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Almost-n-fully normal spaces
by

Klaas Pieter Hart (Amsterdam)

'

Abstract. We construct for each finite # a space which is almost-z- but not almost-n+1-fully
normal, thus answering a question of Mansfield. We also construct a space which is almost-n-fully
normal for all 7 but not almost-finitely-fully normal, We summarize the known results in this area
and give an example of a perfect map which does not preserve »-full normality.

0. Introduction. In this paper we study the notions of x-full normality and
almost-»-full normality introduced by Mansfield [Ma]. In Section 2 we present
a characterization of almost-n-full normality for finite n, which will be usefull in
Section 3 where we present our main results. Namely for each ne w, n=2 we con-
struct a topology 7, on the reals which is almost-»#- but not almost-n-+ 1-fully normal
and we construct a topology 7., on R which is almost-n-fully normal for all n, but
not almost-finitely-fully normal.

In Section 4 we summarize the known implications and non-implications between
the various full normality concepts. We conclude with an example showing that
%-full normality is not preserved by perfect mappings. The technique of adding limit
points to sets which should have them, used in Section 3, was invented by Osta-
szewski [Os] and used, modified and exploited by many others, see e.g. [JuKuRu],
[vD] and [Pr]. The trick, which is used to get nice normal open covers, is essentially
due to Charamboulos [Ch].

1. Definitions and notation. All standard topological notions can be found
in [En]. We start with the definitions of the covering properties which concern us in
this paper.

1.0. DERINITION. Let % and %~ be covers of a set X and %>2 a cardinal number.
We say that ¥ is an almost-x-star refinement of U if ¥ refines % and forall xe X
if 4=St(x,¥) has cardinality < then A< U for some Ue%. ¥ is said to be
a %-star refinement of 9 if whenever ¥"'<7 has cardinality <x and N¥"' # &
then ¥~ U for some Ue%. If we replace “has cardinality <»” by “is finite”
then we get the definitions of (almost-) finite- and finite-star refinements. M

1.1. DermmioN. Let X be a topological space and %32 a cardinal number.

a. X is called (almost-)u-fully normal iff every open cover of X has an open
(almost-)x-star refinement.
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b. X is called (almost-Yfinitely-fully normal iff every open cover has an open
(almost-)finite-star refinement. B
The notions of (almost-)x-full normality and finite-full normality are due to

Mansfield [Ma].
We introduced almost-finite-full normality to complete the analogy between
the almost- and the not-almost case. In Section 4 we will summarize the known

relations between these properties.
In the construction of our examples we need some notation which we intro-

duce now:

1.2. Let X be a set ahd » a cardinal. [X]¥* denotes the set {A= X" |4|<x},
similar for [XT¢ and [X]™*.

1.3, If Xisasetandn € wthen 4"X = {{x, ..., xy: x € X}isthe diagonal of X",
As usual AX = A%X.

1.4.Tf % and ¥~ are covers of a'set X then #AY = {UnV: Ue ¥, Ve ¥},
the “largest” common refinement of % and ¥ i

1.5. If {X, ©) is a topological space then we let ¢ also denote the topology of
X2, X3, etc.. For instance A° may denote closure in X, X2%, X090 etc.

1.6. R denotes the set of real numbers, d denotes the usual metric on each of
R, R, R®, ... etc. and A% denotes closure w.r.t. the d-topology.

1.7. To abbreviate some formulas we let (x+¢) be shorthand for the interval
(x—e, x+¢) when x,se R, e>0.

L8, If X is a set and R X'x X, then R[x] = {ye X: <{x,»)> € R}. Note that
if R is open in Xx X (w.r.t some topology) then R[x] is open in X.

1.9. A topological space X is called divisible iff for every open U=2A4X there
is an open V24X such that Ve VeU.

It is kknown [Coh] that almost-2-fully normal = divisible — collectionwise
normal.

2. A characterization of almest-n- and almest-finite-full normality. In this
section we characterize almost-n- and almost-finite-full normality using normal
open covers.

2.0. TaeoreM. Let X be a topological space and nz2. Then the following are
equivalent:
i) X is almost-n-fully normal,
ii) For every open cover 9 of X there exists a normal open cover 2 of X such that:

_ VOoe2 VFe[O]¥" AUe%: FSU.
iii) For every open U2A4"X there exists a normal apeh cover 9 of X such that:
' ‘ U{o: 0egjcu.
Proof. ii) «»iii) is easy: Given U24"X open, let ¥" = {VeX: V is open
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and V"< U}. If 2 is associated to ¥~ as in ii), then it is also associated to U as re-
quired by iii).

Given % let V = U {U™: Ue%}.If 2is associated to ¥ as in iii), then it is also
associated to % as required by iii).

if) - 1). Let % be an open cover of X and let 2 be as in ii). Let %" be a star
refinement of 2. Then, since for all x St(x, # A%}<=St(x, #)<=some O¢€ 2,
it follows that % A% is an almost-n-star refinement of %.

i) — ii). Let % be an open cover of X and let ¥~ be an almost-n-star refinement
of %. Let 0 = |J {V?: Ve ¥}. Since X is divisible, we can find a sequence {Op>,e0
of symmetric open sets containing 4X such that Op = O and Opyy0 0py1 S0,
for all pe w. Let 0, = {O,[x]: xe X}, It is easy to show that St(x, 0, 1) E0,[X]
for all x and all p, so that @, is a normal open cover of X. Furthermore Ox]
<St(x, ¥ for all x, so it easily follows that 0, is as required. B

Similar to i) <> ii) in Theorem 2.0 we can prove:

2.1. THEOREM. Let X be a topological space. Then X is almost-finitely-fully normal
iff for every open cover U of X there exists a normal open cover 2 of X such that:

VOe 2 VFe[O]*® AUe%: F<U. A

These characterizations are not particularly striking but they show nicely how
almost-n-full normality relates to the product structure of X”. Moreover, the examples
which will be constructed in § 3 have easy-to-handle normal open covers, which is
how we came to the above characterizations in the first place. )

3. The examples. In this section we will construct for each ne N with n>2
a topology 7, on R and a topology 7, such that

i) <R, t,> is almost-n-fully normal but not almost-n+1-fully normal and

ii) (R, 7. is almost-n-fully normal for all » but not almost-finitely-fully normal.

3.0. Exampres. Fix ne N, n>2. Let {B,},, be the collection of all open
intervals of R with rational endpoints.

For every ke w choose

gk<..<qf inB,nQ
such that
43—4’6<,~C—J1r—1
and
kol {gt, o, gft o {gh, o) gy =9
we let

Ce = {45, > dn} -
Let {(A4,: «&2”) enumerate

{de[R"°: AnA"R=@ and |2’ ~ 4"R| = 2°}.
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We will choose, for each « € 2°,

A x,€R

such that

and (5L, .. Xived, (Pew),

XY = gy %> (P> @) (Warnt, d) .

Furthermore we will define neighborhood systems

(xf,,‘,,

Btk (xeR)
such that
) VxeRVkew: C.&By(x)
and
V) Youe2®: Uk (x5 s Xa Y S Bi(x,) .
P>

We then let ¢ = 1, be the fopology generated by these neighborhood systems. Con-
dition (1) will be used to show that % = {By(x)}4er does not have an almost-n+ 1-star
refinement and (2) shows that A N 4"R # & for all «, which will be used to show
that (R,,) is almost-n-fully normal.

We now begin with the construction: Assume that «e2” and that x,e R,
(x,, s s Xp,p0 € Ag and {Byxp}i., are found for pe w and feo such that 69
and (2) are satisfied and such that furthermore:

1
3) Byxps <xpi m) and By (xp) SBi(xp) ,

(4)  By(xp) is closed in the natural topology of R.

Let x, be an elemeﬁt of the derived set of {xe R: {x

s wis Xy € A%} such that x, ¢ Q
(hence x,¢ U Cy), and
keo

fearpennl<isn - x, # XgA Xy ;éxf,p.
The fact that x, is in the derived set allows us to go through the picking of the
(x,,,,,, wes Xg.p0 € A, without having to consider (trivial) cases.
Let pe w and assume that we have found 1,>0, £>0, [,ew and

(Xags s Xa > €A

for gep such that
(g 0<Ixlg—xl<n,, 1<ign,
(i) if k=1, and x}, % xJ, then

1 ; 1
Cyn (a,qil )=ﬁkan(x;,qi;—_’_—l)=Q,

(iil)y (ko 8 S (k)
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(iv)q (x;,qieq) [a} kUl Ckg{x:t,q}:
), if k=1, and C, hiU (k) # O then Cy A (x,te) = @
=1

Now pick 1,>0 as follows:
ifp=0,let g,=1,

U G=0.

1
if p>0, et <oy, Sy and make sure that (xetn) 0 M

1t follows that for all ke w we have
Ck N U (xa,p—1+8p—-1) = chk n (xz np) =

Choose (x,l,,,, vos Xgp» € 4, such that 0<[x,,,,—x¢| <#,. Let

. , j . :
8, = min{|x},—x: 1<i<n} U {Ixk,—x] |: I1<j<naxl, # xl,}.

_ 1 s, . . 1
Pick I,€ w such that i S;, then (ii), holds because if C,n ( "’l ¥ 1) # 0

then Ck_(x”
and [,.

. 1 i
2 1) which is disjoint from (x’ -l-——) by choice of 4§,

I, S+

1 .
Furthermore we have that U C, is finite so we can pick sqsl———_i_l such that (iv),
ke i

holds ((iii), is easy). The chmce of 8,, 1, and g, also guarantees that (v), holds.
Now we turn to the construction of {B,(*)}reo- If xk, = x, for some Bea
then we already have {B,(x} )}ieo, for the other xh, we let B(xi) = {xt )
(k € ). Then (1), (3) and (4) hold for these Bk(xd,l,)
Let k(p,i) = min{k € : B(x, )= (x,£n,)}. By (3) k(p,i) is well-defined.
Let

-Bk(xa) = {xu} v U UlBk(p,L)(xa.p)
kepew i=
We verify (1), (2), (3) and (4):

(2) holds because x% , € Bygufxk ).
(3) follows from the fact that

1
Bk(p,i)(xi,p) S(Xk7,) S (‘ =+ "I‘i)

(4) holds because for all e>0 (x,+¢) contains all but finitely many of the
Bigon(op)-

Next we turn to (1): Assume C, < By(x,) for some k € o, since x, ¢ C, we have
that

G U U Biganliap) -
pew i=1
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By the choice of the e, and 1, we have that

" n
P#EI-> Gl ,te) =8vCnU(x,te) =98.
i=1 i=1

&P —
Hence for some p € @ we have
n
Ce U (rpptey) -
i=1

By (iv), we have Cyef{xl Vo, if kel,, but |{x.,, .., xi }I<n<n+l =G,
so we must have k>/,. By (ii), we bave that Ckf;(xi,,,i ¢,) for some 4, if k=1, so
that C,S By, (0% )SBo(xl,) which contradicts the inductive assumption.
Thus (1) holds.
For all other points x e R we let By(x) = {x}. Then (R, t,) has the desired
properties:
3.0.0. <R, 1,) is almost-n-fully normal.
Proof. Let O be a 7,-open set containing A"R. Let 4 = R™\O. Then
|4 N A"R| < .
For assume 4% n A" R is uncountable and hence of cardinality 2°. Then, since R"
is hereditarily separable, there is an o € 2° such that
A,c4 and Ad= 4.
But then
Xy s Xy EACA = A,

a contradiction. So B = {xeR: {x,..; x> € A%} is countable. Hence, since each

By(x) is ©,~open and d-closed, for each x € B we can find a clopen neighborhood ¥,

such that ¥7=0O. Furthermore there is a subcollection {B}rerS{Bi}reo Such

that R\B= kUHBk and By=O (ke H). Then {B,},cy U {V,}xep is a countable cover
&

of (R, 7., which consists of cozero sets and which is therefore normal [En, Ex. 5.1.J].
By construction | {Bi: ke H} u U {V}: xeB}=0. So (R, 1,> is almost-n-fully
normal by Theorem 2.0. M

3.0.1. <R, 1,) is not almost-n+1-fully normal.

Proof. Let % = {By(x)}«er- Let @ be a normal open cover of (R, z,». Let 0,
be a star-refinement of @. By 3.0.0 we can find a HSw and a countable B< R such
that R\B= ) By (hence H # @) and U Bis U {0": 0€0,}, in particular,

keH keH

U{BixB,: keH}={ {0x0: 0e0,}.

It follows that St(x, {B.}i.m)SSt(x, 0;) for all xe R\B. Now let ke H. Then
C.C B, hence C.=St(gt, 0,) and so C,< O for some O € 0. But by our construction
C,.& By(x) for all x & R. So by Theorem 2.0 (R, 1, is not almost-n -+ 1-fully normal. B

The above construction can be modified to yield a topology 7, on R which is
almost-n-fully normal for all #>2 but not almost-finitely-fully normal. We will
not repeat the entire construction but we will indicate the modifications.
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3.1. ExampLE. A topology T, on R which is almost-n-fully normal for all n
but not almost-finitely-fully normal. Again we let {B,};., be the collection of all
open intervals with rational endpoints.

We choose

g<..<gfeB,nQ

1
such that |gk—gk <IZI—~1 and we let

Co={dts..q}} (keow).

We assume that C, n Cy = @ if k # . This time {A4,: « e2®) enumerates the col-
Jection of all sets 4 such that for some n=2 A4 is a countable subset of R" such that

4%~ 4" R] = 2°.

The construction in 3.0 can be repeated with one exception: when constructing
(xal, o ves Xap» € A, we must take n into account. The number n is determined
by A, and to make sure that C, & By(x,) for all k, we must choose 7, in such a way
that (x,310) N U C, = @. Then certainly C,& By(x,) for k<n. For k>n, the pre-

ksn
vious construction suffices (the proof that C,#By(x,) used the fact that
[{xat ps s Xa s} <|Cy| for all p). That <R, 7,,» is almost-n-fully normal for all » is
established as in 3.0.0, and the fact that it is not almost-finitely-fully normal is proved
as in 3.0.1, using Theorem 2.1 and the fact that we can assume that H is infinite. B

4. A summary of known implications and examples. In this section we sum-
marize the known implications among the properties introduced in Section 1 and
the known counterexamples in this area.

4.1. [Ma] Let %>A>2 be cardinals. Then

»x-fully normal — A-fully normal,
almost-»-fully normal — almost-A-fully normal and
A-fully normal — almost-2A-fully normal.

4.2. [Ma] Let k e w, k2. Then k-fully normal — k>-fully normal (a k-star
refinement of a k-star refinoment is a k*-star refinement). Hence 2-full normality
is the same as k-full normality for all ke w, k>2.

These are the only implications known to be valid.

We now mention some counterexamples.

4.3, [Ma] Let x> w. Then the ordinal space ™ is » -fully normal, but not almost~
»*-fully normal.

4.4, [Cor] An uncountable Z-product of the integers is almost- wo-fully normal,
but not 2-fully normal.

4.5, [Ju, Ex. 2.3.2] The product 4(w,)x ; is almost-w,-fully normal but not
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2-fully normal. Here A(x) denotes the one-point compactification of the discrete
space of cardinality x.

The proof used by Funilla can be adapted to show that 4 (") x %™ is almost-
»-fully normal but not 2-fully normal.

4.6. [Ha] Mary Ellen Rudin’s Dowker space is finitely-fully normal but not
almost-w,-fully normal.

4.7. Example(s) 3.0 show(s) that the analogue of 4.2 is not true in the almost
case.

4.8. Example 3.1 is almost-k-fully normal for all k¥ but not almost-finitely-
fully normal.

After filling in the non-implications resulting from the above examples, we
see that the following two questions remain unsettled:

4.9. QUESTIONS. a) Must a 2-fully normal space be finitely-fully normal?

b) Must a 2-fully normal space be almost-finitely-fully normal?

A possible approach to a negative answer would be to modify Example 3.1 to
make it orthocompact since in that case it would become 2-fully normal by
[Ju, Cor. 2.2.11]. However it seems unlikely that this can be done, since 3.1 is very
similar to 3.0 which must yield a non-orthocompact space by 4.1, 4.2 and Junnila’s
result.

Finally we make some remarks concerning closed continuous images.

4.10. EXAMPLE. A(x*)x %™ can be the perfect image of a »-fully normal space.
Consequently the perfect image of a x-fully normal space need not even be 2-fully
normal.

a) The easier (but weaker) result that 4 (x ™) x »™ is the closed continuous image
of a x-fully normal space can be obtained by adapting [Ju; 2.3.1 and 2.3.2]. If we
collapse the set of limit ordinals in %™ to a point, we obtain 4 (x™). Thus we obtain
2 natural map of x* xx* onto A(x¥)xxt. As in [Ju; 2.3.1] st xx*
normal. '

As in [Ju; 2.3.2] (with proper modifications) the map is closed.

b) To get a perfect preimage we adapt Burke’s construction [Bu] of a perfect
map which does not preserve orthocompactness.

Let X, be the Alexandroff-double [En; 3.1.G] of the Cantor cube 2* Let
Y, = X,xx". The underlying set of ¥, is Y, u ¥; where ¥, = 2*x{i}xx*.

A basic nbd of {x,0, «) is of the form

Ux, o, ,0) = Ox{0}x (B, a] U ON{x} x {1} % (8, d] ,
where f<o and O3 x open in 2%
A basic nbd of <{x,1,a) is of the form {x}x{1}x (B, «]

(1) Y, is x-fully normal. Let @ be an open cover of Y,,. Fix x € 2%, and for each
aex pick f,ea and U,3 x open such that

Ulx, a, B,

is s-fully

U)ssome Oe0.
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Using the pressing-down lemma and the fact that 2* has weight % we can find S, € x
and U, »x open such that

a>Be = Ux, o, By, U)SsomeO el .
Since 2% is compact, we can find xy, ..., X, €2* such that 2" = U, u... v U,,.
Let Vi, ..., V,,&2" be disjoint and clopen such that
=V, v..u¥, and VU, for each i.

For 1<i<m let
vy = {Vix {0} x (B, a] U V\{x{, ...

where f = max(fy,, ..., Py,

Then #°; %-star refines itself and for all Ve ¥ V<O for some O e 0. For
1igm let ¥, be a x-star refinement in {x;} x {1} x(B, ™) of O {x;}x{1}
x (B, x™).

Finally Z; = 2"

xabx {1} x (B, al: feacn’),

10, 1} %[0, fl is compa.ct and clopen in Y,, so we can find
a star refinement % of 0 Z,. Then # v U LY U W, is a %-star refinement

i=1

of 0.

(2) Xf we collapse 2* x {0} to a point in X, then we obtain 4(2¥). Thus we obtain
a continuous map of ¥;, onto 4(2*) x »™. This map is closed since its restriction to
the closed set Yy is closed [En; 2.4.13]. The map has compact fibers since 2* is com-
pact, hence it is perfect.

Since A(x*)xx* is a closed subspace of A(2*)xx*, it is the perfect image
of a (x-fully normal) closed subspace of 7. W

We conclude with the following question:

4.11. QuesTION. Is the closed continuous or perfect image of an almost-x-fully
normal space almost-A-fully normal for some A< (preferably A = 5 of course)?
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Almost maximal ideals
by

P. T. Johnstone (Cambridge)

Abstract, An ideal in a distributive lattice is said to be almost maximal if it is prime and satisfies
a first-order closure condition which, in the presence of the axiom of choice, is equivalent to saying
that it is an intersection of maximal ideals. Assuming the axiom of choice, we show that the almost
maximal ideals correspond to points of the soberification of the maximal ideal space of the lattice;
in the absence of the axiom of choice, we investigate the strength of the “almost maximal ideal
theorem” that every nontrivial distributive lattice has an almost maximal ideal. Our two main re-
sults are that this assertion implies the Tychonoff theorem for products of compact sober spaces,
and that it does not imply the axiom of choice.

Introduction. It is well known that J. L. Kelley [17] proved that the Tychonoff
product theorem is logically equivalent (in any reasonable set theory) to the axiom
of choice, However, elsewhere in topology and analysis it is far commoner to en-
counter theorems which are equivalent not to the full axiom of choice but to the
prime ideal theorem, i.e., the assertion that every nontrivial Boolean algebra (or
equivalently, every nontrivial distributive lattice) has a prime ideal. Among examples
of such theorems, let us cite:

(i) The Stone representation theorem for Boolean algebras (or for distributive
lattices).

(ii) The Stone-Cech compactification theorem.

(iif) Tychonoff’s theorem for products of compact Hausdorfl spaces.

(iv) Alaoglw’s theorem on compactness of the unit ball of the dual of a Banach
space.

(v) The theorem that the hyperspace of a compact Hausdorff space (i.e., the
space of closed subsets with the Vietoris topology) is compact.

There is of course a family resemblance between these theorems: each of them
asserts the compactness of some space which may be constructed without any use
of choice, but which will not have its expected properties unless it is compact. What
is more striking is that in each case the space in question occurs naturally as the space
of points of a certain locale (or “pointless space”; see [15]), and that the compactness
of this locale can be proved constructively. (For the appropriate locale-theoretic
construction, see [14] in case (i), [2] or [12]'in cases (i) and (iif), [21] in case (iv)
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