terms of the conjugates of H. In the case of A_5, if $|H| = 12$ then $N_{A_5}(H) = H$, but A_5 has no subgroup of index <5.

2. A natural place to look for an example showing that these results cannot be extended would be PSL$(2, 7)$, which has two conjugacy classes of subgroups of index 7. Unfortunately, this group does not yield a counterexample, but I will not inflict my unpleasant calculations upon the reader. For a nice listing of the properties of this group, see [6].

References

Received 2 September 1982

On span and chainable continua

by

Lex G. Oversteegen (Birmingham, Ala.)
and E. D. Tymchatyn (Saskatoon, Sask.) (*)

Abstract. In 1964 Lelek [8] defined the notion of the span of a metric continuum and proved that chainable continua have span zero. He asked if the converse is also true, i.e., if continua with span zero are chainable. Recently, (see [10] and [11]) Lelek proved that continua with span zero are arc-like and tree-like. In [13] the authors gave some new characterization of continua with span zero and proved that continua with span zero are continuous images of the pseudo-arc. In this paper we prove that if a hereditarily indecomposable metric continuum has span zero and is an inverse limit of finite graphs with in some sense not too many branch-points or simple closed curves, then X is a pseudo-arc. In particular, it follows that if X is a continuum which is the continuous image of the pseudo-arc and such that all proper subcontinua of X arc pseudo-arcs, then X itself is a pseudo-arc.

1. Introduction. All spaces considered in this paper are metric. A compactum is a compact metric space. A continuum is a connected compactum. We write $f: X \rightarrow Y$ to indicate that f is a mapping of X onto Y. We let I denote the closed unit interval and Q the Hilbert cube with a fixed but arbitrary metric d. Every continuum is a subspace of Q.

If $A \subset X$ and $\varepsilon > 0$ we let $S(A, \varepsilon)$ denote the open ε-ball around A in X. We let $Cl(A)$ denote the closure of A in X.

If X and Y are continua we let $\pi_1: X \times Y \rightarrow X$ and $\pi_2: X \times Y \rightarrow Y$ denote the first and second coordinate projections, respectively. We let $d(X)$ denote the diagonal in $X \times X$. We define (see [9]) the surjective span of X, $\sigma^*(X)$ (resp. the surjective semi-span, $\sigma^s(X)$) to be the least upper bound of all real numbers ε for which there exists a subcontinuum $Z \subset X \times X$ such that $\pi_1(Z) = X = \pi_2(Z)$ (resp. $\pi_1(Z) = X$) and $d((x, y)) \geq \varepsilon$ for each $(x, y) \in Z$. The span of X

$$\sigma(X) = \sup \{\sigma^*(A) | A \text{ is a subcontinuum of } X\}$$

and the semi-span of X

$$\sigma^s(X) = \sup \{\sigma^s(A) | A \text{ is a subcontinuum of } X\}.$$ (*) The first author was supported in part by NSF grant number MCS-8104866 and the second author was supported in part by NSERC grant number A5616.
A continuum is tree-like if it can be obtained as an inverse limit of trees, i.e., connected, simply connected, finite graphs. A continuum is chainable if it is an inverse limit of arcs. A continuum is indecomposable if it cannot be written as the union of two of its proper subcontinua. A compactum is hereditarily indecomposable if every subcontinuum is indecomposable. The pseudo-arc is the unique (up to homomorphism) hereditarily indecomposable chainable continuum (see [2]).

If A is a set we let $|A|$ denote the cardinality of A. If $X \subset Q$ is a continuum such that $X = \lim_{i \to \infty}(X_i, f_{i+1}^i)$ where the X_i are graphs we may suppose that the spaces X_i are embedded in Q such that their projections $f_i : X \to X_i$ converge to the identity map on X.

2. Preliminaries. A cover $\mathcal{U} = \{U_1, \ldots, U_n\}$ of a space X is called a chain-cover provided $U_1 \cap U_2 \neq \emptyset \Rightarrow |i-j| \leq 1$. A cover $\mathcal{U} = \{U_1, \ldots, U_n\}$ of a space X is said to be near provided $Cl(U_i) \cap Cl(U_j) \neq \emptyset \Rightarrow U_i \cap U_j \neq \emptyset$. If $\mathcal{U} = \{U_1, \ldots, U_n\}$ is a cover of a space X we denote $i(U_1, \mathcal{U}) = U_1 \setminus Cl(U_{i+1}, \mathcal{U})$. The following theorem (see [14, Theorem 3]) will be used:

Theorem 1. If $\mathcal{U} = \{U_1, \ldots, U_n\}$ be a taut, open, chain-cover of a hereditarily indecomposable compactum X then there exists a continuum $Z \subset X$ such that $Z \cap i(U_i, \mathcal{U}) \supset \emptyset \Rightarrow Z \cap i(U_i, \mathcal{U}) \supset \emptyset$. If $f : \{1, \ldots, n\} \to \{1, \ldots, n\}$ is a function such that $|f(i)-f(i+1)| \leq 1$, $i = 1, \ldots, n-1$, then there exists an open chain cover $\mathcal{V} = \{V_1, \ldots, V_m\}$ of X such that \mathcal{V} follows pattern f in \mathcal{U} (i.e., $V_i \subset U_{f(i)}$ for $i = 1, \ldots, n$).

Corollary 2. Let $g : X \to I$ be an ε-map of a hereditarily indecomposable compactum X onto I such that there exists a subcontinuum $Z \subset X$ such that $g(Z) = \{1, 2\}$. Let $\eta > 0$ be such that $4\eta < \varepsilon$. If $\delta = \min\{\varepsilon/4, \eta\}$ for each $i \in \{1, \ldots, n\}$ and $f : f^{-1}(\{1, 2\}) = \{1, 2\}$ is one-to-one. Let $U_i = g^{-1}(\{1, 2\} \times (x_{i-1} + \delta, x_{i-1} + \delta))$ and $U_i = g^{-1}(\{1, 2\} \times (x_{i-1} + \delta, x_{i-1} + \delta))$ for $i < n$. If $\mathcal{U} = \{U_1, \ldots, U_n\}$, then \mathcal{U} is a taut, open, chain-cover of X of mesh less than ε. By taking the partition $[x_0, x_1, \ldots, x_n]$ fine enough we may assume that the piecewise linear map f determines a function $f : \{0, 1, \ldots, m\} \to \{0, 1, \ldots, n\}$ such that $f(i) - f(i+1) \leq \delta$ for $i \in \{0, \ldots, m-1\}$, $f^{-1}(0) = 0$, $f^{-1}(m) = m$ where $\{y_0 = y_1 = \ldots = y_m = 1\}$ is a partition of I such that f is linear or constant on each $[x_{i-1} + \delta, x_i]$ and $f(y_i) = x_i$.

By Theorem 1, there exists a taut open chain cover \mathcal{V} of X such that \mathcal{V} follows pattern f in \mathcal{U}. Note that $(U_i, \mathcal{U}) \subset V_i \subset U_i$ and $(U_i, \mathcal{U}) \subset V_i \subset U_i$. Define $h : X \to I$ such that $h^{-1}(0) = 0$, $h^{-1}(1) = 1$, $h(V_i \cap V_j) = x_{i}$ if $i < n$ using the Tietze extension theorem such that the conditions in the statement of the corollary are satisfied.

3. Continua with span zero. In [13] the authors characterized surjective semiparametric zero spaces using uniformizations of two sequences of arcs converging onto a continuum X. The next lemma is, in some sense, a generalization of these results.

Lemma 3. Let X be a continuum in Q with $\sigma(X) > 0$. Let I be a sequence of arcs in Q such that $\lim I = X$. For each $i > 0$ there exists a $\delta > 0$ and an integer n_i such that $n_i \geq n_0$ and $G \subset X \setminus I$ is any Peano continuum, then a component of $\{(x, y) : (x, y) \subset G \times I\}$ separates $G \times \{0\}$ from $G \times \{1\}$ where $0 \leq 1$ denote the endpoints of I.

Proof. Suppose that for some $i > 0$ there exists a sequence G_j of Peano continua and integers m_j with $m_j < m_{j+1}$, $G_j \subset X \setminus I$ and continua $K_j \subset \{(x, y) : (x, y) \subset G_j \times I\}$ such that K_j meets both $G_j \times \{0\}$ and $G_j \times \{1\}$. Without loss of generality the sequence of continua K_j converges to a continuum $K \subset X \setminus I$. Then $\sigma_2(X) = \lim \sigma_2(G_j) = \lim \sigma_2(K_j) = \sigma(K) \subset X$. Also $\sigma(K, d, X) > \sigma$. This contradicts the assumption that $\sigma_2(X) = 0$. Hence, there exists an integer n_0 and $\delta > 0$ such that if $n > n_0$ and $G \subset X \setminus I$ is a Peano continuum then $\{(x, y) : (x, y) \subset G \times I\}$ separates $G \times \{0\}$ from $G \times \{1\}$.

Let $n > n_0$ and let σG be the suspension of G.

$$\sigma G = \{x \in [-1, 2] : (x, y) \subset G \times \{1\}, x \in \{2\} \}

Note that σG is a locally connected continuum. By the Mayer-Vietoris theorem σG has trivial first cohomology and, hence, is unicoherent. Also, $\{(x, y) : (x, y) \subset G \times I\}$ separates $G \times \{0\}$ from $G \times \{1\}$ in σG so some component K does. Since $K \subset G \times I \subset G \subset X \setminus I$ is a component of $G \times \{0\}$ and $G \times \{1\}$.

Note 4. The restriction to a continuum $S \subset \{(x, y) : (x, y) \subset G \times I\}$ of the second coordinate projection $\pi_2 : G \times I \to \{0\}$ is a 2-sp-map (i.e., $\pi_2^{-1}(1) \subset S \subset \{1\}$ for each $i \in I$).

Lemma 5. Let $X \subset Q$ be a continuum with $\sigma_2(X) = 0$. Let G_1 and G_2 be two
sequences of graphs in Q such that $\text{Lim}G_n = X = \text{Lim}F_n$. Let $\varepsilon > 0$ be given. There exists an integer n_0 such that if $n \geq n_0$, then no component K of $\{(x, y) \in G_n \times F_n \mid d(x, y) \geq \varepsilon\}$ has $\pi_1(K) \neq G_n$.

Proof. The proof is similar to the first part of Lemma 3 and is omitted.

Lemma 6. Let $X \subset Q$ be a hereditarily indecomposable continuum with $\pi_0(X) = 0$. Let I_n be a sequence of arcs in Q such that $\text{Lim}I_n = X$ and let $\varepsilon > 0$. There exists a $\delta > 0$ and an integer n_0 such that if $G \subset S(X, \delta)$ is a finite connected graph, $n \geq n_0$, $(a, b) \in G \times I_n$ with $d(a, b) < \delta$ and K is the component of $\{(x, y) \in G \times I_n \mid d(x, y) < \varepsilon\}$ which contains (a, b), then no component of $G \times I_n$ meets both $(a) \times I_n$ and $G \times \{b\}$.

Proof. Suppose there exists a sequence $m_1 < m_2 < \ldots$ of positive integers and a sequence G_n of finite connected graphs with $G_n \subset S(X, 1/n)$ such that for each n there exist $(a_n, b_n) \in G_n \times I_n$ with $d(a_n, b_n) < 1/n$ and a continuum

$$K_n = \{(x, y) \in G_n \times I_n \mid d(x, y) < \varepsilon\}$$

such that K_n meets both $(a_n) \times I_n$ and $G_n \times \{b_n\}$. Without loss of generality the sequence K_n converges to a continuum $K \subset X \times I_n$. Then $d(K, X \times I_n) \geq \varepsilon$ and

$$d(x, y) = d(x, y) = \lim d(x_n, y_n) \leq \lim d(a_n, b_n) = 1/n < \varepsilon$$

Hence $\pi_1(K) \cap \pi_1(G_n) \neq \emptyset$. Since X is hereditarily indecomposable either $\pi_1(K) = \pi_1(G_n)$ or $\pi_1(K) \supseteq \pi_1(G_n)$. Thus $\pi_1(K) \supseteq \pi_1(G_n) \supseteq \pi_1(G_n) \supseteq \emptyset$ which is a contradiction.

Thus, there exists $\delta > 0$ and an integer n_0 such that if $G \subset S(X, 2\delta)$ is a finite connected graph, $n \geq n_0$, $(a, b) \in G \times I_n$, then no component of $\{(x, y) \in G \times I_n \mid d(x, y) < \varepsilon\}$ meets both $(a) \times I_n$ and $G \times \{b\}$. Hence, if G is the component of $\{(x, y) \in G \times I_n \mid d(x, y) < \varepsilon\}$ containing the point (a, b) separates $(a) \times I_n$ from $G \times \{b\}$ in $G \times I_n$.

Suppose $G \subset S(X, \delta)$ is a finite connected non-acyclic graph. Let G be the universal covering space of G and $\overline{G} \to G$ be the covering projection. We may suppose G is embedded in $S(X, \delta)$ such that $G \cup G$ is a compactification of G by G and the natural extension \overline{G} of G to G is a δ-retraction of $G \cup G$ to G.

Let $n \geq n_0$ and let A be an arc in $G \times I_n$ which is irreducible with respect to intersecting $(a) \times I_n$ and $G \times \{b\}$. Then $\pi_2(G \times I_n) = A = A \times \{b\} \cup \ldots$ where the A_i are pairwise disjoint arcs in $G \times I_n$ which map homeomorphically onto A under $\pi_2 | A \times I_n$. Let $\pi_2: G \times I_n \to G$ be the first coordinate projection and let $\pi_2(A_0) = C$. Let $a_0 \in C$ such that $\pi_2(a_0) = a_0 \in G$. Then $\pi_2(a_0, b) < 2\delta$ and if K is the component of $(a_0, b) \in (a) \times I_n \mid d(x, y) < \varepsilon\}$, then the second paragraph of this proof of K separates $(a_0) \times I_n$ from $C \times \{b\}$ in $C \times I_n$ since C is unicollinear. Hence $K \cap A \neq \emptyset$. Clearly

$$(a, b) \in (p \times \text{id}_I)(K) \subset (x, y) \in G \times I_n \mid d(x, y) < \varepsilon$$

and $(p \times \text{id}_I)(K) \cap A \neq \emptyset$.

This completes the proof of the lemma.

Lemma 7. Let T_1 and T_2 be connected graphs and let x be a point such that $T_1 \cap T_2 = \{x\}$. Let $y \in I$ and let K_1 and K_2 be graphs with $K_1 \subset T_1 \times I$ such that $K_1 \cap \{(x, y) \mid y \in I\} = \{(x, y) \mid y \in I\}$ and K_2 separates $T_1 \times \{0\}$ from $T_1 \times \{1\}$ for each $i = 1, 2$. Then $K_1 \cup K_2$ separates $(T_1 \cup T_2) \times \{0\}$ from $(T_1 \cup T_2) \times \{1\}$ in $(T_1 \cup T_2) \times I$.

Proof. We may suppose that K_1 is irreducible with respect to separating $T_1 \times \{0\}$ from $T_1 \times \{1\}$ in $T_1 \times I$ for $i = 1, 2$. If $K_1 \cup K_2$ does not separate $(T_1 \cup T_2) \times \{0\}$ from $(T_1 \cup T_2) \times \{1\}$ in $(T_1 \cup T_2) \times I$, then there exists a polygonal arc $A \subset (T_1 \cup T_2) \times I \setminus (K_1 \cup K_2)$ such that A meets both $(T_1 \cup T_2) \times \{0\}$ and $(T_1 \cup T_2) \times \{1\}$. Since $(K_1 \cup K_2) \cap \{(x, y) \mid y \in I\} = \{(x, y) \mid y \in I\}$, it is easy to see that there exists an arc B such that either $B \subset [A \cup \{(y, y) \mid y \in I\}] \cap (T_1 \times K_1)$, or $B \subset [A \cup \{(y, y) \mid y \in I\}] \cap (T_2 \times K_2)$ and B meets both $(T_1 \cup T_2) \times \{0\}$ and $(T_1 \cup T_2) \times \{1\}$ which is a contradiction.

4. Some span zero type conditions for chainability. Let $X \subset Q$ be a continuum. We give five conditions that X may satisfy:

(i) X is chainable.

(ii) For each sequence of arcs I_n in Q such that $\text{Lim}I_n = X$ there exists an inverse sequence of graphs (G_n, f_n) such that:

(a) $X = \text{Lim}(G_n, f_n)$.

(b) $G_n \subset Q$ such that $\text{Lim}G_n = X$ and the projection $f_n: X \to G_n$ is a $1/n$-map such that $d(x, f_n(x)) < 1/n$.

(c) for each $x \neq 0$ and for each integer n there exists $n \geq n_0$ and a graph $G_n \subset C_n \times I_n \mid d(x, y) < \varepsilon\}$ such that G_n is homeomorphic to G_n and G_n separates $G_n \times \{0\}$ from $G_n \times \{1\}$ in $G_n \times I_n$.

(iii) For each sequence G_n of graphs in Q such that $X = \text{Lim}G_n$, $d(x, f_n(x)) < 1/n$ and $X = \text{Lim}(G_n, f_n)$: $X \to G_n$ is a $1/n$-map which exists a sequence of arcs I_n in Q such that

(a) $X = \text{Lim}I_n$.

(b) for each $e > 0$ and for each integer n there exists $n \geq n_0$ and a graph $G_n \subset C_n \times I_n \mid d(x, y) < \varepsilon\}$ such that G_n is homeomorphic to G_n and G_n separates $G_n \times \{0\}$ from $G_n \times \{1\}$ in $G_n \times I_n$.

(iv) There exist sequences I_n of arcs and G_n of graphs in Q such that

(a) $X = \text{Lim}I_n = X$.

(b) $X = \text{Lim}(G_n, f_n)$: $X \to G_n$ is a $1/n$-map such that $d(x, f_n(x)) < 1/n$.

(c) for each $x \neq 0$ and for each integer n there exists $n \geq n_0$ and a graph $G_n \subset C_n \times I_n \mid d(x, y) < \varepsilon\}$ such that G_n is homeomorphic to G_n and G_n separates $G_n \times \{0\}$ from $G_n \times \{1\}$ in $G_n \times I_n$.

(v) For every pair of sequences I_n of arcs and G_n of graphs in Q such that $X = \text{Lim}I_n = X$ and for each $e > 0$ there exists an integer n_0 such that for
each \(n \geq n_0 \) there exists a graph \(K_n \subset C(n, \epsilon) = \{(x, y) \in G_n \times I_n : d(x, y) < \epsilon\} \) such that \(K_n \) separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \) in \(G_n \times I_n \).

Theorem 8. If \(X \subset Q \) is a continuum then we have the following relations among these conditions:

\[(i) \iff (ii) \iff (iv) \]

\[(i) \iff (\sigma(X) \neq 0) \iff (\sigma_0(X) \neq 0) \iff (\sigma_0(X) = 0) \iff (v) \]

Moreover, if \(X \) is hereditarily indecomposable then \((iv) \implies (i) \).

Proof. (i) \(\iff\) (ii). Suppose \(X \) is chainable and let \(I_0 \) be a sequence of arcs in \(Q \) converging onto \(X \). Since \(X \) is chainable, there exists a sequence of arcs \(G_n \) in \(Q \) such that \(X = \lim_{n \to \infty} (G_n \cup I_0) \), \(X = \lim_{n \to \infty} (G_n \cup I_0) \), \(d(x, f(x)) < 1/n \) and \(f_n : X \to G_n \) is a \(1/n \)-map. Let \(\epsilon > 0 \) be given. Since \(X \) is chainable, \(\sigma_0(X) = 0 \). Hence by Lemma 3 there exists an integer \(n_0 \) such that for \(n > n_0 \) a component \(K_n \) of

\[\{(x, y) \in G_n \times I_n : d(x, y) < \epsilon\} \]

separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \). By [6, p. 438] there exists a locally connected continuum \(H \subset K_n \) which separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \). Hence there exists an arc \(M \subset H \) which separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \).

\[(i) \iff (ii) \iff (iv) \]

(i) \(\iff \) (ii). Let \(G_n \) be a sequence of graphs in \(Q \) such that \(\lim_{n \to \infty} G_n = X \) and \(\lim_{n \to \infty} G_n = X \). Let \(I_n \) be a \(1/n \)-map and let \(\epsilon > 0 \) be given. Let \(G_{n_0} \) be a nested sequence of open covers of \(X \) in \(Q \) such that \(\mathcal{U}_{n_0} \subset \mathcal{U}_{n_1} \). Let \(G_n \) be the closure of \((G_{n_0}, \mathcal{U}_{n_0})\). Then \(G_n \) is chainable and \(G_n \) separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \).

\[(i) \iff (\sigma(X) = 0) \iff (\sigma_0(X) = 0) \iff (\sigma_0(X) = 0) \iff (v) \]

\[(i) \iff (ii) \iff (iv) \]

(iii) \(\iff\) (iv). Trivial.

Suppose \(X \) is hereditarily indecomposable and satisfies (iv). Let \(I_0 \) and \(G_n \) be sequences in \(Q \) which satisfy (iv). We will show that \(X \) is chainable. Let \(\epsilon > 0 \) be given. Without loss of generality we may assume that \(I_0 \) and \(G_n \) are piecewise linear \((n = 1, 2, \ldots)\) in \(Q \). Let \(n \) be an integer so large that the projection \(f : X \to G_n \) moves points less than \(\epsilon \) and there exists a graph \(G^*_n \subset C(n, \epsilon) \) such that \(G^*_n \) separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \) in \(G_n \times I_n \) and such that \(G^*_n \) is homeomorphic to \(G_n \). We may suppose, by compressing \(G^*_n \) slightly in the second coordinate, that \(G^*_n \cap (G_n \times \{0\}) = \emptyset \), since \(G^*_n \subset C(n, \epsilon) \) is open in \(G_n \times I_n \). Let \(\epsilon_1 < \epsilon \) such that \(f_n \) is an \(\epsilon_1 \)-map. Let \(\eta > 0 \) be such that \(\delta \eta > \epsilon - \epsilon_1 \) and the diameter of \(f_n^{-1}(\delta \eta \times \mathbb{R}) \) is less than \(\epsilon \) for each \(x \in G_n \). Let \(G^*_n \) be irreducible with respect to separating \(G_n \times \{0\} \) from \(G_n \times \{1\} \) in \(G_n \times I_n \).

Let \(\{x_1, \ldots, x_k\} \) be the branch-points and endpoints of \(G_n \). It is not difficult to see that if \(x_k \) is a branch-point of \(G_n \), then there exists a \(G^*_n \) at least one branch-point of the form \((x_k, y) \) for some \(y \in I_n \) since \(G^*_n \) separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \).

In fact the order of \(G_n \) at \((x_k, y)\) is at least as great as the order of \(G_n \) at \(x_k \). Since \(G^*_n \subset G_n \), it follows that \(G^*_n \) has exactly one branch point in \((x_k, y) \) for some \(y \in I_n \) since \(G^*_n \) separates \(G_n \times \{0\} \) from \(G_n \times \{1\} \).

Let \(U \) be a connected neighbourhood of \(x_k \) in \(G_n \) such that \(G_n \subset U \) contains only one vertex of the graph \(G_n \). If \((x_k, z) \in G^*_n \) such that the component \(C \) of \((x_k, z) \) in \(G^*_n \) does not contain \((x_k, y)\), then there exists an arc \(A \subset U \) having \(x_k \) as an endpoint such that some neighborhood of \(C \) in \(G^*_n \) is contained in \(A \times L \).

By adjusting \(G^*_n \) slightly in the open set \(C(n, \epsilon) \) we may suppose \(G^*_n \cap (x_k \times I_n) \) is connected for each branch-point \(x_k \) of \(G_n \). By a further small adjustment of \(G^*_n \) we may assume \(G^*_n \cap (x_k \times I_n) \) is connected for each branch-point \(x_k \) of \(G_n \) and that \(G^*_n \) is piecewise linear in \(G_n \times I_n \).

It follows that \(G_n \) is homeomorphic to \(G^*_n \) under a homeomorphism which takes \(x_k \) to \((x_k, y)\) for each \(k \in \{1, \ldots, m\} \).

If \(G^*_n \) does not contain any branch-point, then \(G_n \) is either an arc or a circle. The proof is complete if \(G_n \) is an arc. If \(G_n \) is a circle, let \((G_n, p) \) be the universal covering space of \(G_n \). Since \(\sigma_0(X) = 0 \), \(X \) is tree-like. Hence the projection \(f_n : X \to G_n \) has a lifting \(\tilde{f}_n : X \to G^*_n \) such that \(f_n = p \circ \tilde{f}_n \).

It follows that \(\tilde{f}_n \) is an \(\epsilon \)-map of \(X \) onto an arc. Hence we may assume that \(G_n \) contains at least one branch-point.

Let \(A \) be an arc in \(G_n \) with end points \(x_0 \) and \(x_1 \) such that \(A \) contains no other points of \(\{x_0, \ldots, x_k\} \). Then \(\pi_1(A \cap G_n) \subset G_n \) is an arc \(A' \). By Corollary 2 there exists an \(\epsilon \)-map \(g : f_n^{-1}(A') \to A' \) such that

\[g^{-1}(\delta \eta \times \mathbb{R}) = f_n^{-1}(\delta \eta \times \mathbb{R}) \quad \text{and} \quad d(f_n(x), \pi_1 \circ g(x)) < \eta \]

or each \(x \in f_n^{-1}(A') \).

If \(C \) is a simple closed curve in \(G_n \) such that \(Bd(C) \subset G_n \) at most a single point \(x \), then \(\pi_1(C \cap G_n) \) is a simple closed curve \(C' \). Choose an arc \(K \subset C \cap G_n \) with end point \(x \) and \(b \) such that \(diam(f_n^{-1}(C \cap G_n)) < \epsilon_1 \) and \((x_k \times I_n) \setminus G_n \) is a singleton for each \(x \in C \cap G_n \). Since \(\pi_1(C \cap G_n) \subset G_n \) is an \(\epsilon \)-map \(C' \subset G_n \) there exists an \(\epsilon \)-map \(g : f_n^{-1}(C') \to C' \) such that for each \(x \in C \cap G_n \)

\[f_n^{-1}(x) = g^{-1}(\delta \eta \times \mathbb{R}) \subset G_n \quad \text{and} \quad d(f_n(x), \pi_1 \circ g(x)) < \eta \]

for each \(x \in f_n^{-1}(C') \).

It follows that there exists an \(\epsilon \)-map \(h : X \to G_n \) such that \(d(f_n(x), \pi_1 \circ h(x)) < \eta \) for \(x \in X \).
We claim that $p_2 \circ h : X \to I$ is a 4ε-map. To see this let $x, y \in (p_2 \circ h)^{-1}(f)$. By Note 4, $p_2 \circ G^*_2$ is a 2ε-map, it follows $d(h(x), h(y)) < 2\varepsilon$ and hence

$$d(x, p_1 h(x), p_1 h(y)) < 2\varepsilon .$$

Also

$$d(x, p_1 h(x)) = d(f_1(x), p_1 h(x)) < \varepsilon + \eta < \varepsilon \quad \text{for each } x \in X .$$

Hence

$$d(x, y) \leq d(x, p_1 h(x)) + d(p_1 h(x), p_1 h(y)) + d(p_1 h(y), y) < 4\varepsilon .$$

Since ε was arbitrary X is chainable.

Problem 9. Suppose X is a hereditarily indecomposable continuum such that $q(X) = 0$. Does X satisfy condition (iv) and, as a consequence, is X chainable?

S. Applications. In this section we will give some partial solutions to Problem 9. It is known ([10] and [11]) that continua X with $q(X) = 0$ are atrioc and tree-like. The reason for allowing graphs (rather than trees) in the inverse limit description of X in the following theorems is that it makes this easier to satisfy the condition concerning the number of branch-points on arcs in G_1 (cf. the proof of Corollary 14).

Theorem 10. Let $X = \lim (G_n, f_n^*)$ be a hereditarily indecomposable continuum in Q with $q(X) = 0$ where each G_n is a graph with the property that each single closed curve in G_n has at most one point in its boundary in G_n. Suppose also there exists an integer N such that for each integer n and each arc $A \subset G_n$, A contains at most N branch points of G_n. Then X is a pseudo-arc.

Proof. We may suppose by the remark at the end of Section 1 that the graphs G_n are embedded in Q such that $X = \lim G_n$ and f_n^* moves no point of G_n more than $1/n$ for each $m \geq n$.

Let I_j be a sequence of arcs in Q such that $\lim I_n = X$.

For each $d > 0$ and each positive integer n let

$$C(n, d) = \{ (x, y) \in G_n \times I_d \mid d(x, y) < \delta \} .$$

Let $e > 0$ be given. By Lemma 6, let $e_0 > e_1 > \ldots > e_{m_0} > 0$ and let $m_0 < m_1 < \ldots < m_n$ be integers such that if $(x, y) \in C(n, e_{m_i})$ then $(x, y) \in C(n, e_{m_i+1})$. By Lemma 8 we may suppose there is a component $K(n, e_0)$ of $C(n, e_0)$ such that $K(n, e_0)$ separates $G_n \times [0]$ from $G_n \times [1]$ in $G_n \times I_n$ for $n \geq m_0$. By Lemma 8 we may suppose no component L of $G_n \times I_n$ which contains $x \times I_n$ for $n \geq m_0$. If $m > m_0$ and G_n has no branch-points, then G_n is an arc or a simple closed curve.

In either case $K(n, e_0)$ contains a continuum homeomorphic to G_n which separates $G_n \times [0]$ from $G_n \times [1]$.

Now, suppose $m \geq m_1$ and x_1 is a branch-point of G_n. Let $(x_1, t_1) \in C(m, e_0)$ and let H_1, \ldots, H_n be the closures of the components of $G_n \times \{x_1\}$. After reindexing if necessary we may suppose H_1, \ldots, H_n are not arcs or simple closed curves and each of H_{n+1}, \ldots, H_m is an arc or a simple closed curve. Let $K(m, e_{m-1})$ be the component of $C(m, e_{m-1})$ which contains (x_1, t_1). By the choice of m and e_{m-1} no component of $G_n \times I_n \setminus K(m, e_{m-1})$ meets both $\{x_1\} \times I_n$ and $G_n \times \{t_1\}$. We will show that $K(m, e_{m-1})$ separates $G_n \times [0]$ from $G_n \times [1]$ in $G_n \times I_n$.

If $K(m, e_{m-1}) \cap K(m, e_{m-1}) \neq \emptyset$, then $K(m, e_{m-1}) \subset K(m, e_{m-1})$ and there is nothing to prove. Hence suppose $K(m, e_{m-1}) \cap K(m, e_{m-1}) \neq \emptyset$. Then $\pi_1(K(m, e_{m-1})) = G_n$ since

$$\pi_1(K(m, e_{m-1})) \neq G_n ,$$

and this contradicts the fact that $K(m, e_{m-1})$ separates $G_n \times [0]$ from $G_n \times [1]$ in $G_n \times I_n$. We may suppose without loss of generality that $K(m, e_{m-1})$ separates $G_n \times [0]$ from $K(m, e_{m-1})$.

Let $\varphi : G_n \times I_n \to Y = G_n \times I_n / G_n \times [0]$ denote the natural projection, then Y is a locally connected unicoherent continuum. Now $G_n \times I_n \setminus K(m, e_{m-1})$ separates $K(m, e_{m-1})$ from $K(m, e_{m-1})$ in $G_n \times I_n$. Hence $\varphi(K(m, e_{m-1}), G_n \times [0])$ separates $\varphi(K(m, e_{m-1}), G_n \times [0])$ from $\varphi(K(m, e_{m-1}), G_n \times [0])$ in Y. Hence a component L of $\varphi(K(m, e_{m-1}), G_n \times [0])$ contains these sets. Then $L \cap \varphi(K(m, e_{m-1})) \neq \emptyset$ and $\varphi^{-1}(L)$ is a component of $G_n \times I_n \setminus K(m, e_{m-1})$ such that $\varphi(L) = G_n$. This contradicts the choice of m_1. We have proved that $K(m, e_{m-1})$ separates $G_n \times [0]$ from $G_n \times [1]$ in $G_n \times I_n$.

Let M_n be a graph in the open set $K(m, e_{m-1})$ which is minimal with respect to separating $G_n \times [0]$ from $G_n \times [1]$ and such that $\{x_1\} \times I_n \cup M_n = (x_1, t_1)$. For each i, $t_1 \leq t_1$, $(H_i \times I_n) \cap M_n$ is homeomorphic to H_i.

For each i, $1 \leq i \leq k$, let s_{i} be the unique branch-point of H_i which separates every other branch-point of H_i from s_{i}. Let M_n be the closure of the component of $M_n \setminus \{s_{i} : 1 \leq i \leq k\} \times I_n$ which contains (x_1, t_1). Let M_n be a minimal subcontinuum of M_n which contains $m_1 \in \{H_i : 1 \leq i \leq k\}$ and meets $\{x_1\} \times I_n$ for each $1 \leq i \leq k$. For each $i = 1, \ldots, k_1$ let $(s_{i}, t_{i}) \in M_n$. Notice that if $i \in \{1, \ldots, k\}$ and s_{i} is the arc in G_n with endpoints x_{i} and x_{j}, then $A \times I_n \cap M_n$ is an arc. Also $M_n \cap (B_i \times I_n)$ is homeomorphic to B_i where B_i is the subcontinuum of G_n which is minimal with respect to containing $\{x_{1}, \ldots, x_{m}\} \cup H_{s_{1}+1} \cup \ldots \cup H_{s_{n}}$.

For $i = 1, \ldots, k_1$ let $H_{s_{i}} \cup H_{s_{i+1}}$ be the closures of the components of $G_n \times \{x_{i}\}$ which do not contain s_{i}. After reindexing if necessary we may suppose that $H_{s_{i}} \cup H_{s_{i+1}}$ are not arcs or simple closed curves and $H_{s_{i}+1}, \ldots, H_{s_{n}}$ are arcs or simple closed curves. Let $K(m, e_{m-1})$ be the component of $C(m, e_{m-1})$ which contains (s_{i}, t_{j}). As above, $K(m, e_{m-1})$ separates $G_n \times [0]$ from $G_n \times [1]$ in $G_n \times I_n$.

Let s_{i} be a graph in $K(m, e_{m-1}) \cap (\bigcup_{i=1}^{k_1} H_{i})$ which is minimal with...
The natural projection $\xi_n : K_n \to G_n$ moves points less than n, i.e., $\xi_n = \pi_1 \circ \delta_n$, where $\pi_1 : K_n \to K_1$ is a homeomorphism and $\pi_1 : G_n \times I_n \to G_1$ is the usual projection. Let B_n be the maximal arc in K_n such that $\xi_n(B_n) = A_n$. For each sufficiently small n, there exists an arc $L_n \subset \{(x,y) \in B_n \times I_n : (x,y) < \varepsilon_n + 1\}$ such that L_n projects homeomorphically onto B_n by $\pi_1 : K_n \times I_n \to K_1$.

We will show that there exists a $\frac{1}{2}\varepsilon_{n+2}$-map $\phi : X \to K_n$. Choose a taut open chain cover $\mathcal{U} = \{U_1, \ldots, U_n\}$ of G_n such that:

1. Each U_t is connected.
2. For each vertex (v, t) of the piecewise linear arc K_n there exists exactly one element $U_t \in \mathcal{U}$ such that $v \in U_t$.
3. For each element $U_t \in \mathcal{U}$ there is at most one point $v \in U_t$ such that (v, t) is a vertex of K_n for some $t \in I_n$.
4. For each $t = 1, \ldots, n$ there exists exactly one element $U_t \in \mathcal{U}$ such that $H_t \cap C(U_t) \neq \emptyset$.

Let $\mathcal{W} = \{W_1, \ldots, W_n\}$ be a taut open chain cover of K_n such that W_t is connected, $C(W_t)$ contains at most one vertex of K_n, and $\{\xi_n(W_t)\}_{t=1}^n$ refines \mathcal{W}. The map $\pi_1(K_n : K_1 \to A_n$ induces a (partial) map $\pi_1 : W_t \to \{v \in U_t : (v, t) \in X \}$ such that $\pi_1^{-1}(v) = \{t \in I_n : (v, t) \in X\}$ for $t = 1, \ldots, n$. By [14, Theorem 3], there exists a taut open chain cover $\mathcal{W} = \{W_1, \ldots, W_n\}$ of X such that $X \subset U_t^{(1)} = \{v \in U_t : (v, t) \in X\}$ for $t = 1, \ldots, n$. It is now not difficult (cf. the proof of Corollary 2) to construct a $\frac{1}{2}\varepsilon_{n+2}$-map $\phi : X \to K_n$ (this map is not necessarily onto) such that $\phi(x, \sigma(x)) < \varepsilon_{n+2}$.

For each branch-point $x \in B_n$ of K_n, let $(x, y)_{x}$ be the unique point on J_n and let C_0 be the closure of the union of the components of $K_n \times \{x\}$ disjoint from B_n. As in the proof of Theorem 10 (recall $d((x, y), (x, y)) < \varepsilon_{n+2}$), there exists a graph $M_n = \{(a, b) \in G_n \times I_n : d((a, b), (x, y)) < \varepsilon_{n+2}\}$ such that M_n is homeomorphic to C_0, $M_n \cap (J_n \times L) \subset C_0 \times I_n$ and M_n separates $C_0 \times \{0\}$ from $C_0 \times \{1\}$.

By Lemma 7, $K_n \cup \{M_n \} \times B_n$ is a branch point of K_n is a graph in $K_n \times I_n$, which separates $K_n \times \{0\}$ from $K_n \times \{1\}$, is homeomorphic to K_n, and $d((a, b), e)$ for each $(a, b) \in K_n$. The theorem now follows by Theorem 8.

Theorem 12. Let X be a hereditarily indecomposable continuum in Q such that $\sigma(X) = 0$. Suppose $X = \lim G_n$ where each G_n is a graph such that:

1. If C is a simple closed curve in G_n then C has at most one boundary point in G_n.
2. There exists an integer N and a sequence of arcs $A_n \subset G_n$ such that if $B \subset G_n$ and A_n is an arc, then B contains at most N ramification points of G_n.

Then X is a pseudo-arc.

Proof. Let $\varepsilon > 0$ be given. Let I_n be a sequence of arcs in Q such that $\lim I_n = X$. We may assume that the graphs G_n are piecewise linearly embedded in Q such that $\lim G_n = X$, $f_n : X \to G_n$, and $f_n : X \to G_n$ moves no point more than $1/n$. By Lemmas 3 and 6 choose $\varepsilon_n > \varepsilon_{n+1} > \cdots > \varepsilon_{n+n} > 0$ integers $m_n < \varepsilon_{n+n}$ such that if $n > m_n$, $G_n \times \{0\} \subset \{x \in Q : d((x, y), (x, y)) < \varepsilon_{n+n}\}$ is a connected graph and $(x, y) \in G_n \times I_n$ such that $d((x, y), (x, y)) < \varepsilon_{n+n}$, then a component $C_n(x, y) = \{(a, b) \in G_n \times I_n : d((a, b), (x, y)) < \varepsilon_{n+n}\}$ separates $(x, y) \times I_n$ from $G_n \times \{0\}$ and $G_n \times \{1\}$.

Let $n > m_n$, $A_n \subset G_n \times \{(x, y) \in Q : d((x, y), (x, y)) < \varepsilon_{n+n}\}$. Let K_0 be a piecewise linear arc in $\{x \in A_n \times I_n : d((x, y), (x, y)) < \varepsilon_{n+n}\}$ which is irreducible with respect to $A_n \times \{0\}$ from $A_n \times \{1\}$ in $A_n \times I_n$. We may suppose that the natural projection $f_n : X \to G_n$ moves each point of X a distance less than ε_{n+n}. Let $\{x_1, x_2, \ldots, x_i\}$ be all the branch-points of G_n on A_n.

We may assume that $K_0 \cap \{(x, y) \in L) \subset \{x \in \lim G_n \}$ is a finite set for $i = 1, \ldots, e$. Let H_i be the closure of the union of the components of $G_n \times \{x_i\}$ which are disjoint from A_n. Then $H_i \cap H_j = \emptyset$ if $i \neq j$. Let $(x_{i_1}, t_{j_1}), \ldots, (x_{i_k}, t_{j_k}) = \{(x, y) \in \lim G_n \times \{x_i\} \cap K_0\}$ and define $K_n = K_0 \cup \bigcup_{i=1}^{n} \bigcup_{j=1}^{e} (H_i \times \{t_{j_i}\}) \subset G_n \times I_n$.

Notice that ξ_n, restricted to every component of $K_n \times K_n$, is a homeomorphism.

For each $n > 0$, let K_n be a homeomorphic copy of K_n embedded in Q such that
Proof. The case $M = 1$ was done in Theorem 11. The proof is similar to that of Theorem 11 and is omitted.

Corollary 13. Let X be a hereditarily indecomposable continuum with $\sigma(X) = 0$. If there exist an integer N and a sequence T_n of trees with at most N branch-points such that $X = \lim_{n \to \infty} (T_n, \sigma_n)$, then X is a pseudo-arc.

Proof. This follows immediately from Theorem 10.

Corollary 14. If X is a continuous image of the pseudo-arc such that every proper subcontinuum is a pseudo-arc, then X is a pseudo-arc.

Proof. It follows from the Boundary Bumping Theorem [6], p. 172 that X is indecomposable and hence hereditarily indecomposable. By [13], Theorem 15, $\sigma(X) = 0$. Let $x \in X$ and let $\varepsilon > 0$ be given. Let U be an open neighbourhood of x of diameter less than ε. If C is any component of $X \setminus U$, then C is either a point or a pseudo-arc. Hence there exists an open chain cover \mathcal{C} of C such that $\bigcup \mathcal{C}$ is open and closed in $X \setminus U$. Since $X \setminus U$ is compact there exists an integer n and C_1, \ldots, C_n components of $X \setminus U$ such that $\mathcal{C}_1 \cup \cdots \cup \mathcal{C}_n$ cover $X \setminus U$. Let $\mathcal{C}_i = \{ W \in \mathcal{C}_i | W \cap U = \emptyset \}$ and for $i \in \{2, \ldots, n\}$ let $\mathcal{C}_{i-1} = \{ V \setminus \bigcup_{j \neq i} W \in \mathcal{C}_i | V \setminus U = \emptyset \}$. Then $(\bigcup \mathcal{C}_1) \cap (\bigcup \mathcal{C}_j) = \emptyset$ for $i \neq j$.

Let $\mathcal{C} = \text{St}(U, \{ U \} \cup \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_n) \cup \mathcal{C}_{1-1} \cup \ldots \cup \mathcal{C}_{n-1}$. Then \mathcal{C} is an open cover of X of mesh less than 3ε such that the nerve of \mathcal{C} has at most one branch-point. The corollary now follows from Theorem 10.

A continuum X is said to be almost chainable if for every $\varepsilon > 0$ there exists an open cover \mathcal{C} of X such that mesh$\mathcal{C} < \varepsilon$ and a chain $\mathcal{G} = \{ C_1, \ldots, C_n \}$ in \mathcal{C} with $X = S(\mathcal{C}, \varepsilon)$ and $\text{Cl}(C_1) \cap \text{Cl}(C_2) \neq \emptyset$ if and only if $|i-j| \leq 1$. Then $\text{Cl}(C_1) \cup \ldots \cup \text{Cl}(C_n) = C_1 \cup \ldots \cup C_{n-1} \cup \text{Cl}(C_n)$.

Corollary 15 (Lewis [11]). If X is an almost chainable homogeneous continuum, then X is a pseudo-arc.

Proof. By [3], all proper subcontinua of X are pseudo-arcs. By the proof of [12, I, Theorem 3.6], $\sigma(X) = 0$ and hence by [13] X is the continuous image of the pseudo-arc. The result follows from Corollary 14.

Problem 16. Suppose X is a homogeneous hereditarily indecomposable continuum such that $\sigma(X) = 0$. Does X satisfy the conditions of Theorem 127?

References

UNIVERSITY OF ALABAMA IN BIRMINGHAM
Birmingham, Alabama 35294 USA
UNIVERSITY OF SASKATCHEWAN
 Saskatoon, Saskatchewan S7N — OWO Canada

Received 17 September 1982