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Fixed point free equivariant homotopy classes
by

Dariusz Wilczynski (Poznaf)

Abstract. Let G be a compact Lie group. For an equivariant self-map f of a compact smooth
G-manifold M, an equivariant homotopy invariant L(f) is defined, and it is shown that, under
given conditions on M, this invariant detects the equivariant homotopy classes of fixed point free
maps. In this context, the question of the existence of a non-singular equivariant vector field extending
a vector field given on the boundary is also discussed.

0. Introduction. The Lefschetz fixed point theorem states that, if /1 X - X
is homotopic to a fixed point free map, then the Lefschetz number of f vanishes.
This theorem is valid for a wide class of spaces X and maps f; e.g., for all compact
ANRs and continuous maps. The question arises whether the vanishing of the
Lefschetz number is a sufficient condition for f to be fixed point free up to a homo-
topy. The answer is negative in general, even for polyhedra. If X is'a Wecken space
the answer is positive. The simplest and most important example of a Wecken
space i3 a compact simply connected manifold, with or without boundary, of di-
mension at least three. A full, detailed exposition of the Lefschetz fixed point
theorem, its converse and related topics can be found in [3].

In this paper the question of the existence of a fixed point free map homotopic
to a given self-map of a compact smooth manifold is considered in a G-equivariant
category, G being any compact Lie group. In Section 2 with each equivariant
map f we associate a family of integers, denoted by L(f), which depends only on
the ‘equivariant homotopy class of f and has properties analogous to that of the
usual Lefschetz number. In particular, the Lefschetz theorem 2.6 is valid. This
invariant detects the cquivariant homotopy classes of fixed point free maps. Of
course, some additional hypotheses, as in the non-equivariant case, are needed.
In fact, we prove the following theorem:

THEOREM A. Let M be a compact smooth G-manifold such that all connected
components of MY are simply connected and of dimension at least three for any iso-
tropy subgroup H with a finite Weyl group in G. Then an equivariant map f> M - M
is fixed point free up to an equivariant homotopy if and only if L(f) =

If £ is the identity the same is true without any restrictions on the fundamental
group and dimension.
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THEOREM B. 4 compdct smooth G-manifold M admits a fixed point free equi-
variant deformation if and only if y(M) = 0, where y(M) = L(idy).

The proof of Theorem A is contained in Section 3. Theorem B follows from
a more general result about equivariant vector fields proved in Section 4. Theo-
rem 4.4 generalizes two theorems of‘Komiya — [10, 4.3] and [9, 1.1].

1. Preliminaries. Let G be a compact Lie group and let H be a closed subgroup.
We denote by N(H) the noumalizer of H in G and by W(H) the Weyl group
N(H)/H. The conjugacy class of H we call the isotropy type of H and denote by (H).

If Xis a left G-space and x € X, then G, denotes the isotropy subgroup of x
and Gx denotes the orbit of x. The set of orbits, called the orbit space, will be de-
noted by X/G. For each subgroup H of G let X¥ denote the fixed point set of H;
it consists of all points x of X such that H=G,. The set of points of X for which
G, is precisely H will be denoted by Xy and its complement in X7 by X¥. The
union of orbits of points in H?, Xy and X; we denote by X™, X5, and X, re-
spectively. If C is a subset of X)/G then Xy, ¢ is used to denote p~i(C),
P Xgpy — Xm/G being the projection. We also use X&0= X" — X ¢, Xy
=Xy, cO X7 and X7 = X ~ X7

An equivariant map f: X — ¥, i.e.,, a map commuting with the actions of G
on X and Y, induces for each H, in an obvious way, the following maps: X% - Y%,
XM oy xE . ¥¥ and x® o v®, which are denoted by f7, f®, f¥ and
I, respectively. Passing to the orbit spaces, f induces fIG: X|G — Y/G. An equi-
variant map which takes values in the unit segment I = [0, 1], with trivial G-action
on I, is called an invariant function.

A bomotopy F: XxI — Y into a metric space ¥ we call an ¢-homotopy (¢>0)
if diam F(x,I)<g for each x ¢ X.

Foramap f: 4 » X, ASX we say that f'is fixed point free if f(x) # x, x € 4.

Recall that a G-space X is said to be equivariantly trianguldble for G a finite
group if there is an equivariant triangulation X — X, i.e., an equivariant homeo-
morphism of an equivariant simplicial complex K onto X. A simplicial complex
(= a geometric simplicial complex considered as a topological space with the
topology generated by the simplexes) on which G acts through simplicial maps
is called an equivariant simplicial complex if each group element takés the interior
of any n-simplex homeomorphically to the interior of some other n-simplex, and
via identity whenever a simplex is mapped onto itself. We will make use of the
fact that every compact smooth G-manifold (a smooth mianifold with a smooth
G-action), with or without boundary, is equivariantly triangulable. In fact, this
is one of the results of [7].

If K and L are equivariant simplicial complexes, an equivariant simplicial
map K — L is an equivariant map which is simplicial as a map between the ordinary
complexes K and L.

There is also an equivariant version of the simplicial approximation theorem
(cf. [2, Ex. 1.6]).

s
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Suppose f: K —~ L is an equivariant map between equivariant simplicial com-
plexes K and L which is simplicial on an invariant simplicial subcomplex KiK.
There is an equivariant subdivision K' of K modulo Ky and an equivariant simplicial
map g: K' — L. equivariantly homotopic rel K, to f.

2. The Lefschetz fixed point theorem. Let X be a compact ENR and let 4 be
a closed neighbourhood retract in X. Suppose that the complement X—A is
a disjoint union of & family {D} of its open subsets. Let ip: (X, A) - (X, X— D)
be the inclusion. Then on singular cohomology groups (with integers as coefficients)
we obtain the isomorphism

{i8}: @pHXX, X—~D) » HX(X, A).

Let {p}: H*(X, A) = H*(X, X~ D)} be the family of projections associated
with the direct sum isomorphism.

For a map f: (X, 4) = (X, 4) define the number L(f, X, 4, D) as the Lef-
schetz trace of pkof* oi%.

Let U be a neighbourhood of 4 in X. A map f: X — Y is said to be faut over
A in U if there is a retraction r: U — A such that flo=Faor

ProrositioN 2.1. If f: (X, A) = (X, A) is taut over A in U, then for each D
L(f, X, 4,D) = I,

where V is any open subset of X such that Ve D<U U V and Iy, is the fixed point
index [5] of fiv.

Proof. Since X/X— D may be identified with D*, the one-point compactification
of D, we see that L(f, X, 4, D)+1 is the same as the Lefschetz number of the
map g = ipofepp: DY — D, where pp: Dt — X/4 is the inclusion. The con-
clusion follows from the additivity of the fixed point index, because I, = 1, U’
being the image of U under the identification map X — D*. B

Remark. In order to use the fixed point index, it should be noted that D*
is an ENR. To see this, observe first that X— D is an ENR. In fact, X— D is a neigh-
bourhood retract in X, and the retraction is

(ruid): (UnDyu(X—D)— X—D
Thus the space D* = X/X—D, being locally contractible at each pomt (cf. 5,
4.8.7]), is an ENR according to [1, 5.10.3].

For the rest of this section X denotes a compact equivariant Euclidean neigh-
bourhood retract (G-ENR), i.e., a compact G-space which can be equivariantly
embedded as an equivariant neighbourhood retract in an orthogonal representation
of G (we always assume X to be equipped with a metric d induced via this embed-
ding by the metric defined by the inner product in the Euclidean space), and 4 de-
notes an equivariant closed neighbourhood retract in X. For an equivariant map
f1 X = Y, we say that f is taut over 4 in an invariant neighbourhood U if there is ap
equivariant retraction .r; U — 4 such that Jio=fiaor
4 — Fundamenta Mathematicae CXXIII, 1
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PROPOSITION 2.2, Given &>0, there exists an invariant neighbourhood W of
the diagonal d(X) in Xx X and an equivariant g-homotopy. WxI— X from the
first projection to the second, which is constant on d(X). '

Proof. Embed X into the orthogonal representation of G and then proceed
as in [3, 3.A3]. W

COROLLARY 2.3. For.any G-space Y and e>0, there is a >0 such that, if
fy9: Y.~ X are equivariant maps and d(f(»), 9())<3 for all ye ¥, then f and g
are: equivariantly e-homotopic through homotopy constant on the coincidence set
of fand g. M K

PROPOSITION 2.4. Let Z.be a normal G-space and BSZ an invariant closed
subspace. Assume that f: Z — X is an equivariant map and F': BxI— X is an
equivariant g-homotopy of. fis for a given €>0. There is an equivariont &-homotopy
F: ZxI— X of f which extends F'. ‘ ‘

Proof. By the Tietze-Gleason theorem [2, 1.2.3] there is an extension of F'
to an equivariant homotopy F'': UxI— X of fip for an invariant neighbourhood
U of B. If U is sufficiently close to B, then F'’ becomes an g-homotopy. Let
h: Z — I be an invariant function such that hip =1 and hz-v = 0.

Define F by

1) for x¢U,
F(x,1) = {F"(x,th(x)) for- xeU. W .

PROPOSITION 2.5. Let Y be a compact G-ENR and let fi X = Y be on equi-
variont map. Then, for a given e>0, there is an invariant neighbourhood U of 4 in X
and an equivariant ¢-homotopy rel A Jrom f to a map which is taut over 4 in U.

Proof. Choose an &'>0 such that d(f(x),f(y))<s if d(x,y)<é¢, x,yeX.
Fot a §>0, denote by U the set {x e ¥: d(x, r(x)) <6}, where r: ¥ — A is an equi-
variant neighbourhood retraction. If § is small enough, then there is an equivariant
g-homotopy rel 4 from fivto flae 71y, because for small § the maps iy and iy o 1|y
are equivariantly &'-homotopic rel 4 by 2.3, iy and i, denote the inclusions of U
and 4 into X. Finally, extend the resulting e-homotopy to an equivariant &-homo-
topy of f by the use of 24. W

Let 4(X) denote the free abelian group generated by the set of all pairs
((H), C), where (H) is an isotropy type on X such that the Weyl group W(H) is
finite and- C is a connected component of Xan/G. By 4'(X) we denote the set of
all elements z of 4(X), whose ((E#), ©)-th coordinate (denoted by =z ¢ or
shortly by z¢) is 0 or 1 for any pair ((H), C) such that dimC = 0.

For an equivariant map f: X — X let L(f) and L'(f) denote -the unique
elements of 4(X) and 4'(X), respectively, such that for each pair ((H), C)

L(f.)(‘(ﬂ),cyjﬁ L(f¥ x*, X7 RETOR } y
L'(N,0p = 1WEH) L, X7 ¥ Xae):

icm°®
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It is clear from [6, 8.18] and from 2.5 and 2.1 above that L(/™, X2, XF, Xy o)
is divisible by’ |W/(H)| and hence L'( f) is well defined. Since L( f) and L'(f) both
depend only on the equivariant homotopy class of f, there are well defined maps
L: [X, X]g — A(X) and L': [X, Xlg = A'(X), where [X; X]¢ stands for the set
of equivariant homotopy classes of self-maps of X, -

THEOREM 2.6. If an equivariant map f: X — X'is Jixed point free, then L(f) = 0.

Proof. Let ((H), C) be a generator of A(X); we will show L(f)¢ = 0. There
is an g>0 such that d(f(x), x)>2¢ for all x e X. Since X™ is a G-ENR by [8,2.1],
the application of 2.5 yields an equivariant map g: X - X which is taut over x@
in an invariant neighbourhood and such that L(@)¢ = L(f)¢, and d(g(x), x)>¢
for all x e X. In particular, g is fixed point free and hence L{g=0by21.

For equivariant self-maps of a closed smooth G-manifold § which is a semi-
linear G-sphere (this means that S” is a homotopy sphere for any isotropy sub-
group H), the following equivariant version of the Hopf theorem holds:

THEOREM 2.7. The map L': [S, S)s —A'(S) is bijective. In particular, equi-
variant maps f, g: S —'S are equivariantly homotopic if and only if L(f) = L(g).

Proof. Suppose L'(f) = L'(g). Let (H) be an isotropy type on S, Supposé
further that £ and g{™ are equivariantly homotopic. Then there is a map
g: S™ - 8 equivariantly homotopic to g such that O = g® We will
show that /™ and ¢ are equivariantly homotopic rel S®. To do this, it suffices
to extend the constant homotopy of /¥ = g¥' to a W(H)-equivariant homotopy
between 7 and g”. According to [8, 2.1] and 2.5, we may assume that I and
¢ are both taut over S in ‘an invariant neighbourhood U and that £ iy =bp.

Let C be a connected component of S@/G and let M denote a compact
W(H)-invariant submanifold of codimension 0 in Sy, c such that M/W(H) is
connected and Sy ¢ U™ U M. Thus, it remains to show how to extend the constant
homotopy of /™5 = §" () to a W(H)-equivariant homotopy between S and
g |m- Since the action of W(H) is tree on M, the argument of [11, 5.1] applies.
In particular, if dimW(H) = 0 then we claim that, for a chosen small n-disk
D (n = dimM) in IntM/W(H), there is an equivariant map §: S® — $® equi-
variantly homotopic rel S¢ to ¢ and such that

=1l -
G M-pm1y =S Mepmimy 5 ;
where p: M — M|W(H) is the projection. Now, it is clear by 2.1 that the obstruction
for f° "IM and -‘7"|M to be W(H)-equivariantly homotopic rel M —p~!(D) may be
identified with L'(f)c—L(g)e. Moreover, any integer. may be realized as this
obstruction (except when dimC = 0).
Therefore, by using induction on isotropy types on S it can be proved that
S and g are equivariantly homotopic. This proves the injectivity of L'.
For the surjectivity; the same method may be used to construct an equivariant
map f: S —.§ that is taut over each S, and.is such that L'(f) takes any given
value in 4'(X). W

4%
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COROLLARY ‘2.8. If S is the unit sphere in an -orthogonal representation of G,
then the only fixed point free map up fo an .equivariant homotopy is the antipodal
map. W .. .
The set 4'(X), where X is the unit sphere SV in an orthogonal G-represen-
tation ¥, previously appeared in [11] and [12]. It was denoted by 4(¥, 0) in [11]
and by A(V, V) in [12]. Both Rubinsztein and Hauschild showed that 2.7 holds
in that case, i.e., they proved the existence of a bijection between [SV, SV]; and
A'(SV) (but they did not prove that L’ is such a bijection). It is to be noted that
the definition of L’ is much simpler than the definitions of the bijections they used,

3. Converse to the Lefschetz fixed point theorem. This section contains the proof
of Theorem A. stated in the introduction.

Let G be a finite group and let X be a compact equivariantly triangulable
G-space. Suppose A< X is an equivariant closed neighbourhood retract such that
the action of G on X—A is free. :

Lemma 3.1. Let f: (X, A) — (X, 4) be an equivariant map. There is an equi-
variant map f' equivariantly homotopic rel A to f which is taut over A and has a finite
number of fixed points in X— A, each lying in the interior of a maximal simplex of X
(for some equivariant triangulation of X).

Proof. According to 2.5, we may assume that fis taut over 4 in an invariant
neighbourhood U. Choose a fine equivariant triangulation of X and fix an invariant
subcomplex X, that is a neighbourhood of 4 in X and is contained in U with its
invariant regular neighbourhood N.

Denote the subcomplexes Xy N (X—IntX,) and N ~ (X—IntN) by X}, and N,
Tespectively. There is an equivariant retraction r: N — X for which ¥ is a mapping
cylinder of riy.. Therefore, there is an equivariant map h: N'xI— N —IntX,
under which N'x(0,1] is homeomorphic to N—X,, and which is such that
A(N'x0) = Xg, h(N'x1) = N".

Let F: N'xI— X be an equivariant homotopy of fo 7y which ends in
4 simplicial map (N’ x1 being subdivided). Define f;: N — X by

fi X0 = f]Xo

Let f: X — X be an equivariant extension of f; equivariantly homotopic
rel X, to f. Without loss of generality, by the equivariant simplicial approximation
theorem stated in the introduction, we may assume f, to be simplicial on X-—IntN
(after subdividing X modulo N). If the chosen equivariant triangulation of X is
sufficiently fine, then f, is sufficiently close to f. In particular, f2 has no fixed points
in N—X,. At the same time, we can assume that for any simplex s of X—N the
stars of s and gs, g € G, are disjoint.

Suppose now that s is a simplex of X— N, non‘maximal in X and such that
s> =f5(<5)), s> being the interior of s. In this situation all fixed points of f;in {s)
may be removed to simplexes of greater dimension by means of the Hopf construc-
tion [3].

and  fiy-xo = Foh |y x,.

e {

icm

Fixed point free equivariant homotopy classes 53

Since the Hopf construction does not change f, outside the star of s, it follows
that the modification of £, may be made equivariantly, i.e., simultanem;sly for all
simplexes of the same equivariant simplex.

Therefore, using an argument similar to that in [3, 8.A.2], we claim that by
working up through the simplexes of X— N dimension-by~dimension, after a finite
number of applications of the Hopf construction,. we obtain an equivariant map f*
equivariantly homotopic rel N to f, which has a finite number of fixed points in
X~ N, each lying in the interior of a maximal simplex of X, pg

The next lemma is essential in the process
of an equivariant map.

Let M be a compact smooth G-manifold (we still assume that G is finite) and
let f: M -+ M be an equivariant map, Suppose that Gx,, ..., Gx, are isolated fixed
point orbits of f, all lying in M,—oM. Suppose further that U is an invariant
neighbourhood of Gx; U ... U Gx, in M, which contains no other fixed points
and is such that U/G is connected. Denote by I, ., the fixed point index of faround x;.

LemmA 3.2. Assume that all comnected components of M which meet U are

n

of removing isolated fixed points

simply connected and of dimension at least three. If ¥ I ., =0 then there is an
i=1

equivariant map f' equivariantly homotopic xel M~U to f which has no fixed points
in U.

Proof. Choose an invariant neighbourhood of Gx; U ... UGx, in U of the
form Gx D, where D is a closed disk in U, and then apply the fixed point theory
argument for Jip, as is described for example in [3, 8.D.1]. W

n

If iz Ip 5 # 0, the fixed point set of f v must be nonempty. However, in
=1

this case, /' may be required to have only one fixed point orbit in U.

Let G be a compact Lie group of positive dimension and let M be a compact
smooth G-manifold. Suppose that A<M is an equivariant closed neighbourhood
retract such that the action of G on M—A is free.

LemMA 3.3, Any equivaviant map f2 (M, A) — (M, A) is equivariantly homotopic
rel 4 to an equivariant map f' which has no fixed points in M— A.

Proof. Assume f to be taut over A in an invariant neighbourhood U. Let
V= 0MxI be an cquivariant collar of aM in M with oM = oM %0, and let
h: V= I'be an invariant function for which hanw = 0 and Ay —p = 1.

Define r: M — M by

r(x, 1) = (x, max(t, h(x, 1))
for xe M—V
and fi: M~ M as ref, .

Clearly, f; is cquivariantly homotopic rel A to f and there is an invariant

neighbourhood W of 4 U OM in U U ¥ such that f, has no fixed points in W— 4.
Denote by C a connected component of (M~A4)/G. Choose a compact in-

for (x,t)eV,

HX) = x
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variant submanifold N of codimension 0 in M., ¢ such that N/G is connected and
M,ccWUN, ONn oM = Q. .

" Consider the bundle q: NxgM — N/G. There is a one-to-one correspondence
between the equivariant maps N — M and the cross-sections of ¢. The maps equi-
variantly homotopic rel 8N correspond to the sections which are homotopic
rel ON/G. Moreover, the fixed point free equivariant maps correspond to the sections
lying in Nx ¢M~—d(N|G), where d: N/G - Nx oM is a section corresponding
to the inclusion N > M.

Denote by s, the section corresponding to f|y. Since

(I % oM, N x o M—d(N]G) ~ N|G

is a bundle pair with the pair of fibres (M, M—x), x € N being n-connected, where
n = dimN/G, it follows that all obstructions for 5, to be deformable rel N/G into
N x ¢ M—d(N|G) vanish. W

Supposé now that G is any compact Lie group and M is a compact smooth
G -manifold.

THEOREM 3.4. For any equivariant map f: M — M there is an equivariunt map [’
equivariantly homotopic to f which has a finite number of fixed point orbits, euch of
a type corresponding to a subgroup with a finite Weyl group. Moreover, if H is an
isotropy subgroup with a finite Weyl group, C denotes a connected component of M /G,
and all connected components of M® meeting My c are simply connected and of
dimension at least three, then ' muy be required to have at imost one fixed point orbit
in Mg, ¢ and to have no fixed points in My, ¢ if, in addition, L(f)c = 0.

Proof. The construction of f’ proceeds by induction on isotropy types on M
beginning at a maximal type.

Suppose g: M — M is an equivariant map equivariantly homotopic to f with
a finite number of fixed point orbits in M none of which lie in the boundary dM
for some isotropy type (H).

If W(H) is not a finite group, then apply 3.3 for the W(H)-equivariant map
g% (MP, MEy - (MF, Mf) to remove all fixed points from My and then from Mg,
by equivariancy. In the case of a finite group W(H) apply first 3.1 to reduce the
fixed point set of g™ in My to a finite set disjoint with the boundary; since the
resulting map is taut over MY, it follows according to 2.1, that all fixed points
in My ¢ may be removed by the application of 3.2 whenever the assumptions on
L(f)c and on the components of M¥ are satisfied. This completes the inductive
step of the construction of f'. i

Theorem A is a simple corollary of 2.6 and 3.4.

Theorem B may be proved in a similar manner, the only difference being the
use of another result from the fixed point theory in proving a lemma analogous
to 3.2. A somewhat different approach to this theorem is presented in the next

section, where, in fact, a more general result about equivariant vector fields is
shown,
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4. Equivariant vector fields. Let M be a compact smooth G-manifold and
let T(M) — M be its tangent bundle. Denote by M = M, u M_ the union of
two copies of M, sewn together by the identity on the boundary. Aftei the choice
of an invariant Riemannian metric on M, the exponential map defines an equi-
variant diffeomorphism T'(#) = T over M, where T is the equivariant tubular neigh-
bourhood of the diagonal d(#M) in M x M. In particular, there is a one-to-one
correspondence between equivariant cross-sections of the bundles T(M) > M
and Ty — M = M., the latter induced by the projection on the first factor. Any
cross-section M — Ty is of the form x+ (x, f(x)), where f: M — M is a map suf-
ficiently close (and hence homotopic) to the inclusion. Thus each equivariant vector
field s: M — T(M) defines an equivariant map s*: M — K approximating the in-
clusion, and conversely each such map defines a vector field. Clearly, s is non-
singular if and only if s* is fixed point free.

An equivariant vector field s: N — T(M) defined on a compact smooth G-sub-
manifold N M, is said to be taut over an invariant closed subspace AN (in an in-
variant neighbourhood) if s*: N — M is taut over 4, and s is said to be G-taut
if s is taut over N U Ny, for each isotropy type (H) on N. Furthermore,
s is interior (resp. exterior) on A if there is an equivariant homotopy F: NxI - M
from s* to the inclusion N C— M satisfying F(4dx e M, (resp. F(4xI)eM_).

Lemma 4.1, Let s: OM — T(M) be a non-singular G-taut equivariant vector
field. There is an extension of s to a G-taut equivariant field t: M — T(M) which
has at most one singular orbit in My, ¢ for each isotropy type (H) and each con-
nected component C of My/G. If s is interior on dM then t may be chosen interior
on M.

. Proof. The construction of  proceeds by induction on isotropy types on M.

Choose an ordering (Hp), (Hy), ..., (H;) for the set of isotropy types on M
such that if H,; is subconjugate to H; then j<i. Define M, = 9 Mg, for i

. . Jjsi ‘

=0,1,...,r and set M_; = @.

Suppose we have an already constructed equivariant vector field #,: M — T(M)
which extends s and has the required properties on M;_;. According to [8, 2.1]
and 2.5, we may assume that #;,y, is taut over M;_; L (M; N 8M) in an invariant
neighbourhood U. In particular, #;y, is taut over M;_, in U, for some U;cU
(since s\ nom IS taut over M., n 0M) and hence is non-singular on Uy —M;_,.
Since s is non-singular, it follows that there is an invariant neighbourhood ¥; =U
of M;n dM in which 1y, is also non-singular. Set ¥V = Uy u Vi,

Suppose (H,) = (H). For C any connected component of My/G, choose
a compact smooth W(H)-submanifold N of codimension O in Mg ¢ such that
N/W(H) is connected and My c=NU VE, 9N~ OM = @. Then ty = tfjoy is
a'non-singular W(H)-equivariant vector field on ON. Since W(H) acts freely on N,
it follows that ¢y is induced by a non-singular cross-section ty/W(H) on ON/W(H)
of the bundle T(N)/W(H) — N/W(H).

If W(H) is not a finite group then ty/W(H) is extendible to a mon-singular
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cross-section on N/W(H) for dimensional reasons. For W(H) a finite group
13/ W (H) may be identified with a vector field on ON/W(H) and hence is extendible
to.a vector. field on N/W(H) which has at most one zero. Thus, in both cases, #y is
extendible to. a W(H)-equivariant vector field #; on N with at most one singular
orbit.

Denote by t,: M — T(M) a G-equivariant vector field extending #5 v om and
all f,. Then ?, extends s and has the required properties on M;. This completes
the inductive step of the construction of z. M

In particular, 4.1 provides examples of equivariant vector fields which have
a finite number of singular orbits. For any such vector field 5 there is a well defined
element Ind(s) e 4/ M) by

Ind)e = (—¥™C Y Indyds™),
xeMx,c
where Ind,(s%) denotes the usual index of s7 at an isolated zero x (if dimC = 0
then we put Ind,(s%) = 1). ‘

Assume that s: M — T(M) is an equivariant vector field with a finite number
"of singular orbits none of which lie on the boundary and is such that both s and
S|om are G-taut. } '

LemMa 4.2. If Ind(s) = O then 's|p is extendible to a nonsingular G-taut equi-
variant vector field on M.

Proof. As in the proof of 4.1, let

@=M_cMyc..cM,=M

be a filtration of M by closed invariant subspaces M; with M;—M;_; = Ma,.

Suppose we have an already constructed G-taut equivaiiant vector field
I: M — T(M) which is non-singular on M;_,, has a finite number of singular orbits
in M—M,_, for some k=0, ...,r, and is such that / and s agrec on oM and
Ind(]) = 0. We will construct a vector field #: M — T'(M) which has the same
properties, and in addition is non-singular on My—M;..; = M.

For each i=k,...,r there are invariant neighbourhoods W; of M; ;v
v (M;n8M) in M; and W; of M; ., ndM in M, 0M with equivariant re-
tractions r;: W;— M, U (M,n0M) and ri: W —> M;_, n0M such that
By, =IFor, By, = ¥, o ri, where I; = Iy, Without loss of generality we may
assume that the inclusion (M,— W,)/G — (My—M,_;)/G induces a bijection on
sets of path components. Dencte V; = r; *(M,_; U W) and define r{': ¥, — M;_,
as (id U rj) o ryy, Then [y, = Iy o/, ie., [; is taut over M;_, in V;, and hence
is non-singular on V;—M; ;.

For C a connected component of M,/G denote by Gxy, ..., Gx, the singular
orbits of I lying in M ¢. Let D=C with My , n W, = @ be a closed disk which
contains in its interior p(xy), ..., p(x,), p: Mg c— C being the projection. Then
Ip = Ifiyy » i induced by the cross-section [p/W(H): D — T(Mpg)/W(H).

If W(H) is not.a finite group, then the zeros of Ip/W(H) may be removed

4y
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by a modification of Ip/W(H) in the interior of D for dimensional reasons. If

W(H) is a finite group, Ip/W(H) may be identified with a vector'field on D, and
since its index is

(=1 |W(H)| ' Tnd () = 0,

it follows that there is a non-singular vector field on D which agrees with Ip/W(H)
on 8D. Hence, in both cases, we obtain a non-singulac W(H)-equivariant vector
field /g on My ¢ which agrees with If' on My, c_p. Denote by t, the G-equivariant
extension on M, of I,_4 and all l;. In particular, #; is non-singular on My and
agrees with [, in a neighbourhood of M,_, U (M, N OM).

Suppose now that we have constructed for some i = 0, ..., r—k—1, an equi-
variant vector field #.,;: M4, — T(M) extending 7, and meeting the following
conditions:

i) #4+y has 4 finite number of singular orbits,
if) Ind(t4)c = O for each connected component C of My ,/G and j<Kk+i,
i) fppy = bty 18 taut over My, q v (M5 N OM), j<i,
iV) t4; agrees with L., in a neighbourhood of My,; N oM in M,;.
To define ;4. .1 My 144 = T(M) choose a compact smooth G -submanifold N

of codimension 0 in My, 41— My ; such that N n 8M is a smooth G-submanifold
of codimension 0 in N and My 41 S Visisy U N. Let dNx[0, 1) be an equi-

variant collar of ON in N for which Rx[0,1)c V44, where R = 6N—0OM.
Choose a smooth invariant function #; 8N — I with 2~%(0) = 8N n 0M and denote

P ={(x,u)edNx[0,1): OSu<h(x)}.

Let F: M. xI—~M be an equivaiiant homotopy from #; to I which is
constant in a neighbourhood of M. ;N 0M.
Now define #,4;.; by

B () = thdrisiea(®)  for x€ Viyiuy =N,
a1, 1) = F(riiea(x, 0, ufh(x))
(%) = I¥iq(x) - for xe N—P.

It is an easy cxercise to check that #4;+, admits the properties i)-iv). Using
the above procedure r—k times, we obtain a vector field t,: M, = M — T(M)
which extends 7, and which is the promised G-taut equivariant vector field ¢. This
completes the inductive step of the construction of a non-singular G-taut equi-
variant vector field on M extending sjap. W )

For any compact smooth G-submanifold N=M define an element Im(N)
€ A(M) by ‘ ‘

for (x,u)eP,

N = cch(N der
(recall that x(N) = L(idy) € 4(N)).
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Again assume that s: M — T(M) is an equivariant vector field with a finite
number of singular orbits. Suppose further that s and sjay are G-taut and sgy is
non-singular.

ProposiTioN 4.3. Ind(s) = x (M) if s is interior on M, and Ind(s) = x(M)—
—xm(0M) if s is exterior on OM.

Proof. If s is interior on M then according to 2.1

Ind(s) = L(s*) = x(M)

by the G-tautness of 5 and 55y (note that Ind, (%) = (- l)di'“clsn.,,, for x € My, c)-

If s is exterior on M we proceed as follows. Consider s as a partial cross-
section of T(#1) — M, defined on M = M. Then, using 4.1, extend it to a G-teut
‘equivariant field §: ¥ — T(¥) having a finite number of singular orbits and which
is such that s. = §5_ is interior on M_.

Let H be an isotropy subgroup on M where W(H) is a finite group and let C
be a connected component of M(H)/GCM(H)/G. Denote € = C, u C.., where
C, =C.

C.nC.=¢ then, using the first part for §, we obtain

Ind(s)c = Ind(§)¢c = 1(f)e = 1 M)c
2(M)c— xm@M)c .
For C,. n C_ # @ apply the fist part for § and s_:
Ind(s)c = Ind ()¢ —Ind(s_)c.
= x(M)g —x (M )c.
= x(M)c—xu(0M)c . B
The referee has pointed out to me that a result similar to 4.3 was proved by

Hauschild in [13].
Now we are ready to give the proof of the main result of this section.

Suppose W is a compact smooth G-manifold such that the boundary oW is
a disjoint union of two G-submanifolds M snd N.

i

I

TuEOREM 4.4. The following conditions are equivalent:
i) there is a non-singular equivariant vector field on W which is interior on M
and exterior on N,
i) xw(M) = xw(N) = 1 (W),
i) gwN) = x(W). ,
_Proof. Let W', V<W. be compact smocth G-submanifolds such that W
=W UV, V=Nxland WnV=~NxL
i) = ii) The equivariant cobordisms (W, M, N) and (W', M, Nx 1) are dif-
feomorphic; hence there is a non-singular equivariant vector field s on W’ which
is interior on M and exterior on Nx 1. Moreovei, since any two non-singular equi-
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vatiant vector fields defined on an invariant submanifold of the boundary which
are both interior or exterior are homotopic through non-singular equivariant vector
felds, it follows that, without loss of generality, we may assume s;p- to be G-taut.
Using 2.4 and 2.5 if necessary, we may assume that » is also G-taut.

Extend s yx; to 2 G-taut equivariant vector field s': ¥ — I(V) which is in-
terior on ¥, has a finite number of singular oibits, and is such that Sloy s G-taut
and non-singular. Then s and »' define a G-taut equivariant vector field ¢+ on W.

According to 4.3,

L) = Tnd (1) = Tnd(s) = 1lV) = 1AM

Similarly from the existence of the vector field —s it can be deduced that
ixwlM) = x(W). ‘

jii) = i) Suppcse's: W' — T(W) is an equivariant vector field that is interior
on W' and has a finite number of singular orbits none of which lie in W', and
that both s and s are G-taut. Extend s)yx, to a G-taut equivariant vector field
s V = T(V) with a finite number of singular orbits such that $jev is non-singular,
G-taut and exterior on 8V. Again s and s* define a vector field t on W, and since

Tnd(#) = Ind(s)+Ind(s")
= xw(W")+xw(V)— 1w (8V)
= g (W) + LN = 20w(N) = 0,
t follows by 4.2 that tpp is extendible to a non-singular equivariant vector field
on W. A .

COROLLARY 4.5. A compact smooth G-manifold M admits a non-singular equi-
variant vector field which is interior (exterior) on M if and cnly if (M) = 0, or equiv-
alently x(M) = yu(0M). B

In particular, Theorem B follows.

It is to be noted that our Theorem 4.4 contains as special cases [10, 4.3] and
[9, 1.1] (any vector field 8M — T(@M)=T(M) is both intericr and exterior on 0M).

Remark. If y(W) = xy(N) then N and W determine. the same element in
the Burnside ring 4(G) [4]. The converse is not true, in general. However, for
a compact smooth G-manifold W that is G-connected, i.e., Wg/G 18 connected
for each H with W(H) a finite group, the group A(W) is canonically isomorphic
to a subgroup of A(G) generated by the orbits G/G,, x € W, and hence 4.4, 4.3
may be interpreted as relations in A(G).
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Remarks on characterization of dimension
of separable metrizable spaces *

by

Nguyen To Nhu (Warszawa)

Abstract. We establish some characterizations of dimension of seﬁarable metrizable spaces.
For instance, it is shown that a separable metrizable space X is of dimension <n if and only if X is
homeomorphic to a subset .S of the (274 1)-dimensional cube I?"*1 such that

limk(e, |[-])e? = 0 for p>n
=0
where

k(e, |I'1) =inf{n: there exists an s-m\at{xl, .oy Xn} for S}.

Dimension is a topological concept, but in many cases it can be characterized
by metrics or pseudometrics, [8], [10], [5]. In [12] Szpilrajn established some con-
nections between the concept of dimension and the classical concept of Hausdorff
measure. Borsuk [3] has constructed, for each ne N, an n-dimensional pseudo-
measure V. of compacta lying in the Hilbert space [,. This concept is a topological
invariant, i.e. if ¥2(X)>0 then V¥ Y¥)>0 for every compactum ¥ homeomorphic
to X, [4]. Several connections between dimension and Borsuk pseudomeasure
are given in [3], [4]. Since the Borsuk pseudomeasure is defined only on compacta
isometrically embedable into /,, we construct in § 1 of this note a pseudomeasure
for the class of all compacta similar to the Borsuk pseudomeasure. This pseudo-
measure is shown to have many of the properties possessed by the Borsuk pseudo-
measure. In § 2 we establish certain characterizations of dimension of separable
metrizable spaces which are related to old results of Szpilrajn [12] and Pontrjagin
and Schinirelman [11].

I wish to express my deep gratitude to H. Torunczyk for valuable discussions.
and suggestions during the preparation of this note.

§ 1. Pseudomeasure and dimension of separable metric spaces. Given a separ-
able metrizable space X. Let My(X) (resp. Pp(X)) denote the set of all totally

* The results of this paper were presented at the International Conference on Topology in.
Pragiie, August 1981. )
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