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On Z-products of Z-spaces
by
Yukinobu Yajima (Yokohama)

Dedicated to
the late Mr. Mitsuo Morishita

Abstract. In the present paper, we prove the following result: Let X be a X-product of para-
compact Z-spaces. If Z has countable tightness, then it is collectionwise normal.

L. Introduction. First, H. H. Corson [3] introduced the concept of Z-products,
which are quite important subspaces of product spaces, and began to study the
normality of them. Subsequently, A. P. Kombarov [6] proved

(A) A Z-product of Cech-complete paracompact spaces is normal if it has
countable tightness.

An affirmative answer of the Corson’s problemin [3], which had been unanswered
for a long time, were given by S. P. Gul'’ko [5] and M. E. Rudin [15] independently.
That is, they proved :

(B) A Z-product of metric spaces is normal.

After that, Kombarov [8] obtained a nice generalization of (A) and (B) as
follows:

(C) A Z-product of paracompact p-spaces is (collectionwise) normal if and
only if it has countable tightness.

So it seems to be natural from the results (A), (B) and (C) to ask

(Q Is a Z-product of paracompact o-spaces normal if it has countable
tightness?

Such a question has not been answered for even other generalized metric spaces
such as stratifiable ones etc. )

On the other hand, K. Nagami [10] introduced and studied the concept of
Z-spaces whose class includes both ones of o-spaces and paracompact p-spaces.
In particular, the class of paracompact X-spaces is a fairly broad one which is
countable productive, and it is well known that this class plays an important role
in. product theory. ‘
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The main purpose of this paper is to give a further generalization of the “if”
part of (C) and affirmative answer to (Q) simultaneously, considering Z-products
of paracompact Z-spaces. Next, we also study the dimension of such X-products.
Consequently, we obtain a generalization of the results of E. Pol [14] for the di-
mension of infinite products.

Since X-products and X-spaces have not been studied together but separately
all this while, £-products have been occasionally called X-spaces without con-
fusion (cf. [16] etc.). However, this is not appropriate in this paper.

Our terminology follows [4] unless otherwise stated. All spaces considered
here are assumed to be Hausdorfl. The set of all natural numbers is denoted by N
and natural numbers are denoted by i, j, k, m and n. Let m be an infinite cardinal.

2. Definitions and theorems. Recall the following definitions which are quite
well known.

Let X = [] X; be an infinite product space and take a point s = {5;} € X.

ied

Consider the dense subspace X (,,) of X consisting of all points x = {x;} e X for
which the set Supp(x) = {Ae 4] x; # 5;} is at most countable (|Supp (x)|<m).
This subspace X (Z,,) of X is called a Z-product [3] (Z,-product [7]) of spaces X,
Aed, and such a point se X is called the base point of X (Z,,).

A space X is called a Z-space [10] if there exists a sequence {#,}:, of locally
finite closed covers of X satisfying the following condition:

If {K,}»=y is a decreasing sequence of non-empty closed sets in X such that

N{F| xe Fe #,} for each ne N and some x € X, then ﬂK # .

A space X is called to have countable tightness (tzghz‘ness not exceeding m)
[1] if for any subset Y of X and any point x of Y there exists an at most countable
set M (a set M with |[M|<m) such that MY and xe M.

Now, we state three theorems as follows:

THEOREM 1. Let X be a X-product of paracompact X-spaces. If X has countable
tightness, then it is collectionwise normal. :

THEOREM 2. Let X, be a X, -product of paracompact X-spaces X,, e A. If Z,,
has tightness not exceeding m, then the following are equivalent.

(@) T1 X, is normal for each I'c A with |I|<m.

el

(®) 2,

THEOREM 3. Let X be a X-product of paracompact X-spaces X;, A€ A, such
that dim(X,, x ... x X, )<n for each Ay, ..., € A. If X has countable tightness,
then dimX<n.

Remark. Theorem 2 is a slight generalization of Theorem 1 and [7, Theo-
rems 1 and 2], It should be noted by [9, Proposition 1] that the condition of X having
countable tightness can be replaced by the following one: Each finite product of
factors of ¥ has countable tightness. Of course, Theorem 1 is not true without this
condition (cf. [6]).

is' (collectionwise) normal.
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-3. Corollaries. We state some corollaries which follow from. Theorems 1 and 3.

. COROLLARY 1. 4 ¥ ~product of pamcompaat ﬁrst-countable P8 spaces is” col:
lectionwise normal.”

This is an 1m1ned1ate consequence of Theorem 1 and Remark.

COROLLARY 2. If { X1} 2eq is @ collection of paracompact Sirst- counrabla 2 -spaces

such that dlm(X,l1 o XXy )<n for each Ay, .. A.keA then dim [ X,<n.
led

Proof. Let X be a X-product of the spaces X;, A € A. By Theorem 3, we have
dim X <n. Since X is C-embedded in [] X; (cf. [16, Theorem 2.2]), dimZ<n implies
64

dim [T X3<n (of. [4, Corollary 7.1.8]).
Aed

- COROLLARY 3. If {X;},04 is a collection of paracompact first-countable X -spaces
such that dim X, = 0 for each Le A, then dim [] X; = 0.
Aed

Proof. Since a finite product of paracompact X-spaces is rectangular (cf:
[13, Proposition 1]), dim (X, X ... x X3,) = 0for each 1,,..., iy& A (cf. [13, Theo-
rem 1]). Hence this is a special case of Corollary 2.

Our Corollaries 2 and 3 are generalizations of the results of E. Pol [14].

4. Proofs of Theorems. First, we prepare some lemmas and notations for the
proof of Theorem 1.

LemMa 1. Let X be a Z-space. Then 'there exists a sequence {F,}22 of locally
finite closed covers of X, satisfying the following conditions:

(1) F,= {Floy ...
(2) Each F(o, ...

o] 0y, ..., 0, € Q} for each ne N.

o) is the sum of all Floy ...

‘xnani-])? an-)_-l € Q.

(3) For each xe X there exists a sequence oy, o, ... € Q, satisfying

o,) contains x,

o« .
@ N Floy ...
n=1
(i) if {K, )21 is a decreasing sequence of mon-empty closed sets in X such that

K, <F(xy ... oz,,) for each ne N, then ﬂ K,, # Q.

Lemma 1 is due to Nagami [10] and the sequence {&,},- is called a spectral
Z-net of X. Moreover, we say that the sequence {F(oz1 - &,)}p=y in (3) of Lemma 1

is a local X-net of x. Note that the intersection n K, is countably compact.
‘n=1
For a space X, let 2 be a collection of subsets of X and M a subset of X By
9|M we denote {D n M| DeD}. We say that 9 is non-discrete at x € X if each
open neighborhood of x intersects at least two members of ‘2. For a continuous

map p of X, p(2) denotes {p(D)| D e2}.
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LEMMA 2. Let X be a space which has countable tightness. Let & be a collection
of subsets of a space Y. Let p be u continuous map of Y into X. If p(9) is non-discrete
at x€ X, then there exists a countable subset M of \)9D such that p(2|M).is non-
discrete at x. ‘

Proof. In the case of xel|) {;(—5)-1 D e9}: Take some Dye P such that
* xep(Dy). Note xe (U{p(D)| De and D # D,})~. So we can choose two
countable sets M, and M, such that MycDy, Mic{DeP| D # D;} and
xep(My) nM). Put M= M,u M,. In the case of x ¢ |J {JTD)] De%}: Since
xe€ (U {p(D)} DeP})", we can choose. a countable set M such that M< )9
and x e m-). In any cases, one can easily verify that the set M is a desired one,
The proof is complete. ‘

- Notation for X (cf. [8]): Let X be a X-product of spaces X;, Ae 4. Let = be

an index set such that for each £ € & R, is a countable subset of A. Then X, = [] X;
AeRy

and p; is the projection of X onto X, for each £ e 5. Moreover; pf': is the projection
of X, onto X, for each ¢, ue& with R ,cR,.

Notation for a nxn matrix ¢ = (0;;); j<u° By & we denote the k x k matrix
()i, y<x for 1<k<n. In particular, &,_, is often abbreviated by £_ and &, de-
notes the empty (9).

Proof of Theorem 1. Let X be a X-product of paracompact X-spaces X;,
Ae A, with a base point s = {5;} € 2. Let @ be a discrete collection of closed sets
in 2. Let B, ={{)}, where & = (&), and take an arbitrary non-empty
countable subset R, of A.

Now, for each ne N we construct a collection %, of open sets in Z and an
index set &, of #xn matrices such that for each ¢ € &, Ry Q(8), E(G), H(), x;
and M, are given, satisfying the following conditions (1)~(7):

(1) Bach %, is locally finite in Z such that for each Ge %, G intersects at most
one member of . '

(2) For each {e&,, R, is a countable subset of 4 such that R, _cR,.

(3) For each ¢e5,, {Flog..oq) o, ...,0,€ R}, keN, is a spectral
Z-net of X,

(4) For each & = (a;); ;<, €5, and 1<i<n, we have

Qs ooy 0 € Q&)  and s0  E(&) = iﬂl(pgf_l)_l(F(an o 0h))
%) {p: {(H(®)] £ B,} is locally finite in X such that H(¢) is open in X,_ and
contains E(£) for each £ e E,. .
(6) Lot p = (0;);,jxn—1 € Ep1, %y € QW) and o« Q(yy—,) for 1<i, j<n.
Then
.prt_zi1(F(‘xi1 ain)) o] (Z\U gu) 9& Q

implies & = (#;7); j<n € E,-
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(7) For each ¢ e B, x, is a point of E(&) and M, ¢ is a countable subset of ()&
such that p, (2|M,) is non-discrete at xg and {Supp(x)l xeMJcR,.

Assume that the above construction has been already performed for no
greater than . Take a e Z,. Set

(&) = {xe X,| p{D) is non-discrete at x}
and
B(&) = {(aij)i.j<n+1] &= (“ij)r,jsnn ity € 2(81-1) and
%ns1,; € Q(E) for 1<i<n and 1<j<n+1} .,

For each n = (0;); jn+1 € E(), We can set

n
E@m) = .Oo(pgg)—l(F(“i'i‘l,l e Ot 1) -
Moreover, we set

5. ={neEQ@I EmMno@) =0} and E_(&)=EENE.(©).

Since X is paracompact (cf. [10, Theorem 3.13]) and {E(m) ne E(H)} is a locally

finite collection of closed sets in X, such that E(n) c.;,,(pg_)’l(H(é)) for each # e Z (§),
there exists a locally finite collection % (&) of open sets in X such that

() G = p7'pd @ cpi (H(©®) for each Ge ¥ (&),
(i) G intersects at most one member of @ for each Ge % (38
(ifi) A% (&) covers U {EMm)| ne 2,5}

Moreover, there exists a locally finite collection {H({z)| neZ_(£)} of open sets

in X, such that E(m)=H(n)=(p}) " (H(¢)) for each ne H_(¢). Here, running
e &, we set

Gor1 =U{gOI $eE)} and 5, =U{E_() ¢e5,}.

Then it follows from the inductive assumption (5) that %, , and {p; "(H))| n€ Z, 4}
is locally finite in X. For each neZ,,, with 5. =& we can choose some
x, € E(n) n ®(£). Since X has countable tightness, it follows from Lemma 2 that
there exists a countable subset M, of U2 such that p(2[M,) is non-discrete at x,.
Set R, = U {Supp(x)| x e M,} U R,. Since each X, is a Z-space (cf. [10, Theo-
rem 3.13]), it follows from Lemma 1 that there exists a spectral X-net

{Flog . o)] oy, .., € QUp)}, ke N,

of X, for each 5 € 5, ;. This construction for #+1 satisfies all the conditions (1)~(7).
Here, we check only (6). Pick any ¢ € E, and e E(£). By the above (i) and (iii),
n e E.(&) implies ’

P Em)<pi (U pd9@) = USO Uy -

3 — Fundamenta Mathematicae CXXIII, 1
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Hence, if p;y (EM)N\U%us1 # &, then neF_(§)<E,.,. For the first step of
induction, we can construct ¢,, E; and others from R; and Q(&,), in the same
way as the above. Thus, we have inductively accomplished the desired construction.

Set ¢ = 6 %,. Now, assume % is not a cover of Z. Pick a point y e I\U%.
By (3) and (6n), 1we can inductively choose a sequence («;;); j=1,2, ... Such that for
each neN & = (o) j<n €5, and {F(a, ... o) ke N} is a local Z-net of
Pen-1() In Xyn-s. Since &2 = &1 for each n e N, by (2), we have mlf‘f'-"CR:'-‘- for
each n, k€ N with n<k. For each m>n, we set L, = {pF0xm), pgf (Xgm1) o}
Then {L,,}7., is a decreasing sequence of non-empty closed sets in Xy . Moreover,
by (4), we have L,,<F(tt,y ... o,,) for each m>=n. It follows from the choice of

F(ayy ... &, that K, =L, is a non-empty compact subset of X,». Since
m=n .
pEZ(K,,H)cK,,, we can choose some z, € K, such that pg:(z,,ﬂ) = z, for each

e}
neN. Set R, = ) Ry Then we can pick the point x,, = {x,;} ¢ X defined by
n=1

Pi(xe) = z, for each ne N and x, = s, for each 1e ANR,,. By (7), it is easily

seen, in the same way as the proof of [6, Theorem 1], that the collection 2 is non-

discrete at x,. This is a contradiction. Hence, by (1), ¢ is a o-locally finite open

cover of X such that for each Ge % G intersects at most one member of 9. This

implies that ¥ is collectionwise normal. The proof of Theorem 1 is complete.
Under the assumption (a) of Theorem 2, it follows from [11, Theorem 2.7]

that [] X, is a paracompact Z-space for each I'cA with [I'|<<w. So the proof
Ael

of (a) — (b) in Theorem 2 is quite parallel to that of Theorem 1. The detail is left
to the reader. The converse of it is clear.
Next, we show Theorem 3. The proof of it is essentially due to the idea in [14],

Lemma 3. Let X be a subparacompact X-space. Then there exists a sequence
{Futnet of o-discrete closed covers of X, satisfying the same conditions as (1)~(3)
of Lemma 1.

Proof. The space X has a Z-net {#,};2 such that each &7 is finitely multi-
plicative (cf. [10]). Since X is subparacompact and each %7 is locally finite in X,
for each n & N there exists a o-discrete closed cover &, of X such that each member
of it intersects at most finitely many members of £ . Here, we put F,
= {EnF| Ec&,and Fe #,} for each ne N. Then each &/, is a o-discrete closed
cover of X. So we can obtain a desired sequence {#,}%, in the same way as in the
proof of [10, Lemma 1.4]. ~

The following lemma is obtained by modifying the proof of Theorem 1, where
Lemma 3 is used instead of Lemma 1.

Lemva 4. Let ¥ be a X-product of paracompact Z-spaces X,, Ae A, such that
it has countable tightness. If (41, By), ..., (4, B,) are pairs of disjoint closed sets
in Z, then there exists a o-discrete cover 4 of X, satisfying for euch Ge %
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1) ther_elexists a countable subset R of A such that Pr(G) is functionally open
in Xg and pr "pp(G) = G, where Xy = 11 X, and py is the projection of ¥ onto Xy,
AeR :
() G is disjoint from A; or B for 1<j<k.

Let {X;}1cq be a collection of spaces. Let V; be a functionally open in X,

for each Ae A. We consider the quotient space of @ X, obtained by collapsing
Aed
/163 (X3\V,) to one point. This space and its collapsed point are denoted by
=)
B(X,, V;, 4) and b(X,, V,, A), respectively.
Lemwma 5. Let A be an index set which is digjoint union of Ap, meN. Let {X,};e4
be a collection of paracompact X-spaces such that Jor each 2 € A a functionally open

o0
set Vy of X, Is given. Let V = T[] B,\{{b,}}, where B,, = B(X,,V,, A,y and b,
m=1

= b(X,, V,, A,) for each me N. If dim(X,, % ... x X )<n for each Ay, ..., e,
then dimV<n.
k
Proof. First, we show dim [T B,<n for each ke N. For each e A we can
i=1

choose a sequence {F{}i2 of closed sets in X, such that ¥, = {J F}and FicFi*t

Ji=1
for each je N. Here we set tor each je N

k k
& = {tHlE*ﬁ (a5 s ) €[] 4; and B, = F}, or {b} for 1<i<k}.
= i=1

Then & = @1«9’] is a ¢-discrete closed cover of ﬁ B;. Since each Ee & is homeo-
morphic toja closed set of f[ X, for some (4, i=t Aye ﬁ A;, we have dimE<n.
On the otber hand, it is se;;llby [10, Theorem 3.2] that ;Z;h B, is a paracompact
z -spa;:e. Hence 1f1 B; is normal. By [4, Theorems 7.2.1 and 7.2.3], we have
dim 11;11 B;gn. N'e;diu, "ﬂl B, is the limit of the inverse system {Ilj B, p%}, where

k i 0
Pl is the projection of I1 B;onto [] B, forkzj. Moreover, [] B, is paracompact.
i=1 i=1 m=1 0

Since each p¥ is an.'open map, it follows from [11, Theorem 1.7] that dim ] B,<n
holds. Since cach B,\{5,,} is a functionally open set in B,,, Vis a functio::llly open
in m]iB,,,. By [4, Problem 7.4.12], we have dim Vs_dimmﬁ1 B, <n. The proof is
complete,

Using’ Lemmas 4 and 5, we can show Theorem 3 in the same way as in the

proof in [14, Added in proof]. The detail is left to the reader.

5. Examples. In connection with Theorem 1, H. Ohta has pointed out the
following two examples:
3
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ExaMPLE 1. There exists a collectionwise normal Z-product of M -spaces
which has no countable tightness.

Let A be an uncountable set containing 0. Let A’ = AN\{0} and % = |4|. For
each A€ A', let X, be a discrete two-point space {0;, 1,}. Let X, be the space ¥
described in the proof of [12, Theorem 1]. It is easily seen that X, is a M 1-Space.
Let X be a X-product of X, Le 4, and 2’ a E-product of X,, Ae A’ Then X’ is
a collectionwise normal space with the weight % and ¥ = X, x 2’. Hence it follows
from Claim 2 of [12, p. 342] that ¥ is collectionwise normal. On the other hand,
X, has tightness » (>w). So X has no countable tightness.

EXAMPLE 2. There exists a non-normal Z-product of M,-spaces.

Let 4, A" and X, /. € A’, be the same ones as the above. Let X, be the M 1-space
described in [2, Example 2]. Again, let  and 3’ be the same ones as the above.
Then [0, w,) can be embedded as a closed subspace of X', where [0, w;) denotes
the space of all countable ordinals with the ordered topology. Moreaver, it follows
from [2, Example 2] that X, x [0, w,) is non-normal. Since X = XoxZ' contains
a non-normal closed subspace, it is non-normal,

Unfortunately, by Example 1, the converse implication of Theorem 1 is not
true. Moreover, by Example 2, one cannot obtain a positive answer to the question
(Q) in the introduction without the assumption of the “if” part.of it. Finally, the
author thanks H. Ohta for his kind information of these useful examples.

Added in proof. Recently, the author has obtained the following related result: Let 2 be
a Z-product of paracompact Z-spaces. If 5 is normal, then it is collectionwise normal.
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