,,1'q,,,>(<p m)) That is what we wanted to show.

Assume conversely that (( P 4, KDV rayT (%0, P, g, k) is well-founded, Let
Gemagy: T'(%0, 2" ¢, k) — %™ —{0} order preserving. Define g(y) = (V1)
if ¥, €K, for a po such that xoepo and (V)€ T'(x,, (Vo). Otherwxse define
g(n) = 0. Let us show that {x,, g> is a branch of 2. Indeed let x, € p°, t<g. Let
domt = {n; ... ns}. Assume that 5, ..5; are all such that #(n;) = ... 1(;) = O.
Then either ¥, ¢ Ko for any 11eighbourhood p° of x, or (V) géT(xo,( o)
Tn any case there is a p°s p such that ;uo €p and Vo € Ko for 1<i<j ] For other
n, for j<isk there is a ph such that ¥} e K.

Let 3°<p’ A plee o A pl, and xoeﬁo Then V, €Kz for j+l<i<k,
V, € Kz for 1<i<j. Let us show that (§° > eP.

Indeed let £, nedomt be such that ¥y, V, e Ko, (Vo = (Vdo» (V)1 <Vt
in T'(Bo, (Vo). Then ¢&,4& {neyq ... }. Then by the deﬁmtlon of j. (Vo
eT'(xy, (Vo) and (V,); € T'(xo, (V,)o). Hence (¥, (¥, )IeT(xo,(Vé)o) and
(V1 <(Vy)y in T'(x,y, (Vi)o). By the fact that Gge 18 order preserving at
T'(xo, (V)o) We bave £(&)<t(n). W '

By combining Lemma 2.1 and Lemma 2.2 we obtain the theorem. B

§ 3. In this section we give two applications of our theorem — one direct and
the other concerning forcing.

ExaMmpLE 3.1, Let <%, 0,> = {w{ with the Tichonow topology) = <%, 0,>.

Let &, be a subset of w” consisting of well-orderings, ¢; be discrete.
R(n, %y, xy,y) =y is an isomorphism of xy(n) and x;.

Lot A(xo) = (x)(BY)En) R, xo, Xy, ¥)-

It is easy to see that A can be reduced to a predicate satisfying the assumptions
of the theorem. Thus the set of sequences 4 majorizing % is a projection of an
appropriate tree,

Let us consider the second application. Assume we have an inner model M,
e.g. M = L. Then the classical Shoenfield theorem can be strengthened to the fol-
lowing theorem:

If A is ITX(M), then there is a tree T in M TCo:oxca1 such that xe A =
(x,f> is a branch of T).

Our theorem has also an appropriate strengthened form under certain assump-
tions about the topologies. Let us make a few definitions and observations. We
have to ensure the absoluteness of 4 and in a certain sense of the topologies. One
can see that the topologics given by finite sets as in Example 3.1 are absolute enough.

Next we shall define another class of topologies and we formulate Theorem 3.1
for that class, although one can remember that it is true for a larger class of
topologies. .

Assume %o, %y, ¥ S0,

DEFINITION 3.1. Let 0 be a basis of a topology in %, and let M be an inner
2 — Fundamenta Mathematicae CXXIII, 2

"(Ef)
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model. Then we say that @ is M-codable if there is a partially ordered set <O, <>
in M such that 0 Sw”n M and there is an isomorphism @ of (0,<>and (0, =
such that fora p e O the relation x e ¢(p) is ZH(M),i.e., %} with a parameter from
M, uniformly in p.

In the sequel let us identify p with ¢(p), 0 w1t]1 0.

DEFINITION 3.2. Let (%, 0), (¥, 0> be given, R=% x¥. Let us say that R is
§§(M if for a given p € O the relation .

Ry(x,y) = xep& R(x,y)
is E}(M) uniformly in p.

Remark 3.1. If R is 53(M) then R is absolute in w.r.t. M.

Indeed, assume that {x,y>e M. Let R(x,y). By the 'assumption RS x¥
there is a p € O such that R,(x, y). But then Rf,‘(x, ¥); thus R¥(x, y). Conversely,
if RM(x, y) then R’f(x, y) for a p and hence R(x, ).

LemMmA 3.1, Let (&, 0),<{¥, 0" be given, let TSOx 0, and let 0, 0" be M co-
dable. Let R be ZL(M) continuous in O w.r.t0" and closed. Then R has a continuous
tree Te M.

Proof. Consider the tree defined for R in Lemma 1.1. We ‘have for {p,q)
e0Ox0":

el =(Ex, ) (xer&yeq& Rix, »)&

&(p nDomR=R™(g)) = (E<x IN(RHx, ) &y € ) (%) & (BY)Ry(x, )

- EN(req& Ry(x, ).

Thus if {p,q) e Ox O’ then the relation {p,q)eT is Ii(M) uniformly in
{p, qy. Hence T is the same as the appropriate T defined in M. Hence T'e M. The
equivalence “R(x, y) = {x, y) is a branch of 7" holds both in the world and in M
by the absoluteness of R and Lemma 1.1. M

LeMMA 3.2. Let {0,005, {%1,0,>, ¥, 0, be given, let 0; be M-codable and
have the Moore property in M and let them have the following property: if
D€ Oy, pyi 1 < py, 1S a descending chain, then ﬂ_p,, #BinZ orY.Let REX o x Xy x¥Y
have a tree in M. Then the predicate A'(x,) |
and so is A(xy) = (x)(EV)R(xq, X4, »).

Proof.:

Remark 3.2. We have R(x,, xy, ¥) = <X, X;,») is a branch of

= (PP D)oy e x&;((xo x, ) €<p°p?
= (BB a0 ({xo %190 € <Py <<p°p* )
= (n) (E<p°p*¢>)1(rankp®, rankp’ , rankg>n &
& {xox;7) € %0 D).
Let us prove the last equivalence. Indeed, let {xyx,y)> be a branch of 7. Let

be given. Let (p°p'gd € Oyx O, x 0, be such that rankp® = rankp' = rankg

= (Bx,)(») V1 R(xox,y) is ubsolute w.r.t. M

[0

icm

A generalization of the Shoenfield theorem on Zj sets 39
= n& {xox; ) € {p°plg}. Let {p°p'q’) be chosen as above. Then rankp°, rank p*,
rankg’>n and (p°p'q") has the required properties. .
Assume conversely that ‘

() (E<p°p* @>)r(rankp®, rankp’, rankgzn & {xox1y) € {P°P* ) .

Let ¢p°p'qd be such that {x,x,¥) € {p°p'q). Choose n such that

{{F°F " € (00)n % (01), (05} <xox;3) € (B°P ">} SP({p°P' D).

Let <‘° 4" E((Oo),.x(Ol) x(05),) N T and <xox1y> € (p°p'¢’>. Then (5°p'q’>
<{(p°pq> and {(7°p'q’> is as required.

Remark3.3. LctT(xoxi) = {{g,n): (Ep°p")Kp° q)eT& XoED &xlep“)&
& rankp®, rankp!, rankg>n}. Let (g'n)y<{g,n) = (¢'<q&n’dn). We have
((BY)R(xy, x1,¥) = T(xo%,) is not well-founded). .

Indeed, let y be such that R(xq,xy,)). Let pOptq, be such that <{xpxqy>
€ (pOpla,ds rankpl, rankp),rankg,>n and (pypuduy € I. Then ({g, Mheo I8
a descending chain in T(x0 x,). Conversely, let {g,, #Dye, e a descending sequence
in T(xox;). Let (plpi> be such that rankp}>n, <pipads> €T, <XoX1) € {PaPs)-
Let ye () q,. Then by Remark 3.2 {xox;y) is a branch of T, ‘thus R(xq, *1, ).

n

Let us prove the lemma.

We have A4'(xq) = (BEx;)(»)TR(Xo, Xy, ) = (Ex)T(x0%1) is well-founded.
Then by standard methods we define a tree P in M such that A'(xo) = (Eg) xo, 9>
is a branch of P) = P is not well-founded. Hence follows the required absoluteness
of 4, 4. W

Then our theorem can be strengthened to the following:

TeEOREM 3.1. Let {Z0.00), {%1,0,),{¥1,0,> be topological spaces, 0; be
M-codable. Let 0, have the centralization property and the Moore property in M.
Let Ogx 04 % OZM = Let REXox %, XU have a continuous tree T in M, let R be
continuous in Oyx 0, w.r.t. 0,. Define

A(xe) = (x1)g,(E¥)a R(x0 X5 ) -
Then there is a tree Pe M, P=Oyx | (*)&% such that
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(Bf Ypery({XoS > is a branch of P).

We can prove this theorem by analyzing the proof of Theorem 2.1.

Let us observe now that Theorem 3.1 can be applied to forcmg constructions
over M. Indeed, an M generic filtet over P induces a branch of P, ‘and thus an el-
ement of A. It follows that if 4 is non-empty then it has M-generic members.

This extends the classical Shoenfield result on IT5(M) sets — if it is non-empty
then it has a member in M.

Notice that there is no tree P in M such that 4 is a projection of P and P satis-
fies (¥) from the remarks following Remark 1.3,
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" Indeed if there was such a P then the sentence (Ex;).4(x,) would be abso-
tute w.r.t. M and this is not the case if &, = Bord M. Thus the classical Shoenfield
method can not be applied here.
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Continuous relations and generalized G; sets
by

Zofia Adamowicz (Warszawa)

Abstract. In the paper some purely topological analogues of the main notions connected with
forcing are considered. We compare the properties of the topo]oglcal notions with the propertles of
their forcing counterparts.

Introduction. The paper was inspired by studies on forcing.

If we consider the first original notion of forcing, i.e., the set of Cohen forcing
conditions 2<®, then 2<% codes a base of the natural product topology in 27. If x is
a fixed real in the Shoenfield universe 2, then the relation R, s I (f =x), is a rela-
tion between finite sequences s and ¢. If @ is a family of dense subsets of 27, then
the set X of reals @-generic over 2°¢ is a subset of 2. If 9 is so large that for
a e X, i,(x) can be defined then the function f (¢) = 7,(x) defined for « € X is a func-
tion from X into 2°. Since all R, X and f are objects connected with the topological
space ¢(2°,2<®), we can ask about their topological characterizations. Moreover,
we can study their topological properties. This leads us to the notions of aregular
relation, a g. G; set, a forcing function, and a continuous relation. These notions are
not restricted to the case of the Cantor space (2%, 2°) but the reader should always
have in mind this space or the Baire space (%, ©~) as the main illustration. The
mentioned notions are inspired respectively by

1) sets of the form {x: x is P-generic over M} for given P; M,

2) relations of the form {{p,q>: peP, p IF(xeq),qe @} for ~given
P,Q,M,xeM,

3) functions of the form f (@) = i,(x) for given P, M, x e M¥,

4) relations of the form {(x,»)>: {x,y) is generic over P>< Q, M} for given
P, QO M

In certain cases our topological notions characterize the appropriate forcing
notions, then we indicate it — Fact 2, Corollary 4 but in general the correspondence
is not strict. However, it turns out that certain topological theoretms about our
notions have analogues in the forcing theory. We prove a few such theorems, mainly
Fact 1 and Theorem 1. Indeed Fact 1, especially the fact that Dom f is g.G; for f°
satisfying certain assumptions corresponds to the fact that the function f(e) = 7,(x)
is defined for all generic «. Theorem 1 corresponds to the fact that if {x, 'y} is generic
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