icm

Effective cofinalities and admissibility in E-recursion

%
B by

X. R. Griffor and D. Normann (Oslo)

Abstract. In this paper we study the interplay of Zy-admissibility and E-recursion theory. If
« & ON and E(a) is its E-closure, we show that the X-admissibility of E(a) implies that its greatest
cardinal has RE A co-RE cofinality w.Let y denote E(a)-cofinality of its greatest cardinal. A dynamic
proof of selection on any 6<y is given, which can therefore be relativized to recursion in an arbi-
trary relation on E(d). Among the applications of this selection result are: the consistency of the
extended plus-one hypothesis with "ICH, co-RE cofinality of y is p, and an effective covering property
for co-RE subsets of y. Further, we show that for a, f € ON with a< : if cf (f) <a by a function fre-
cursive in a, f and some 8<a, then cf(f)<a via some frecursive in a, B. Finally, let I" be monotone

inductive over x € ¥. We prove that if p(x, *) is 4, and always has a solution in I, then the function
giving the least level of such is E-recursive. Van de Wiele's characterization of the E-recursive
Sfunctions follows as a corollary.

§ 0. Introduction. E-recursion was introduced by D. Normann [7] as a natural
generalization of normal Kleene recursion in objects of finite type. Unless otherwise
stated the E-closed sets we shall consider shall be of the form E(z) for some o € OR.

In § 1 we introduce the RE A co-RE cofinality and show that 2, -admissibility
of E(x) implies that its greatest cardinal has RE A co-RE cofinality . In addition
we show that RE-cofinality @ does not imply admissibility.

Section 2 is devoted to a dynamic proof of selection (i.e. y = cf*®(a) then
we have uniform selection over RE subsets of any 6 <y on E(«)), which can therefore
be relativized. This selection theorem thus has among its corollaries the consistency
of the extended plus one hypothesis at the type three level with 1CH.

Applications of the proof of selection given in §2 are presented in § 3. We
show that if y is the cofinality of e in E (), then the co-RE cofinality of yis y. The
proof of this gives rise to an cffective covering property, namely, any co-RE subset
of y can be covered by a REC set of the same order type. The final application
makes clear the connection between selection and singularities. We show that for
< f such that cf () <o by a function f recursive in ¢, f and some é<a, then cf (f) <«
by some f recursive in o, f.

The last section (§ 4) treats the interplay between monotone inductive defini-
tions and E-recursive set functions using methods from Girard’s §-logic [1], without
introducing B-logic or its proof theory. If a 4o (x, -) always has a solution in I'y
1 — Fundamenta Mathematicae CXXIIIL, 3
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(the least fixed point of monotone inductive I' over x), then the function giving
that solution is E-recursive in x. As a corollary we have an elementary proof of
a theorem of Van de Wiele [14]:

If F: ¥V = Vis uniformly ¥, -definable and total over all admissible sets, then F
is E-recursive.

Outside of § 4, RE, co-RE etc. are the boldface notions.

§ 1. Effective cofinalities. Much attention has been given to various n,gtlons of
definable cofinality, particularly in connection with priority argumentsin E- ;,,recursxon
We shall not attempt to give a complete picture and so the interested reader is di-
rected to Griffor [2], Sacks [10] or Slaman [13]. The first question we address here
was asked by Sacks, namely, is there a cofinality condition on « which characterizes
when E(x) is Z;-admissible. The question was motivated by a result of Kirousis
that: if E(a) k of (%) = o, then E(x) is Z;-admissible. Thus an attractive conjecture
was that: E(c) is Zi-admissible if and only if E(a) F cf| (@ = o. However, Slaman
noticed that if y is the least ordinal where E(y) k cf (3)> o, then E(y) is Z;-admissible.
If E(x) is £;-admissible Sacks [10] showed that there is a divergent computation
without a Moschovakis witness in E (o). This witness induces an -sequence through 3
and we will first analyse the level of definability of one such sequence.

DerFiNiTioN. Consider E(a), o€ OR, and without loss of generality assume
that « is the greatest cardinal in E(x). Define the RE join co-RE cofinality of « as:

REAco-RE-cf () = least t<a such that there exists an R<a of order type ©
unbounded in o« and R is REAco-RE, i.e. R is the intersection of an RE and
a co-RE set.

THEOREM 1.0. Suppose E(o) is X-admissible, then
REAco-RE-cf(e) = w.

Proof. As above we assume that « is the greatest cardinal in E(e) (which is L,
for some »>a). If e € w, a € E(«), then associated with the computation tuple {e, a)
is the tree of subcomputations T, ., (Which is recursive in {e, ) if {e}(a) |, but is
in general only RE in (e, a)). Assume that E(x) is X;-admissible.
By Sacks [10] there exists an ee @ and a e E(x) such that T, is not well-
founded, but
L,k T¢eny is well-founded .

Cramv 1. The leftmost path in Ty, is in REAco-RE.
Proof. We say that ¢ is on the leftmost path if
() 0 €Ty (RE),
(ii) o 4 (co-RE),
(iif) If v<o in the lexicographical ordering and » is minimal such that
t(m)<o(m), then T(n+1)§ (RE).

This proves Claim 1.
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Now assume that we have an effective coding of all finite sequences from o by «
such that

where

{a"1>>{o), T# D
Let (B, ..., B,y € Aif B;is the index for the ith sequence of the leftmost path through
T¢e,ay- Then A is the intersection of an RE set 4; and a co-RE set A,.
CLAIM 2. A is unbounded in o.

Proof. If 4 is bounded by A<, then use standard properties of the X;-projec-
tum on admissible ordinals to show that 4; n e E(x), A3 n AeE(x) and so
A e E(), which is impossible.

This completes the proof of the theorem.

DerFiNtTION. With E(x) as above let
(i) REC-cf(0) = pur<« such that there exists REC
R=o of order type t unbounded in o;
(i) RE-cf(¢) = pr<a such that there exists RE
Re=o of order type 7 unbounded in .
As one might expect the recursive cofinality is no stronger, on ordinals less
than %, than the cofinality in the sense of E(v).

ProrosiTioN 1.1. If y<w, then
REC-cf(y) = cf™(y) .

Proof <:Letf: of™(y) -y, f e L, witness cf™*(y) and without loss of generality
we may assume that f is strictly increasing. Let R = im(f), then R witnesses

REC-cf () <cf™(y) .

>: Let RSy witness the REC-cf(y) = 7, then Re L, by the bounding principle
and the function f: v — y given by o<1.

f(0) = ath element of R

is in L, and witnesses cf™*(y)<REC-cf(y).
COROLLARY 1.2. If REC-cf(x) = w, then E(a) is Zy-admissible.
Proof. Use the proposition and the selection-theorem of Kirousis [4] stating

E@)Ecf@) = w = E(x) is Z;-admissible.

We shall see now that RE-cf(6) = o is not enough to guarantee admissibility.
TuEOREM 1.3, RE-cf(a) = w non = E(0)) is Xy-admissible.
Proof. Begin with E(x,) (which is not X,-admissible) and define the following
%,-sequence:
%(0) = %,
x(n+1) = 2@
1*
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Now consider {x| x e E(%;) and x<gx,(n) for some new} = M. Let M be the
Mostowski collapse of M, then M is E-closed and satisfies the Moschovakis Pheno-
menon (use the MP in E(8,) and the definition of »,) and M is an E-closure of one
of its elements.

But M has an w-sequence of x,’s. Let o = (¥;)5 and let

R = {x<a| x is the index for an ordinal § such that
B = x¢ for some a<o} .

Ris RE and unbounded in « and clearly of order type w. Thus M is not X-admissible,
while over M RE-cf(¢) = o, where o = (81)i.

§ 2. Dynamic selection. We shall give a dynamic proof of the following theorem:

Let o be the greatest cardinal in E(x) and let y be the E(«)-cofinality of «. Then
we have uniform selection for RE subsets of any 6<7.

As it stands, the theorem was proven by Kirousis [4], but the “dynamxc proof
we shall give can be relativized, whereas Kirousis made use of a Skolem Hull-
collapsing argument. A similar proof using a collapsing argument was given by
Normann [8] for the case y = «, i.e. « is a regular cardinal in E(x). We now give
the dynamic proof.

Let & be fixed as in the theorem and let f be a §-sequence of computations.
Let R be the Moschovakis [6] subcomputation relation which is RE and, finally,
let R, denote the fth approximation to R. The relation R is such that for a given
computation, the set of immediate subcomputations can uniformly be indexed by
a finite set or by o (the case of an a-branching). In the case of composition we let
the innermost computation be the leftmost one. If this one is convergent, then we
know the other subcomputations.

Following Harrington-MacQueen [3] we let

min(f) = inf{|l f ()| y<8},

where ||*|] denotes the function giving the height of a computation, if convergent,
and equals oo otherwise. If min(f)<oo, i.e. one of the f(y)’s is convergent, we
shall show that min(f) is uniformly recursive in f for fe E(¢). The situation
min(f)<oo corresponds to the non-emptiness of the associated RE subset of §
and, thus, we have shown selection over o.

The proof proceeds by transfinite induction on min(f). An application of the
recursion theorem yields the required uniformity.

The relation min(f) = 0 is recursive, so assume that min(f)>0 and that
we have computed min(g) for all g such that min(g)<min(f).

If min(f)>p (which is recursive in f§) we let

g5(y) = leftmost subcomputation z of f(y) such that [|z]| > 5;
and otherwise we let g, = f. Clearly g, is recursive in £, § and if min(f)>p, then

B<min(gz)<min(f).
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Let 7 be a recursive function defined by:

0 =1;
©(2) = sup{<(B)| B<i}
if A is a limit ordinal;
T(f+1) = min(g.), 1) -
Cram. t(o)Zzmin(f).
Proof. Otherwise for each f<o let iy = gy(py+1, then if f; <p,, there is a y<é
such that
hp () <hp(¥) .
Let B, = hy(y), then if for some y, { ﬁ), B<u} is unbounded, we have || f(»)||<7 (@),
so this cannot be the case. Let 5 = sup{f,| f<«}. Since

s<y = of ¥,
we have that
o = sup{f¥] y<d}<u.

But for each f<a there is one minimal y such that (f+1),>f,. This gives a one-to-
one map of a into & x o, which is impossible and gives the claim.

Since <(a) is recursive, we have computed min(f) from f giving the theorem.

COROLLARY 2.0. We have selection over y = cf®®(x) if and only if we have
selection over o.

Proof. Selection over « clearly implies selection over y. The other direction
follows from the theorem and the dynamic proof of selection due to Sacks-Slaman
(Theorem 2.8 in Slaman [13]) which inspired this proof.

Now assume that E(x) is not Z;-admissible and, hence, we do not have selec-
tion over o. The above corollary tells us we do not have selection over y, however
the theorem tells us:

COROLLARY 2.1. Let 6<y, C<é be RE, then Ce E(w).

Proof. Since we have selection over 6, it follows that

sup{x}| y<é}<x

and C can be defined this level in E(c).

COROLLARY 2.2 (Further reflection). Let §, C be as above then

(a) %5 <x’;

(b) if BEE(x) is RE and B(C) holds, then there exists a 8-recursive § such that
B(C;) holds.

Proof. Immediate. ‘

COROLLARY 2.3. Suppose 2° = %, ® is a regular cardinal and there is a well-
ordering of 2° of height % recursive in *E and « real. Then the extended plus one hypo-
thesis is true at the type 3 level.
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This last corollary was pointed out to us by T. Slaman. The extended plus-one
hypothesis (for reals) states: if F is a normal type n+2 object and n>>1, then there
exists a normal type 3 object G such that

150(G) = 3sc(F),

where ;sc(F) is the collection of sets of reals recursive in F and some real.

For background and further results on the extended plus-one hypothesis see
Sacks [9] or Slaman [13].

§ 3. Applications: co-RE cofinality, effective covering and uniform computation
of cofinality. We turn first to an application of the above selection result which will
yield a covering property for many co-RE sets “preserving cofinality” and charac-
terize what will call co-RE cofinality. Let « be an ordinal and consider again
E(x) = L, for some x%>0. Without loss of generality we assume o is the greatest
cardinal in L, and we let y = of™(a).

DerNITION. Let f<» and define the co-RE cofinality of B by:

co-RE-cf(B) = least & such that there is a co-RE subset 4 of § of order type &
and unbounded in 8.

LemMMa 3.0. co-RE-cf(x) = co-RE-cf(y).

Proof. Let f: y - « be increasing and witness that cf™() = v.

<: If A=y is co-RE and of order type 6, then 4, = { /()| y € 4} is the same
order type through a. If 4 is unbounded in y, then 4, is unbounded in .

>: Let A=« be co-RE, unbounded and of order type &. Let y € 4%, if there
exists ze [ £ (), f(¥+1)) n A. The RE sets are closed under the quantifiers ¥z e u,
so the co- RE sets are closed under 3z e ». Thus 4* is co-RE and clearly unbounded
in 9. In addition o.t.(4*)<o0.t.(4).
) We shall show that co-RE-cf(y) = y. By the above selection theorem, f<y
implies that the RE predicates are uniformly closed under 3y <f and, in addition,
that .

L,nWF(f)eL,,

where WF(B) denotes the set of well-founded relations as B x B (the latter cannot
in general be relativized).

THEOREM 3.1. co-RE-cf(y) = 9.

Proof. Let A=y be co-RE, cofinal in y of order type f. Let 4; be the 5th
approximation to 4 from the outside, i.e.

As={y| Ly y ¢ A} .

We will show that there is a recursive § such that o.t.(4) = o.t.(4,).
Let y<y; then o.t.(4 n y)<p and by further reflection applied to c4, there
is a J recursive in y such that

o.t(d; ny)<p.
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Using this we construct a recursive increasing function g: y — % such that
Vy<y(o.t.(4dye N 3I<B).

Let 6 = sup{g(»)| y<y}, then & is recursive so let C = 4;. Thus C is recursive and
A=C. If 0.t(C)>p, then there exists a y<y such that o.t.(C ny) = B. But
C nySdy 0y since g(y)<d. Since 0.t.(4,4y N ¥)<f, we have a contradiction.

COROLLARY 3.2. (Covering Property). Any co-RE subset A of y can be covered
by a REC set of the same order type.

The corollary is proven in the proof of the theorem and we used the ordinal § as
a parameter. This lack of uniformity makes extension of the result in the corollary
to ordinals other than y difficult, however we offer:

PropLeM. Is there a bounded co-RE set that cannot be covered by a REC
set of the same order type?

If L, is %,-admissible, then co-RE-cf(x) = o (recall that L, = E(x)), but
the converse is not true.

As far as the questions of § 1 go these results show that

co-RE-cf(0) = @ = E(a) is Xy-admissible,
however
E(%) Z,-admissible non = co-RE-cf(x) = .
Together with the results of § 2 this shows that there is no natural cofinality-

assumption that will characterize when E() is admissible, the best seems to be the
one implicit in the lack of certain. Moschovakis witnesses.

Our next application makes clear the interplay between selection and singula-
rities.

THEOREM 3.3. Let a< f§ be ordinals such that cf(B) <o by some function f recursive
in o, B and some 5<a. Then cf(B)<a by some function recursive in o, .

Proof. Let g: o — f§ be a list of “computation tuples” over § such that
(H36<w)[g(8)¢]. The intuition here is that we attempt to carry out a search for
the <« in question and we either compute it effectively, and hence the witness to
of (B)<a, or we do not and in so doing (not doing} obtain a witness to of pH<a.
Let

min(g) = min{llg ()| o<} .

By the selection theorem in § 2: if E(B) kcf(f)=w, we know that min(g) is
computable by some recursive function M(g). In general it is sufficient for M (g)
to be defined that min(g) exists. If M(g)<min(g) this means that we have

Eygy+1(0) F cf(f) <o ;
where for y<OR n E(a)
E o) = {x € E(®)] x computed by a computation of height <y} .
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Now let g(8) be an index for f recursive in 6, «, § witnessing that cf(f)<a. Since
min(g) exists we have that the selection algorithm M(g) satisfies M(g)y .

If min(g) = M(g) we have computed the level at which the cofinality map is
constructed. If M (g) <min(g), this is because we know at that ordinal that cf(f) <a.
Thus in both cases we can find from M (g) an f collapsing the cofinality of § below
o+l

If L, = E(c) then for all y such that a<y<x we can find effectively in o, y
a map in L, witnessing

T = gl
The above theorem will enable us to do this in many more cases. Suppose L, is
E-closed and has a greatest cardinal (gc(x)).

COROLLARY 3.4. If y>gc(x), let f, be the least (in the sense of <p) collapse of y to

ge(x). If for some a, yo<x we have that

) (Vy>90) [Tz <ge(0)) [ f,< 24, Y0, £86(4), 7, 2],

then the function y — f,, is uniformly computable in y,, a, gc(x) and a ge(s)-enumera-
tion of v,.

Proof. We proceed by induction on y>y,. y = ¥, is trivial. If y>7y,, let a, be
so large that all y" <y are collapsed to go(x) by level o,. Let oo, such that:

L Ey = (ge()*,

where <* is the successor cardinal of 7. By the theorem there is an o recursive in
¥, 4, Yo, gc(x) and the collapse of y, such that

if L, ky>go(x), then

L, Ecf(y)<ge(x) .

But a successor cardinal is regular, so this singularity will demonstrate that y = gc ()
and the collapsing map can be computed.

Corollary 3.4 can be used to show that under (x) we have

COROLLARY 3.5. Let L, be E-closed and let « = ge(L,). Assume that L, F (#).
Then the following are equivalent

(i) L, is RE in an element of L,,

(i) Both L, n (&) and % are RE in an element of L,.

Remark. Using forcing-methods of Sacks [11] we may show that if () holds,
then L, is not RE.

§ 4. E-recursive functions and inductive definability. In this section we shall
give a treatment of monotone inductive definitions using methods from Girard’s
B-logic [1], but without introducing f-logtc and its proof theory. Masseron [5] has
used the proof theory of B-logic to show that every total w$¥-recursive function
on w$¥ is dominated by a primitive recursive dilator on infinite arguments. As a corol-
lary we give a proof of Van de Wiele’s theorem:

@ © )
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If F: V — V is total uniformly Z-definable over every admissible set, then F is
E-recursive.

The converse for E-recursive functions (lightface) is immediate. Slaman has
given an alternate proof, but his proof uses the theory of reflection in E-recursion,
whereas we will require only familiarity with the generating schemata of E-recursion.

Like the completeness theorem for f-logic this proof is based on the Henkin-
type construction of term models, otherwise the proof is elernentary. For each set x
let I', be a uniformly 4,(x) positive inductive definition on x. Let <, denote the
stage comparison relation on x. The following lemma is valid for monotone inductive
definitions in general.

LemMma 4.0. Let Yex, < be a relation on y such that

G I'(Y)=Y; and

@ii) for each ye ¥

ly<y=r{yly<sh,
then I'y K Y and < is the well-founded initial segment of < (I'Y is the least fixed-
point of T').
For each x, let 7, be the closure ordinal of I', and let ¢ be a A,-formula such
that
VxdAy<t,o(x, LY.
THEOREM 4.1. There is an E-recursive function G such that
VaVx(rank(x) <o = Jy<min(G), 7)o (x, TiTY) ;

DeriNITION. Let T = T, be the following first order theory:

unary predicates x, ¥, ON

binary predicates P (for <,) and €

unary function R (for rank)

constants ¢g, ¢y, ...

Take standard axioms like regularity, extensionality, etc. together with:
0 ¥ =I(Y);
() o(x, {y| P(y,c)}) ~ Vze Y(o(x, {rl P(y,2)}) > Pleo, 2));

(iii) Plejry, e) A 1P ey €144); and

(iv) Vze Y({y| P(y,2)} = I'({sl P(y,2) A 1P(z, M)

DEFINITION, (a) Let T, denote the part of T that does not contain any ¢; for
izn; .
(b) Let T*, T} denote the respective Henkin-extensions;

(c) Let ey, e, ... be a recursive enumeration of the terms of T* such that
Vi(e,e T,
Now if f: N — ON, let T/ be T* extended with the following axioms:
{R(e)<Re) fOSS U} -

Lemma 4.2, Let f: N — ON and T4 be as above, then T is inconsistent.
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Proof. Assume T” is consistent for a contradiction and let 77 denote a con-
sistent completion of T7. The term model for T/ will then be a model of T and
since the rank-relation is well-founded, the model will be isomorphic to a set z
where x is interpreted as a subset of z. Let y<t, be such that ¢(x, I'’*Y), By lemma
the interpretation ¢, of ¢, must be in I'y and have rank <y+1. But then inter-
pretations of ¢; will form an < -infinite descending sequence, which is ‘absurd.

If ¢ is a finite sequence of ordinals we define T° as an extension of T,h(,,) as
_before. Thus we have

VYf: N- OR 3reN[T 7% is inconsistent] .

DEFINITION. Let o be a sequence of ordinals of length #, then we say o is good
if we cannot prove a contradiction from T using a proof of length <# and at most
the 7 first axioms of T° (in some uniform enumeration of TVs).

For a e OR we let

S, = {a] ¢ is good and Vi<Ih(o)(c(i)<x)}

and set G(x) = height of S,. Then G is E-recursive since we can uniformly compute
the height of any well-founded relation in E-recursion.

LeMMA 4.3. Let rank(X)<a, then we con find y<G(«) such that ¢ (x, I't™)
holds.

Proof. Fix x and let y be minimal such that ¢ (x, I';**) and choose ye I',** — I,
Let p denote the ordinal norm function 6n I'y induced by I'y. Then we have p(y) =y.
Assume that y,, ..., ¥, is a sequence from I'y’ such that y, = y and p(¥) <p(¥i-1)
for 1<i<n.

We shall construct a model for T, usmg TC(x) as the domain, x for x, I'y
for ¥, <, for P and y,, ..., y,—1 for ¢g, ..., ¢,—y. This model can be extended to
a model for T} since T} is a conservative extension of T, and we do not change the
domain. For i<n let o(i) = rank(e;) (e; is the interpretation of e;). Note that if we
extend g in a consistent way, then we may extend o (i.e. we cannot choose ¢ such
that it is inconsisterit with the construction based on extensions of ).

If « = rank(x), then rank(e;)<o by our choice of domain as TC(x) and so
o€ S,. By induction on p(y,—;) we can show that p(y,-)<||ol|s,. The induction
is trivial by the above remark on the consistency-considerations and, hence, the lemma
follows. The theorem follows from the lemma.

Remark. The theory T in the proof asserts that x is a relation on a transitive
set y; <Y, P) is the prewellordering induced by I' over x and there is no ze I'y
-satisfying ¢. If 7”7 is a primitive recursive theory in the language of set theory, then
the same proof gives:

COROLLARY 4.4. Let I', @ and 7, be as above. If

Vx(x b T = Jy<z.o(x, IIHY),
then there is an E-recursive function G such that

Vx(x b T = Sy<min{z,, G(rank ()} o (x, I1*).
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Examples of such theories are:
(i) x is transitive, infinite and closed under finite subsets;
(i) x is rodimentarily closed.

Now if x is transitive, infinite and closed under finite subsets, then we have
a notation system for the next admissible (HYP(x)) and that notation system is
defined by a monotone inductive definition. If Iy e HYP(x) o (x, ), then there
is a 4, formula ¢’ such that ¢'(x, I'}) for the least y such that 3y e L,[x]o (x, »)
where I' defines that notation system.

Using this we have proven the following theorem of J. Van de Wiele:

CoroLLary 4.5 (Van de Wiele). Let F: V — V be uniformly X -definable and
total over all admissible sets, then F is E-recursive.

Proof. Follows immediately from the theorem and the above remarks on the
inductive generation of HYP (x).

Note that we actually show that F is computable in a weaker system than
E-recursion, since we use elementary functions together with the operator which
computes the height of a well-founded relation.
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