

Effective cofinalities and admissibility in E-recursion

by

E. R. Griffor and D. Normann (Oslo)

Abstract. In this paper we study the interplay of Σ_1 -admissibility and E-recursion theory. If $\alpha \in ON$ and $E(\alpha)$ is its E-closure, we show that the Σ_1 -admissibility of $E(\alpha)$ implies that its greatest cardinal has RE \wedge co-RE cofinality ω . Let γ denote $E(\alpha)$ -cofinality of its greatest cardinal. A dynamic proof of selection on any $\delta < \gamma$ is given, which can therefore be relativized to recursion in an arbitrary relation on $E(\alpha)$. Among the applications of this selection result are: the consistency of the extended plus-one hypothesis with \neg CH, co-RE cofinality of γ is γ , and an effective covering property for co-RE subsets of γ . Further, we show that for α , $\beta \in ON$ with $\alpha < \beta$: if $\operatorname{cf}(\beta) \leq \alpha$ by a function f recursive in α , β and some $\delta < \alpha$, then $\operatorname{cf}(\beta) \leq \alpha$ via some f recursive in α , β . Finally, let Γ be monotone inductive over $x \in V$. We prove that if $\varphi(x, \cdot)$ is Δ_0 and always has a solution in Γ_x^∞ , then the function giving the least level of such is E-recursive. Van de Wiele's characterization of the E-recursive functions follows as a corollary.

§ 0. Introduction. E-recursion was introduced by D. Normann [7] as a natural generalization of normal Kleene recursion in objects of finite type. Unless otherwise stated the E-closed sets we shall consider shall be of the form $E(\alpha)$ for some $\alpha \in OR$.

In § 1 we introduce the RE \wedge co-RE cofinality and show that Σ_1 -admissibility of $E(\alpha)$ implies that its greatest cardinal has RE \wedge co-RE cofinality ω . In addition we show that RE-cofinality ω does not imply admissibility.

Section 2 is devoted to a dynamic proof of selection (i.e. $\gamma = \operatorname{cf}^{E(a)}(\alpha)$ then we have uniform selection over RE subsets of any $\delta < \gamma$ on $E(\alpha)$), which can therefore be relativized. This selection theorem thus has among its corollaries the consistency of the extended plus one hypothesis at the type three level with $\neg CH$.

Applications of the proof of selection given in § 2 are presented in § 3. We show that if γ is the cofinality of α in $E(\alpha)$, then the co-RE cofinality of γ is γ . The proof of this gives rise to an effective covering property, namely, any co-RE subset of γ can be covered by a REC set of the same order type. The final application makes clear the connection between selection and singularities. We show that for $\alpha < \beta$ such that $cf(\beta) \le \alpha$ by a function f recursive in α , β and some $\delta < \alpha$, then $cf(\beta) \le \alpha$ by some f recursive in α , β .

The last section (§ 4) treats the interplay between monotone inductive definitions and E-recursive set functions using methods from Girard's β -logic [1], without introducing β -logic or its proof theory. If a $\Delta_0 \varphi(x, \cdot)$ always has a solution in Γ_x^{∞} 1—Fundamenta Mathematicae CXXIII, 3

(the least fixed point of monotone inductive Γ over x), then the function giving that solution is E-recursive in x. As a corollary we have an elementary proof of a theorem of Van de Wiele [14]:

If $F: V \to V$ is uniformly Σ_1 -definable and total over all admissible sets, then F is E-recursive.

Outside of § 4, RE, co-RE etc. are the boldface notions.

§ 1. Effective cofinalities. Much attention has been given to various notions of definable cofinality, particularly in connection with priority arguments in E_{-} recursion. We shall not attempt to give a complete picture and so the interested reader is directed to Griffor [2], Sacks [10] or Slaman [13]. The first question we address here was asked by Sacks, namely, is there a cofinality condition on α which characterizes when $E(\alpha)$ is Σ_1 -admissible. The question was motivated by a result of Kirousis that: if $E(\alpha) \models cf(\overline{\alpha}) = \omega$, then $E(\alpha)$ is Σ_1 -admissible. Thus an attractive conjecture was that: $E(\alpha)$ is Σ_1 -admissible if and only if $E(\alpha) \models cf(\overline{\alpha}) = \omega$. However, Slaman noticed that if γ is the least ordinal where $E(\gamma) \models \operatorname{cf}(\overline{\gamma}) > \omega$, then $E(\gamma)$ is Σ_1 -admissible. If $E(\alpha)$ is Σ_1 -admissible Sacks [10] showed that there is a divergent computation without a Moschovakis witness in $E(\alpha)$. This witness induces an ω -sequence through $\bar{\alpha}$ and we will first analyse the level of definability of one such sequence.

DEFINITION. Consider $E(\alpha)$, $\alpha \in OR$, and without loss of generality assume that α is the greatest cardinal in $E(\alpha)$. Define the RE join co-RE cofinality of α as:

RE \land co-RE-cf(α) = least $\tau \leqslant \alpha$ such that there exists an $R \leqslant \alpha$ of order type τ unbounded in α and R is RE \wedge co-RE, i.e. R is the intersection of an RE and a co-RE set.

THEOREM 1.0. Suppose $E(\alpha)$ is Σ_1 -admissible, then

$$RE \wedge co-RE-cf(\alpha) = \omega$$
.

Proof. As above we assume that α is the greatest cardinal in $E(\alpha)$ (which is L_{α} for some $\kappa > \alpha$). If $e \in \omega$, $a \in E(\alpha)$, then associated with the computation tuple $\langle e, a \rangle$ is the tree of subcomputations $T_{\langle e,a\rangle}$ (which is recursive in $\langle e,a\rangle$ if $\{e\}(a)\downarrow$, but is in general only RE in $\langle e, a \rangle$). Assume that $E(\alpha)$ is Σ_1 -admissible.

By Sacks [10] there exists an $e \in \omega$ and $a \in E(\alpha)$ such that $T_{(e,a)}$ is not wellfounded, but

$$L_{\varkappa} \models T_{\langle e,a \rangle}$$
 is well-founded.

CLAIM 1. The leftmost path in $T_{\langle e,a\rangle}$ is in RE \wedge co-RE.

Proof. We say that σ is on the leftmost path if

- (i) $\sigma \in T_{(e,a)}$ (RE),
- (ii) σ ↑ (co-RE).
- (iii) If $\tau < \sigma$ in the lexicographical ordering and n is minimal such that $\tau(n) < \sigma(n)$, then $\bar{\tau}(n+1) \downarrow$ (RE).

This proves Claim 1.

such that

$$\langle \sigma^* \tau \rangle > \langle \sigma \rangle$$
, where $\tau \neq \langle \rangle$.

Let $\langle \beta_1, ..., \beta_n \rangle \in A$ if β_i is the index for the *i*th sequence of the leftmost path through $T_{\langle e,a\rangle}$. Then A is the intersection of an RE set A_1 and a co-RE set A_2 .

CLAIM 2. A is unbounded in α .

Proof. If A is bounded by $\lambda < \alpha$, then use standard properties of the Σ_1 -projectum on admissible ordinals to show that $A_1 \cap \lambda \in E(\alpha)$, $A_2 \cap \lambda \in E(\alpha)$ and so $A \in E(\alpha)$, which is impossible.

This completes the proof of the theorem.

DEFINITION. With $E(\alpha)$ as above let

(i) REC-cf(α) = $\mu\tau \leq \alpha$ such that there exists REC

 $R \subseteq \alpha$ of order type τ unbounded in α ;

 $RE-cf(\alpha) = \mu\tau \leq \alpha$ such that there exists RE $R \subseteq \alpha$ of order type τ unbounded in α .

As one might expect the recursive cofinality is no stronger, on ordinals less than κ , than the cofinality in the sense of $E(\alpha)$.

Proposition 1.1. If $\gamma < \kappa$, then

$$REC-cf(\gamma) = cf^{L_{\kappa}}(\gamma).$$

Proof \leq : Let f: $cf^{L_{\kappa}}(\gamma) \to \gamma$, $f \in L_{\kappa}$ witness $cf^{L_{\kappa}}(\gamma)$ and without loss of generality we may assume that f is strictly increasing. Let R = im(f), then R witnesses

$$\text{REC-cf}(\gamma)\!\leqslant\!\text{cf}^{L_{\kappa}}\!(\gamma)\;.$$

 \geq : Let $R \subseteq \gamma$ witness the REC-cf(γ) = τ , then $R \in L_x$ by the bounding principle and the function $f: \tau \to \gamma$ given by $\sigma < \tau$.

$$f(\sigma) = \sigma \text{th element of } R$$

is in L_{ν} and witnesses $cf^{L_{\nu}}(\gamma) \leq REC - cf(\gamma)$.

COROLLARY 1.2. If REC-cf(α) = ω , then $E(\alpha)$ is Σ_1 -admissible.

Proof. Use the proposition and the selection-theorem of Kirousis [4] stating

$$E(\alpha) \models \operatorname{cf}(\overline{\alpha}) = \omega \Rightarrow E(\alpha) \text{ is } \Sigma_1\text{-admissible}.$$

We shall see now that RE-cf(α) = ω is not enough to guarantee admissibility. THEOREM 1.3. RE-cf(α) = ω non \Rightarrow $E(\alpha)$ is Σ_1 -admissible.

Proof. Begin with $E(\aleph_1)$ (which is not Σ_1 -admissible) and define the following x.-sequence:

$$\chi_r(0) = \chi_r;
\chi_r(n+1) = \chi_r^{\chi_r(n)}.$$

Now consider $\{x \mid x \in E(\aleph_1) \text{ and } x \leq_E \varkappa_r(n) \text{ for some } n \in \omega\} = M$. Let \overline{M} be the Mostowski collapse of M, then \overline{M} is E-closed and satisfies the Moschovakis Phenomenon (use the MP in $E(\aleph_1)$ and the definition of \varkappa_r) and \overline{M} is an E-closure of one of its elements.

But \overline{M} has an ω -sequence of \varkappa_r 's. Let $\alpha = (\aleph_1)_{\overline{M}}$ and let

 $R = \{x < \alpha | x \text{ is the index for an ordinal } \beta \text{ such that }$

$$\beta = \varkappa_r^a$$
 for some $a < \alpha$.

R is RE and unbounded in α and clearly of order type ω . Thus \overline{M} is not Σ_1 -admissible, while over \overline{M} RE-cf(α) = ω , where $\alpha = (\aleph_1)_{\overline{M}}$.

§ 2. Dynamic selection. We shall give a dynamic proof of the following theorem:

Let α be the greatest cardinal in $E(\alpha)$ and let γ be the $E(\alpha)$ -cofinality of α . Then we have uniform selection for RE subsets of any $\delta < \gamma$.

As it stands, the theorem was proven by Kirousis [4], but the "dynamic" proof we shall give can be relativized, whereas Kirousis made use of a Skolem Hull-collapsing argument. A similar proof using a collapsing argument was given by Normann [8] for the case $\gamma = \alpha$, i.e. α is a regular cardinal in $E(\alpha)$. We now give the dynamic proof.

Let δ be fixed as in the theorem and let f be a δ -sequence of computations. Let R be the Moschovakis [6] subcomputation relation which is RE and, finally, let R_{β} denote the β th approximation to R. The relation R is such that for a given computation, the set of immediate subcomputations can uniformly be indexed by a finite set or by α (the case of an α -branching). In the case of composition we let the *innermost computation* be the leftmost one. If this one is convergent, then we know the other subcomputations.

Following Harrington-MacQueen [3] we let

$$\min(f) = \inf\{||f(y)||: y < \delta\},\$$

where $\|\cdot\|$ denotes the function giving the height of a computation, if convergent, and equals ∞ otherwise. If $\min(f) < \infty$, i.e. one of the f(y)'s is convergent, we shall show that $\min(f)$ is uniformly recursive in f for $f \in E(\alpha)$. The situation $\min(f) < \infty$ corresponds to the non-emptiness of the associated RE subset of δ and, thus, we have shown selection over δ .

The proof proceeds by transfinite induction on $\min(f)$. An application of the recursion theorem yields the required uniformity.

The relation $\min(f) = 0$ is recursive, so assume that $\min(f) > 0$ and that we have computed $\min(g)$ for all g such that $\min(g) < \min(f)$.

If $\min(f) > \beta$ (which is recursive in β) we let

 $g_{\beta}(y) = \text{leftmost subcomputation } z \text{ of } f(y) \text{ such that } ||z|| \ge \beta;$

and otherwise we let $g_{\beta} = f$. Clearly g_{β} is recursive in f, β and if $\min(f) > \beta$, then $\beta \le \min(g_{\beta}) < \min(f)$.

Let τ be a recursive function defined by:

$$\tau(0) = 1;$$

$$\tau(\lambda) = \sup \{ \tau(\beta) | \beta < \lambda \}$$

if λ is a limit ordinal;

$$\tau(\beta+1) = \min(g_{\tau(\beta)+1}).$$

CLAIM. $\tau(\alpha) \geqslant \min(f)$.

Proof. Otherwise for each $\beta < \alpha$ let $h_{\beta} = g_{\tau(\beta)+1}$, then if $\beta_1 < \beta_2$, there is a $y < \delta$ such that

$$h_{\beta_1}(y) < h_{\beta_2}(y)$$
.

Let $\beta_y = h_\beta(y)$, then if for some y, $\{\beta_y \colon \beta < \alpha\}$ is unbounded, we have $||f(y)|| \le \tau(\alpha)$, so this cannot be the case. Let $\beta_y^* = \sup\{\beta_y | \beta < \alpha\}$. Since

$$\delta < \gamma = \mathrm{cf}^{E(\alpha)}(\alpha) ,$$

we have that

$$\sigma = \sup \{\beta_y^* | y < \delta\} < \alpha.$$

But for each $\beta < \alpha$ there is one minimal y such that $(\beta + 1)_y > \beta_y$. This gives a one-to-one map of α into $\delta \times \sigma$, which is impossible and gives the claim.

Since $\tau(\alpha)$ is recursive, we have computed min(f) from f giving the theorem.

COROLLARY 2.0. We have selection over $\gamma=cf^{E(\alpha)}(\alpha)$ if and only if we have selection over α .

Proof. Selection over α clearly implies selection over γ . The other direction follows from the theorem and the dynamic proof of selection due to Sacks-Slaman (Theorem 2.8 in Slaman [13]) which inspired this proof.

Now assume that $E(\alpha)$ is not Σ_1 -admissible and, hence, we do not have selection over α . The above corollary tells us we do not have selection over γ , however the theorem tells us:

COROLLARY 2.1. Let $\delta < \gamma$, $C \subseteq \delta$ be RE, then $C \in E(\alpha)$.

Proof. Since we have selection over δ , it follows that

$$\sup \{\varkappa_0^{\mathbf{y}} | y < \delta\} < \varkappa$$

and C can be defined this level in $E(\alpha)$.

COROLLARY 2.2 (Further reflection). Let δ , C be as above, then

(a) $\kappa_0^{C,\delta} < \kappa_r^{\delta}$;

(b) if $B \subseteq E(\alpha)$ is RE and B(C) holds, then there exists a δ -recursive β such that $B(C_{\delta})$ holds.

Proof. Immediate.

COROLLARY 2.3. Suppose $\overline{2}^{\omega} = \varkappa$, \varkappa is a regular cardinal and there is a well-ordering of 2^{ω} of height \varkappa recursive in 4E and a real. Then the extended plus one hypothesis is true at the type 3 level.

es pointed out to us by T. Slaman. The

This last corollary was pointed out to us by T. Slaman. The extended plus-one hypothesis (for reals) states: if F is a normal type n+2 object and $n \ge 1$, then there exists a normal type 3 object G such that

$$\frac{1}{2}\mathrm{sc}(G) = \frac{1}{2}\mathrm{sc}(F) ,$$

where $\frac{1}{2}$ sc(F) is the collection of sets of reals recursive in F and some real.

For background and further results on the extended plus-one hypothesis see Sacks [9] or Slaman [13].

§ 3. Applications: co-RE cofinality, effective covering and uniform computation of cofinality. We turn first to an application of the above selection result which will yield a covering property for many co-RE sets "preserving cofinality" and characterize what will call co-RE cofinality. Let α be an ordinal and consider again $E(\alpha) = L_{\varkappa}$ for some $\varkappa > \alpha$. Without loss of generality we assume α is the greatest cardinal in L_{\varkappa} and we let $\gamma = \mathrm{cf}^{L_{\varkappa}}(\alpha)$.

DEFINITION. Let $\beta \leqslant \varkappa$ and define the co-RE *cofinality* of β by:

co-RE-cf(β) = least δ such that there is a co-RE subset A of β of order type δ and unbounded in β .

Lemma 3.0. $co-RE-cf(\alpha) = co-RE-cf(\gamma)$.

Proof. Let $f: \gamma \to \alpha$ be increasing and witness that $cf^{L_{\alpha}}(\alpha) = \gamma$.

 \leq : If $A \subseteq \gamma$ is co-RE and of order type δ , then $A_f = \{f(y)| y \in A\}$ is the same order type through α . If A is unbounded in γ , then A_f is unbounded in α .

 \geqslant : Let $A \subseteq \alpha$ be co-RE, unbounded and of order type δ . Let $y \in A^*$, if there exists $z \in [f(y), f(y+1)) \cap A$. The RE sets are closed under the quantifiers $\forall z \in u$, so the co-RE sets are closed under $\exists z \in u$. Thus A^* is co-RE and clearly unbounded in γ . In addition o.t. $(A^*) \leqslant$ o.t.(A).

We shall show that co-RE-cf(γ) = γ . By the above selection theorem, $\beta < \gamma$ implies that the RE predicates are uniformly closed under $\exists y < \beta$ and, in addition, that

$$L_{\varkappa} \cap \mathrm{WF}(\beta) \in L_{\varkappa}$$

where $WF(\beta)$ denotes the set of well-founded relations as $\beta \times \beta$ (the latter cannot in general be relativized).

THEOREM 3.1. co-RE-cf(γ) = γ .

Proof. Let $A \subseteq \gamma$ be co-RE, cofinal in γ of order type β . Let A_{δ} be the δ th approximation to A from the outside, i.e.

$$A_{\delta} = \{ y | L_{\delta} \not\models y \notin A \}.$$

We will show that there is a recursive δ such that $o.t.(A) = o.t.(A_{\delta})$.

Let $y < \gamma$; then o.t. $(A \cap y) < \beta$ and by further reflection applied to cA, there is a δ recursive in y such that

$$0.t.(A_{\delta} \cap y) < \beta$$
.

Using this we construct a recursive increasing function $g: \gamma \to \kappa$ such that

$$\forall y < \gamma (o.t.(A_{g(y)} \cap y) < \beta)$$
.

Let $\delta = \sup\{g(y) | y < \gamma\}$, then δ is recursive so let $C = A_{\delta}$. Thus C is recursive and $A \subseteq C$. If o.t. $(C) > \beta$, then there exists a $y < \gamma$ such that o.t. $(C \cap y) = \beta$. But $C \cap y \subseteq A_{g(y)} \cap y$ since $g(y) < \delta$. Since o.t. $(A_{g(y)} \cap y) < \beta$, we have a contradiction.

COROLLARY 3.2. (Covering Property). Any co-RE subset A of γ can be covered by a REC set of the same order type.

The corollary is proven in the proof of the theorem and we used the ordinal β as a parameter. This lack of uniformity makes extension of the result in the corollary to ordinals other than γ difficult, however we offer:

PROBLEM. Is there a bounded co-RE set that cannot be covered by a REC set of the same order type?

If L_{\varkappa} is Σ_1 -admissible, then co-RE-cf(\varkappa) = ω (recall that $L_{\varkappa}=E(\alpha)$), but the converse is not true.

As far as the questions of § 1 go these results show that

$$co-RE-cf(\alpha) = \omega \Rightarrow E(\alpha)$$
 is Σ_1 -admissible,

however

$$E(\alpha)$$
 Σ_1 -admissible non \Rightarrow co-RE-cf(α) = ω .

Together with the results of § 2 this shows that there is no natural cofinality-assumption that will characterize when $E(\alpha)$ is admissible, the best seems to be the one implicit in the lack of certain Moschovakis witnesses.

Our next application makes clear the interplay between selection and singularities.

THEOREM 3.3. Let $\alpha < \beta$ be ordinals such that $\operatorname{cf}(\beta) \leq \alpha$ by some function f recursive in α , β and some $\delta < \alpha$. Then $\operatorname{cf}(\beta) \leq \alpha$ by some function recursive in α , β .

Proof. Let $g\colon \alpha\to\beta$ be a list of "computation tuples" over β such that $(\exists \delta<\alpha)[g(\delta)\downarrow]$. The intuition here is that we attempt to carry out a search for the $\delta<\alpha$ in question and we either compute it effectively, and hence the witness to $\mathrm{cf}(\beta)\leqslant\alpha$, or we do not and in so doing (not doing) obtain a witness to $\mathrm{cf}(\beta)\leqslant\alpha$. Let

$$\min(g) = \min\{||g(\delta)|| | \delta < \alpha\}.$$

By the selection theorem in § 2: if $E(\beta) \models cf(\beta) \geqslant \alpha$, we know that $\min(g)$ is computable by some recursive function M(g). In general it is sufficient for M(g) to be defined that $\min(g)$ exists. If $M(g) < \min(g)$ this means that we have

$$E_{M(g)+1}(\alpha) \models \mathrm{cf}(\beta) \leq \alpha$$
;

where for $\gamma < OR \cap E(\alpha)$

$$E_{\gamma}(\alpha) = \{x \in E(\alpha) | x \text{ computed by a computation of height } < \gamma \}.$$

Now let $g(\delta)$ be an index for f recursive in δ , α , β witnessing that $cf(\beta) \leq \alpha$. Since min(g) exists we have that the selection algorithm M(g) satisfies $M(g) \downarrow$.

If $\min(g) = M(g)$ we have computed the level at which the cofinality map is constructed. If $M(g) < \min(g)$, this is because we know at that ordinal that $\operatorname{cf}(\beta) \leq \alpha$. Thus in both cases we can find from M(g) an f collapsing the cofinality of β below $\alpha+1$.

If $L_{\varkappa}=E(\alpha)$ then for all γ such that $\alpha<\gamma<\varkappa$ we can find effectively in α , γ a map in L_{\varkappa} witnessing

$$\bar{\bar{\gamma}}^{L_{\mathbf{x}}} = \bar{\bar{\alpha}}^{L_{\mathbf{x}}}$$
.

The above theorem will enable us to do this in many more cases. Suppose L_{κ} is E-closed and has a greatest cardinal (gc(κ)).

COROLLARY 3.4. If $\gamma > \gcd(\varkappa)$, let f_{γ} be the least (in the sense of $<_L$) collapse of γ to $\gcd(\varkappa)$. If for some $a, \gamma_0 < \varkappa$ we have that

(*)
$$(\forall \gamma > \gamma_0) (\exists z < \gcd(\varkappa)) [f_{\gamma} \leqslant_E \alpha, \gamma_0, \gcd(\varkappa), \gamma, z],$$

then the function $\gamma \to f_{\gamma}$ is uniformly computable in γ_0 , a, gc(x) and a gc(x)-enumeration of γ_0 .

Proof. We proceed by induction on $\gamma > \gamma_0$. $\gamma = \gamma_0$ is trivial. If $\gamma > \gamma_0$, let a_{γ} be so large that all $\gamma' < \gamma$ are collapsed to gc(x) by level α_{γ} . Let $\alpha \geqslant \alpha_{\gamma}$ such that:

if
$$L_{\alpha_{\gamma}} \models \overline{\gamma} > gc(\varkappa)$$
, then $L_{\alpha} \models \gamma = (gc(\varkappa))^{+}$,

where τ^+ is the successor cardinal of τ . By the theorem there is an α recursive in γ , α , γ_0 , ge(z) and the collapse of γ_0 such that

$$L_{\alpha} \models \mathrm{cf}(\gamma) \leqslant \mathrm{gc}(\varkappa)$$
.

But a successor cardinal is regular, so this singularity will demonstrate that $\gamma = gc(x)$ and the collapsing map can be computed.

Corollary 3.4 can be used to show that under (*) we have

COROLLARY 3.5. Let L_x be E-closed and let $\alpha = gc(L_x)$. Assume that $L_x \models (*)$. Then the following are equivalent

- (i) L_{\varkappa} is RE in an element of L_{\varkappa} ,
- (ii) Both $L_{\varkappa} \cap (\alpha)$ and \varkappa are RE in an element of L_{\varkappa} .

Remark. Using forcing-methods of Sacks [11] we may show that if (*) holds, then $L_{\mathbf{x}}$ is not RE.

§ 4. E-recursive functions and inductive definability. In this section we shall give a treatment of monotone inductive definitions using methods from Girard's β -logic [1], but without introducing β -logic and its proof theory. Masseron [5] has used the proof theory of β -logic to show that every total ω_1^{CK} -recursive function on ω_1^{CK} is dominated by a primitive recursive dilator on infinite arguments. As a corollary we give a proof of Van de Wiele's theorem:

If $F: V \to V$ is total uniformly Σ_1 -definable over every admissible set, then F is E-recursive.

The converse for *E*-recursive functions (lightface) is immediate. Slaman has given an alternate proof, but his proof uses the theory of reflection in *E*-recursion, whereas we will require only familiarity with the generating schemata of *E*-recursion.

Like the completeness theorem for β -logic this proof is based on the Henkintype construction of term models, otherwise the proof is elementary. For each set x let Γ_x be a uniformly $\Delta_0(x)$ positive inductive definition on x. Let \leqslant_x denote the stage comparison relation on x. The following lemma is valid for monotone inductive definitions in general.

LEMMA 4.0. Let $Y \subseteq x$, \leq be a relation on y such that

- (i) $\Gamma(Y) = Y$; and
- (ii) for each $y \in Y$

$$\{y'|\ y' \leq y\} = \Gamma(\{y'|\ y' < y\}),$$

then $\Gamma_x^{\infty} \leqslant Y$ and \leqslant_x is the well-founded initial segment of $\leqslant (\Gamma_x^{\infty})$ is the least fixed-point of Γ_x .

For each x, let $\tau_{\mathbf{x}}$ be the closure ordinal of $\varGamma_{\mathbf{x}}$ and let φ be a \varDelta_0 -formula such that

$$\forall x \exists \gamma < \tau_x \varphi(x, \Gamma_x^{\gamma+1})$$
.

THEOREM 4.1. There is an E-recursive function G such that

$$\forall \alpha \forall x (\operatorname{rank}(x) \leq \alpha \Rightarrow \exists \gamma \leq \min(G(\alpha), \tau_x) \varphi(x, \Gamma_x^{\gamma+1}));$$

Definition. Let $T=T_{\Gamma,\varphi}$ be the following first order theory:

unary predicates x, Y, ON

binary predicates P (for \leq_x) and \in

unary function R (for rank)

constants $c_0, c_1, ...$

Take standard axioms like regularity, extensionality, etc. together with:

- (i) $Y = \Gamma(Y)$;
- (ii) $\varphi(x, \{y \mid P(y, c_0)\}) \rightarrow \forall z \in Y(\varphi(x, \{y \mid P(y, z)\}) \rightarrow P(c_0, z));$
- (iii) $P(c_{i+1}, c_i) \land \neg P(c_i, c_{i+1})$; and
- (iv) $\forall z \in Y(\{y | P(y, z)\} = \Gamma(\{y | P(y, z) \land \neg P(z, y)\})$.

Definition. (a) Let T_n denote the part of T that does not contain any c_i for $i \ge n$;

- (b) Let T^* , T_n^* denote the respective Henkin-extensions;
- (c) Let e_0, e_1, \dots be a recursive enumeration of the terms of T^* such that $\forall i(e_i \in T_i^*)$.

Now if $f: N \to ON$, let T^f be T^* extended with the following axioms:

$$\{R(e_i) \leqslant R(e_j) | f(i) \leqslant f(j)\}.$$

LEMMA 4.2. Let $f: N \to ON$ and T^f be as above, then T^f is inconsistent.

E.R. Griffor and D. Normann

Proof. Assume T^f is consistent for a contradiction and let T^f denote a consistent completion of \overline{T}^f . The term model for \overline{T}^f will then be a model of T and since the rank-relation is well-founded, the model will be isomorphic to a set z where x is interpreted as a subset of z. Let $\gamma < \tau_x$ be such that $\varphi(x, \Gamma_x^{\gamma+1})$. By lemma the interpretation c_0 of c_0 must be in Γ_x^{∞} and have rank $\leq \gamma + 1$. But then interpretations of c_i will form an \leq -infinite descending sequence, which is absurd.

If σ is a finite sequence of ordinals we define T^{σ} as an extension of $T^*_{lh(\sigma)}$ as before. Thus we have

$$\forall f: N \to OR \ \exists r \in N[T^{\overline{f(n)}} \text{ is inconsistent}].$$

DEFINITION. Let σ be a sequence of ordinals of length n, then we say σ is good if we cannot prove a contradiction from T^{σ} using a proof of length $\leq n$ and at most the n first axioms of T^{σ} (in some uniform enumeration of $T^{J^{\tau}}$ s).

For $\alpha \in OR$ we let

$$S_{\alpha} = \{ \sigma | \sigma \text{ is good and } \forall i < \text{lh}(\sigma)(\sigma(i) < \alpha) \}$$

and set $G(\alpha) = \text{height of } S_{\alpha}$. Then G is E-recursive since we can uniformly compute the height of any well-founded relation in E-recursion.

LEMMA 4.3. Let rank(x) $\leq \alpha$, then we can find $\gamma \leq G(\alpha)$ such that $\varphi(x, \Gamma_x^{\gamma+1})$ holds.

Proof. Fix x and let γ be minimal such that $\varphi(x, \Gamma_x^{\gamma+1})$ and choose $y \in \Gamma_x^{\gamma+1} - \Gamma_x^{\gamma}$. Let p denote the ordinal norm function on Γ_x^{∞} induced by Γ_x . Then we have $p(y) = \gamma$. Assume that y_0, \ldots, y_{n-1} is a sequence from Γ_x^{∞} such that $y_0 = y$ and $p(y_i) < p(y_{i-1})$ for $1 \le i < n$.

We shall construct a model for T_n using TC(x) as the domain, x for x, Γ_x^{∞} for Y, \leq_x for P and y_0, \ldots, y_{n-1} for c_0, \ldots, c_{n-1} . This model can be extended to a model for T_n^* since T_n^* is a conservative extension of T_n and we do not change the domain. For i < n let $\sigma(i) = \operatorname{rank}(e_i)$ (e_i is the interpretation of e_i). Note that if we extend \vec{g} in a consistent way, then we may extend σ (i.e. we cannot choose σ such that it is inconsistent with the construction based on extensions of \vec{y}).

If $\alpha = \operatorname{rank}(x)$, then $\operatorname{rank}(e_i) < \alpha$ by our choice of domain as $\operatorname{TC}(x)$ and so $\sigma \in S_\alpha$. By induction on $p(y_{n-1})$ we can show that $p(y_{n-1}) \leqslant ||\sigma||_{S_\alpha}$. The induction is trivial by the above remark on the consistency-considerations and, hence, the lemma follows. The theorem follows from the lemma.

Remark. The theory T in the proof asserts that x is a relation on a transitive set y; $\langle Y, P \rangle$ is the prewellordering induced by Γ over x and there is no $z \in \Gamma_x^{\infty}$ satisfying φ . If T' is a primitive recursive theory in the language of set theory, then the same proof gives:

COROLLARY 4.4. Let
$$\Gamma$$
, φ and τ_x be as above. If

$$\forall x \big(x \Vdash T' \Rightarrow \exists \gamma < \tau_x \varphi(x, \Gamma_x^{\gamma+1}) \big),\,$$

then there is an E-recursive function G such that

$$\forall x (x \models T' \Rightarrow \exists \gamma < \min\{\tau_x, G(\operatorname{rank}(x))\} \varphi(x, \Gamma_x^{\gamma+1})).$$

Examples of such theories are:

- (i) x is transitive, infinite and closed under finite subsets;
- (ii) x is rudimentarily closed.

Now if x is transitive, infinite and closed under finite subsets, then we have a notation system for the next admissible (HYP(x)) and that notation system is defined by a monotone inductive definition. If $\exists y \in \text{HYP}(x) \varphi(x, y)$, then there is a Δ_0 formula φ' such that $\varphi'(x, \Gamma_x)$ for the least γ such that $\exists y \in L_{\gamma}[x] \varphi(x, y)$ where Γ defines that notation system.

Using this we have proven the following theorem of J. Van de Wiele:

COROLLARY 4.5 (Van de Wiele). Let $F \colon V \to V$ be uniformly Σ_1 -definable and total over all admissible sets, then F is E-recursive.

Proof. Follows immediately from the theorem and the above remarks on the inductive generation of HYP(x).

Note that we actually show that F is computable in a weaker system than E-recursion, since we use elementary functions together with the operator which computes the height of a well-founded relation.

References

- [1] J.-Y. Girard, II1 Logic, Part I: Dilators, Ann. Math. Logic, to appear.
- [2] E. R. Griffor, E-recursively enumerable degrees, Ph. D. Thesis M.I.T. (1980).
- [3] L. Harrington and D. B. Mac Queen, Selection in abstract recursion, J. Symb. Logic 41 (1976), pp. 153-158.
- [4] L. Kirousis, On abstract recursion theory and recursion in the universe of sets, Ph. D. Thesis UCLA, 1978.
- [5] M. Masseron, Majoration des fonctions ω₁^{CK}-recursives par des ω-echelles primitives-recursives, Thèse de Troisième Cycle, Université Paris Nord, 1980.
- [6] Y. N. Moschovakis, Hyperanalytic predicates, Trans. Amer. Math. Soc. 129 (1967), pp. 249-282.
- [7] D. Normann, Set recursion, in Generalized Recursion Theory II, J.-E. Fenstad, R.O. Gandy and G. E. Sacks (Eds.), North Holland, 1978, pp. 303-320.
- [8] A note on reflection, Math. Scand. 45 (1979), pp. 5-12.
- [9] G. E. Sacks, The k-section of a type n object, Amer. J. Math. 99 (1977), pp. 901-917.
- [10] Post's problem, absoluteness and recursion in finite types, The Kleene Symposium, J. Barwise, H. J. Keisler and K. Kunen (Eds.), North Holland, 1980, pp. 181-202.
- [11] The limits of recursive enumerability, to appear.
- [12] and E. R. Griffor, E-Recursion Theory, Harvard University Preprint, 1980.
- [13] T. Slaman, Aspects of E-Recursion, Ph. D. Thesis Harvard University, 1981.
- [14] J. Van de Wiele, Dilatateurs récursifs et Récursivités Géneralisées, Thèse de TroisièmeCycle, Université Paris VII, 1981.

INSTITUTE OF MATHEMATICS UNIVERSITY OF OSLO

Received 14 June 1982