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Relative expressiveness of the edge/adjacency language for graph
theory

by
T. A. McKee (Dayton, Ohio)

. Abstract. A strengthening of Whitney’s edge-isomorphism theorem characterizes those graph-~
theoretic properties which can be expressed in a formal language based on edges and edge adjacency.
The connection with line graphs is also considered.

The similarity (or analogy or duality) between vertices and edges has been fre-
quently mentioned in the graph-theoretic literature, often in connection with edge-
isomorphism or line graphs. The lack of similarity is also evident: edge adjacency
is clearly a more awkward notion than vertex adjacency. As a contribution to the
foundations of graph theory, we take a “linguistic” approach and determine how much
of graph theory can be done in languages based on edges and their adjacency, without
mentioning vertices. This study is significantly different from, yet closely related to
Whitney’s “everything except K and K, ;” result [6, Thm. 1] on edge-isomorphism.
It is also related to the popular line graph approach.

Because of our interest in languages and their relative expressiveness, we must
pay attention to several logical matters. For our limited purposes, however, we
presuppose no particular logical background beyond that reasonably expected of
a mathematician. In fact, we shall remain intentionally vauge about exactly what
a language is until we need to be specific to prove our theorem. We consider only
finite graphs without loops or multiple edges, conforming to the terminology and
notation of [2]. As a convenience, we consider only connected graphs. (This allows
our results to be stated in terms of K; and K , rather than graphs all of whose com-
ponents are either K; or Ky 3.) The excellent survey of line graphs by Hemminger
and Beineke [4] is our primary reference.

Suppose &, is any language based on vertices and vertex adjacency, with &
an cqually sophisticated language, except built from edges and edge adjacency instead.
It is easy to see that anything expressible in £, (or, for that matter, in any simple
sort of graph-theoretic language) can be mechanically translated into %, by replacing
all (mentions of) edges by pairs of adjacent vertices. Our question involves going
in the other direction, from &, to %, and is partially motivated by various appli-
cations where edges are more naturally interpreted than vertices.

It is easy to sec that certain .2, notions cannot be expressed at all in & . A very
simple example is isomorphism with K; this is because every description of K, in
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terms of edges (for instance, the %, -expressible sentence o, stating “there are exactly
three edges, every two of which are adjacent™) describes K; 5 just as well, since X,
and K; , are edge-isomorphic. As another example, two-regularity cannot be ex-
pressed as a sentence ¢ within % since if it could, then the conjunction oo & o
would express being isomorphic with K. The same argument can be used to prove
the following lemma. We say that a property differentiates between K3 and K 3 if
and only if it is true of exactly one of them. )

LEMMA. Every &, property which differentiates between Ky and K5 cannot
be expressed within %;.

Thus properties such as Eulerian, regular, complete, nonseparable, and bipartite
are automatically inexpressible within an edge/adjacency language. Properties such
as three-regular and diameter <2 are left open, and the reader is encouraged to try
expressing them using just edges and edge adjacency. As an example of a property
which easily is so expressible, consider “every 4-cycle has a diagonal.”

To be specific, our language £, will consist of lower-case variables (to be inter-
preted as vertices), binary relation symbols for equality (=) and adjacency (-),
propositional connectives for negation (1), conjunction (&), disjunction (= “or”)
(v) and implication (—), and the universal (V) and existential (3) quantifiers. For-
mulas are built in the natural mannér using parantheses. An %, sentence is any
formula in which all variables are quantified, and so sentences correspond to graph-
theoretic properties which are expressible within the language. The language %
is defined in the same way except that upper-case variables are used and are to be
interpreted as edges. )

As we have defined them so far, &, and %, are what are called “first-order
languages” and so are inherently incapable of expressing many common graph-
theoretic properties such as connected, regular, or Eulerian. (Much of the problem
with first-order languages for graph theory is shown in [3]; [1] is an excellent general
survey.) To remedy this, our languages should be strengthened ; for instance, allowing
conjunction and disjunction over infinite sets of formulas will produce a very ex-
pressive language for which our theorem (below) still holds. Other possible streng-
thenings are described in [1]. In any case, the theorem can be interpreted as expressing
the relative expressibility of %, and %, with respect to a strengthening of our basic
first-order formulation.

THEOREM. 4 sentence of &, can be equivalently expressed within %, if and only
if it does not differentiate between Ky and K ;.

Proof. The easy direction was observed as the lemma. For the hard direction,
suppose ¢ is an %, sentence which does not differentiate K, from K, ;. To translate ¢
into .#; we need to be able to specify vertices in terms of edges. (Note that even
a vertex of degree three cannot be specified as three mutually adjacent edges, since
a triangle will fit that description as well.) Also, we somehow have to use the assump-
tion that o is “nondifferentiating.”

To begin, each universal quantifier in ¢ can be replaced with an existential
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quantifier and negations, since Yoo is equivalé%t to 713v T1¢ for each formula ¢
of #,. Let A(X, Y, Z) abbreviate the %, formula asserting that edges X, Y and Z
are pairwise adjacent. Let T'(X, Y, Z) similarly abbreviate that every edge is adjacent
to an even number of the edges X, ¥ and Z. For the time being we shall restrict our-
attention to (connected) graphs of order greater than four. For such graphs,
AX,Y,Z)&T(X, Y, Z) says that X, ¥ and Z form a triangle. (X, illustrates the
need for the restriction on order.)

Replace each subformula of ¢ of the form Jugp by the disjunction of the following
three formulas, each again involving ¢.

1 A@XHEYAZ)[AX, Y, Z)& 1T(X, Y,Z) & ¢).

2 ANANX-Y&V2)AX, V.Z)>»T(X, ¥, 2)] & ¢].

3 AN[VYDNVD)I(X-Y&X~Z)— A(X,Y,Z)& 1T(X, Y, Z)1& ¢].
These three formulas correspond to v having degree greater than two and equal to
two and one, respectively.

These replacements produce a confused version of ¢ having no remaining vertex
quantifiers, but lots of vertex variables within statements of equality and adjacency.
Replace each occurring formula of the sort w—v by the equivalent formula
u—v& "1(u = v). We can now replace these occurrences of variables by expressions
involving the edge variables introduced using the formulas (1), (2) and (3) above.

Consider any subformula v = ', where Jv was replaced using formula (i)
(ie {1, 2, 3}) with edge variables X, ¥, Z and 3v’ using formula (j) with X”, ¥, Z".
Ifi = j = 1, then replace v = v’ by an &, expression stating that each of X, Yand Z
is adjacent or equal to each of X', ¥ and Z'; this is equivalent to v = v’ in this
case. Similarly, if i=j=2, replace v=1v by an %, statement that
{X, Y} ={X",Y};if i =j=3,by X = X' Since equality demands equal degrees,
replace any v = v’ by X s X whenever i # j.

The only remaining occurrences of vertex variables are in subformulas of the
sort v—~v'. Again, assume Jv was replaced as in (i) with X, ¥ and Z and Jv” as in (§)
with X', Y’ and Z'. Replace v—1’ by ¥, expressions as follows: if i=1,j=1,
by the existence of an edge adjacent or equal to each of X, X', ¥, Y', Z, Z'; if
i=1,j=2,byone of X' or Y’ being adjacent or equal to each of X, ¥ and Z;
ifi=1,j=3,by X' being adjacent or equal to each of X, Yand Z; if i = 2,j = 2,
by {X, Y} and {X”, Y’} having a unique edge in common; if i = 2, j = 3, by X’
being X or Y; if i=3, j=3, by X # X; etc.

This process replaces o by an %, sentence o* which is true in exactly the same
(connected) graphs (of order greater than four) as . Let o, be the %, sentence
AXNAEAVADAX, V,2)& (VW)W = XVvW = YVW=2)],
so that K, and K| ; are the only graphs which satisfy ¢,. Let oy, ..., o5 be £ sen-
tences which similarly characterize the remaining eight connected graphs of order <4.
(These can be easily found in each case; for instance the path of length three is charac-
terized by the sentence having the same form as o, except with 4 (X, ¥, Z) replaced.
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by [X—Y& Y~Z& 1(X—2Z)& WX = Z)]) Since ¢ does not diflerentiate Kj
from K; 5, we can relabel the oy’s as 7;'s in such a way that, for some k<8, t;,—~ 0o
for i<k, while 7; & 1o for i>k. Then o is equivalent to the %, sentence

(0*VTe V.. VT) & T & . & Ty,

with the obvious modifications of k = 0 or k = 8. This completes the proof of the
theorem.

We can now deduce Whitney’s Theorem [6, Thm. 1] (or [4, Cor. 3.3]). Note
that since our graphs are assumed to be finite, two are vertex [edge] isomorphic if
and only if they satisfy exactly the same %, [respectively, %] sentences.

COROLLARY 1. K and K 5 are the only cormected edge-isomorphic graphs which
are not vertex isomorphic.

Suppose, towards a contradiction, that G and H are two other such graphs.
Since they are finite, each can be characterized up to isomorphism by an %, sentence
that asserts the existence of exactly the right number of vertices, with each pair
explicitly made adjacent or nonadjacent, as appropriate. One of these sentences will
be an %, sentence ¢ which differentiates between G and H but not between K,
and K| 5 (since it is false for both). By the theorem, ¢ is equivalent to an %, sentence
which differentiates G from H, contradicting their being edge isomorphic and so
satisfying the same %, sentences. '

In somewhat the same sense as edge/cycle properties correspond to the “matroidal”
properties of graph theory, the edge/adjacency properties are those which can be
characterized in a particular way using line graphs. If an %, sentence o can be
equivalently expressed as an .#; sentence ¢”, then replacing all (mentions of) edges
in ¢’ with vertices produces an .Z, sentence ¢’ such that, for all graphs G, ¢ holds
for G if and only if ¢ holds for the line graph L(G). The theorem then yields the
following.

COROLLARY 2. For precisely those & sentences o that do not differentiate
between K3 and K i, there exist an &, sentence o such that ¢ holds for a connected
graph G if and only if o' holds for L(G).

Section 6 of [4] consists of examples of such ¢, o’ pairs in which (contrary to
what is suggested by our approach) ¢ is simpler than ¢; indeed, each example starts
with a natural ¢’' and exhibits a corresponding ¢ (which, of course, cannot differ-
entiate K3 from K, ;). Section 5 of [4] illustrates the reverse procedure, starting with
a nice o and exhibiting a suitable ¢'’. Because, strangely enough, each o there does
differentiate K3 from K, s, these examples cannot exhibit the phenomenon of
Corollary 2, but rather a weakened version of it: ¢ holds for some G having line
graph H if and only if ¢ holds in H.

The most basic property which does not differentiate K, from K 5 is simply
“being a graph.” But our approach does not produce a corresponding sentence
completely axiomatizing being a graph in terms of edges and adjacency. This is
because all of our work has been within the context of being a graph, and so the
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equivalent £, sentence in the theorem (or ¢ in the proof of Corollary 2) could be
any &, expression which is true for all graphs; “equivalent” here means “valid,”
not necessarily a “complete axiomatization.” The van Rooij-Wilf characterization
of line graphs [5] (or [4, Thm. 4.3 (iii)]) fills this gap. By taking the conjunction of
their two conditions as ¢ in Corollary 2, we can translate this into #; to obtain
a complete %, axiomatization of graphs: If edge 4 is adjacent to each of the edges
By, B, and B, then at least two of the B;’s are adjacent to each other; and, if 4,
and 4, are adjacent edges with each adjacent to both edges B, and B,, then either B,
is adjacent to B, or, for i = 1 ori = 2, each edge is adjacent to an even number of
Ay, A, and B,.

In conclusion, it is interesting to note how close %, comes to being as expressive
as L.

COROLLARY 3. Every %, sentence which cannot be expressed within &% can be
written in the form o, v o, where o, is in &, and o, has a very specific, restricted
mention of vertices.

Specifically, suppose ¢ is such an &, sentence. By the theorem, we can assume
(without loss of generality) that o holds in K but not K, 5. Take o, as in the proof
of the theorem. Since ¢ & ~10 does not differentiate K3 from Kj 3, take it as oy.
Take o, to state (Vv) (v is incidence with an even number of edges) so as to use only
a single vertex variable (plus edges and vertex/edge incidence). (This shows we
cannot form intermediate languages between %, and #,.» & by allowing varying
numbers of vertex quantifiers — a single one allows full expressiveness.) Alternatively,
we could avoid incidence and make o, a “pure” vertex sentence by having it assert
that the order is exactly three.
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