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terms of the conjugates of H. In the case of 4s, if [H| = 12 then N (H) = H,
but 45 has no subgroup of index <3.

2. A natural place to look for an example showing that these results cannot b
.extended would be PSL(2, 7), which has two conjugacy classes of subgroups of
fndex 7. Unfortunately, this group does not yield a counterexample, but I will not
inflict my unpleasant calculations upon the reader. For a nice listing of the properties
of this group, see [6].
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On span and chainable continua
by

Lex G. Oversteegen (Birmingham, Ala.)
and E. D. Tymchatyn (Saskatoon, Sas.) (¥)

Abstract. Tn 1964 Lelek [8] defined the notion of the span of a metric continuum and proved
that chainable continua have span zero. He asked if the converse is also true, i.e., if continua with
span zero are chainable. Recently, (see [10] and [13]) Lelek proved that continua with span zero are
atriodic and tree-like. In [13] the authors gave some new characterization of continua with span zero
and proved that continua with span zero are continuous images of the pseudo-arc. In this paper
we prove that if a hereditarily indecomposable metric continuum has span zero and is an inverse
limit of finite graphs with in some sense not too many branch-points or simple closed curves, then X'
is a pseudo-arc. In particular, it follows that if Xis a continuum which is the’ continuous image of
the pseudo-arc and such that all proper subcontinua of X' are pseudo-arcs, then X itself is a pseudo-
arc.

1. Introduction. All spaces considered in this paper are metric, A. compactum
is a compact metric space. A continuum is a connected compactum. We write
f: X-» Y to indicate that f is 2 mapping of X onto Y. We let I denote the closed unit
interval and Q the Hilbert cube with a fixed but arbitrary metric d. Every continnum
is a subspace of Q.

If AcX and e>0 we let S(4, &) denote the open g-ball around 4 in X. We
let Cl(4) denote the closure of 4 in X. ‘ ) ;

If X and Y are continua we let ;. Xx¥ > X and 7,: X% ¥ — Y denote
the first and second coordinate projections, respectively. We let 4X denote the
diagonal in X'x X. We define (see [9]) the surjective span of X, o™(X), (resp. the
surjective semi-span, oe(X)) to be the least upper bound of all real numbers & for
which there exists a subcontinuum Zc X x X such that n,(Z) = X = n,(Z) (resp.
74(Z) = X) and d(x, )¢ for each (x,¥)eZ. The span-of X . :

o(X) = sup{a*(4)| 4 is a subcontinuum of X' }
and the semi-span of X
0o(X) = sup{c§(4)| 4 is a subcontinuum of X} .-

' (*) The first author was supported in part by NSF grant number MCS-8104866 and the second
author was supported in part by NSERC grant number AS5616. .o .
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A continuum is free-like if it can be obtained as an inverse limit of trees,
i.e., connected, simply connected, finite graphs. A continuum is chainable if it is
an inverse limit of arcs. A continuum is indecomposable provided it cannot be written
as the union of two of its proper subcontinua. A compactum is hereditarily inde-
composable provided every subcontinuum is indecomposable. The pseudo-arc is
the unique (up to homeomorphlsm) hereditarily indecomposable chainable con-
tinnum (see [2]).

If 4 is a set we let |4| denote the cardinality of 4. If X< Q is a continuum such
that X = lim(X,,, f;") where the X, are graphs we may suppose that the spaces X,
are embedded in Q such that thelr pTOJCCthllS fit X = X, converge to the identity
map on X.

2. Preliminaries. A cover % = {Uy,..., U,} of 2 space X is called a chain-
cover provided U; n U; # @ < |i—jI<1. A cover % = {U,, ..., U,} of a space X
is said to be-taut provided Cl(U) n Cl(U) # @ = U;n U; # . If

U = {Uy,.., U}
is a cover of a space X we denote” i(U;, %)

theorem (see {14, Theorem 3]) will be used:

THEOREM 1. Let % = {U,, ..., U,} be a taut, open, chain-cover of a heredii‘arily
indecomposable compactum X such that there exists a continuum Z<X such that
Zni(Uy, %) #0 #Zni(U,, %). Let f: {1, ...,m} - {1, ..., n} be a function such
that | f@)—f(E+DI<1, i =1,..,m—1. Then there exists a taut open chain cover
V= {Vi, .., Vi} of X such that ¥ follows pattern f in U (ie., VicUyygy for
i=1,..,m. )

COROLLARY 2. Let g X —» I be an e-map of a hereditarily indecomposable'com—
pactumi X onto I such thut there exists a subcontinuum Z< X such that 9l1Z: Z -+ 1
Let >0 be such that 4n<e—e, where ¢; = max(diam{g~*(t)| teT}). Let f: [ I
be a piecewise lnear map such that f~1(0) = 0 and f~*(1) = 1. Then there exists
an g-map h: X =TI such that h~(0) = g7 *(0), A™*(1) = g~ (1) and

d(g(x),fe k()<
Jor each xeX.

Proof. Let {0 = x,<x; <..<x, = 1} be a partition of I of mesh less th'm i
such that diam(g™"([x,2, *.41])) <&, +n foreach ie {2, ..., m—1} and £|£ ~X([0, x,])
and f1f " ([xu—2, 1]) are’ one-to-one. ‘

Let

Up = g7 (0, 4% +452), Uy = g7 @%pm s +32,-5, 1))

and
U ol g_l((%xz 1FEX_0 3 zX; +%x1+1)) for I<i<n.
Let % =.{Uy,..., Uy}, then % is.a taut, open, chain-cover of ¥ of mesh less
than e. By taking the partition {x;<x;<..<x,} fine enough we may assume that

= UNCI( U {U; e %)). The following
i)
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the piecewise linear map f determines a function f: {0,1, ...
such that |f()~Fi+1)|<1 for ie{0,..,m—1}, F7%0) = 0, f7i(n) = m where
{0 = yo<y;<..<y, = 1} is a partition of I such that f is linear or constant-on
each [y:—1, ] and f(¥) = Xjq-

By Theorem 1, there exists a taut open chain cover ¥~ of X such that ¥~ follows
pattern fin %. Note that i(U, , %)=V, < U, and i(U,, #)=V,,cU,. Defineh: X - I
such that A7(0) = g~*(0), A™'(1) = g~*(1), h(Vi A Vis1) = xfg if i<n using
the Tietze extension theorem such that the conditions in the statement of the corollary
are satisfied.

ymy—{0,1, ..., n}

3. Continua with span zero. In [13] the authors characterized surjective semi-
siaem zero using uniformizations of two sequences of arcs converging onto a con-
tinuum X. The next lemma is, in some sense, a generalization of these results.

Lemma 3. Let X be a continuum in Q with 6g(X) = O. Let I,) be a sequence of
arcs in Q such that LimlI, = X. For each &>0 there exists a >0 and an integer ny
such that if nzny and G=S(X, 8) is any Peano continuum, then a component of
{(x,y)e GxT,| d(x,y)<e} separates Gx{0} from Gx{1} where 0 and 1 denote
the endpoints of I,.

Proof. Suppose that for some &0 there exists a sequence G,) of Peano continua
and integers m1,) with m,<my,.,, G,=S(X,1/n) and continua

K,,C{(x,y)eG,,x I, dix, »)=e}

such that K, meets both G,x {0} and G,,x{l}. Without loss of generality the se-
quence of continua K, converges to a continuum Ko XxX. Then my(K)
= Limn,(K,) = Liml, = X. Also d(X, 4X)ze¢. This contradicts the assumption
that o¥(X) = 0. Hence, there exists an integer n, and 6>0 such that if n>n, and
GcS(X,5) is a Peano continuum then {(x,))e GxI| d(x,3)<¢} separates
Gx {0} from Gx{1}.

Let n>n, and let sG be the suspension of G

sG = Gx[—1,2{Gx{-1}, Gx{2}}.

Note that sG is a locally connected continuum. By the Mayer—Vietoris theorem sG
has trivial fiist cohomology and, hence, is unicoherent. Also,

{(x, Y)eG x| dix,»)<e}

separates Gx{—3} from Gx{3} in sG so some component K does. ‘Since
KcGxI,cGx[0,1]esG, no component of GxJI\K meets both Gx {0} and
Gx{1}.

Note 4. The restriction to a continvum S<={(x, )€ Gx I d(x,y)<e} of
the second coordinate projection m: GxI,—1I, is a 2e-map (i.e.,
diam(nz () N S)<2e for each rel).

Lemma 5. Let X< Q be a continuum with ci(X) = 0. Let G,) und F,) be two
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sequences of graphs in Q such that LimG, = X = LimF,. Let £>0 be given. There
exists an integer ny-such that if n=n,, then no component K of

{(x,7) € G, x F,| d(x,7)>e}

has m,(K) = G,.

Proof. The proof is simildr to the first part of Lemma 3 and is omitted.

LeMMA 6. Let X< Q be a hereditarily indecomposable continuum with oo(X) = 0.
Let 1) be a sequence of arcs in Q such that Liml, = X and let ¢>0. There exists
a 6>0 and an integer ny such that if GeS(X, 6) is a finite connected graph, nzng,
(a,bye GxI, with d(a, b)<6 and L is the component of {(x,y)e GxI,| d(x,y)<e}
which contains (a, b), then no component of G x I\L meets both {a} x I, and G x {b}.

Proof. Suppose there exists a sequence m; <m,<... of positive integers and
a sequence G,) of finite connected graphs with G,<S(X, 1/n) such that for each n
there exist (a,, b,) € G, x I, with d(a,, b,)<1/n and a continuum

K,={9)eG,x1,| d(x,y)z¢}

such that K, meets both {a,}xI, and G,x {b,}. Without loss of generality the
sequence K) converges to a continuum Ko Xx X. Then d(K, 4X)>¢e and

d(m;(K), mo(K)) = limd(m,(K,), 75(K,)) <limd(a,, b)) <liml/n = 0,

Hence n,(K) nm,(K)+# @. Since X is bereditarily indecomposable either

i (K)>my(K) or my(K)>7(K). Thus 6o(X)Z00(m(K) U m,(K))=e>0 which is
a contradiction.

Thus, there exists § with 0<6<¢ and an integer n, such that if G=S(X, 25)
is a finite connected graph, n>n, and (a, b) € Gx I, with d(a, b) <28, then no com-
ponent of {(x,y)eGxI,| d(x,y)>%e} meets both {a}xI, and Gx {b}. Hence,
if G is unicoherent the component of {(x,y) e GxI,| d(x, y)<ie} containing the
point (a, &) separates {a} x I, from Gx {b} in GxI,.

Suppose G=S(X,%d) is a finite connected non-acyclic graph. Let G be the
universal covering space of G and p: -G — G be the covering projection. We may
suppose G is embedded in S(X, 48) such that G U G is a compactification of &
by G and the natuial extension p of p to G U G is a §-retraction of G U G to G.

Let n2n, and let 4 be an arc in G'x I, which is irreducible with respect to
intersecting {a}x1, and G,x{b}. Then (pxid; ) *(d) = A; U 4, U ... whee
the A; are pairwise disjoint ares in Gx I, which map homeomorphically onto 4
under pxidy. Let m;: GxI,—» G be the first coordinate projection and let
my(d;) = C. Let o, € Csuch that p(a,) = ae G. Then d(ay, b)<26 and if X is the
component of (a;, b) in {(x, y) e Cx I d(x, y)<%}e}, then by the second paragraph
of this proof X separates {a,} x I, from Cx{b} in CxI, since C is unicoherent.
Hence KN 4; # &. Clearly

(a,b) e (pxid N K)={(x, ) e GxI,| d(x,y)<s} and (p Xidp YK)Ynd# 9.

This completes the proof of the lemma.
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Lemma 7. Let Ty and T, be comnected graphs and let x be a point such that
Ty T, = {x}. Let yeI and let Ky and K, be graphs with K;<T;xI such that
K, n [{x}xI] = {(x, »)} and K; separates T;x {0} from Tyx {1} for each i =1,2.
Then K, v K, separates (Ty U Tp)x {0} from (Tyw T,)x {1} in (Ty v Ty)x 1

Proof. We may suppose that K; is irreducible with respect to separating T; x {0}
from T;x {1} in T;xJ for i =1,2. If K; U K, does not separate (T; U T)x {0}
from (T; U T)x {1} in (Ty U Ty)x I, then there exists a polygonal arc

Ac(Ty u Ty) xIN(K; U K3)

such that 4 meets both (Ty U Tp)x {0} and (T; v Tp)x{1}. Since (K; U K3) n
A (fxyxI) = {(x, )}, it is easy to see that there exists an arc B such that either

Be[d U ({x}x([0,) U (r, IN] (T x INK)
or
B[4 U ({x} (10, v (¥, 1] n T2 xINK)
and B meets both (T U T3)x {0} and (Ty U T) x {1} which is a contradiction.

4. Some span zero type conditions for chainability. Let X< Q be a continuum.
We give five conditions that X may satisfy:

(i) X is chainable.

(i) For each sequence of arcs I,) in Q such that Lim/,= X there exists an in-
verse sequence of graphs (G,,fy) such that:

(8) X = @J(Gn’fr:n)a

() G,< O such that LimG, = X and the projection f,: X + G, is a 1/n—map
such that d(x, f,(x))<1/n,

(¢) for each ¢>0 and for each integer n, there exists n>n, and a graph
G¥=Cn, §) = {(x,y) € G,x1,| d(x,y)<e} such that G¥ is homeomorphic to G,
and G separates G,x {0} from G,x {1} in G,xT,.

(iii) For each sequence G,) of graphs in Q such that X" = LimG,, d(x, f(x)<ln
X = iim(G,,/™ and f,: X -+ G, is a 1/n—map there exists a sequence of arcs I,)
in @ such that :

(2) Lim/, = X,

(b) for each ¢>0 and for each integer no there exists n>n, and a graph
G*=C(n, &) = {(x, ) € G,x1I,| d(x,y)<se} such that G is homeomorphic to G,
and G, separates G,x {0} from G,x {1} in G,xI,.

(iv) There exist sequences I,) of arcs and G,) of graphs in Q such that

(a) LimlI, = LimG, = X, :

() X =lim(G,, /) and f,: X — G, is a l/n—map such that d(x, fu(x)<1n

(c) for each ¢>0 and for each integer 1o there exists n>n, and 2 graph
G*<Cn, &) = {(x,) € G,x],| d(x,y)<s} such that G} is homeomorphic to G,
and G* separates G,x {0} from G,x{l} in GyxI,. . .

(v) For every pair of sequences I,) of arcs and G,) of graphs in Q such that
LimI, = LimG, = X and for each &¢>0 there exists an integer n, such that for
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each n=n, there exists a graph K,cC(n, &) = {(x,») e G,xI,| d(x, y)<e} such
that K, separates G,x {0} from G,x {1} in G,x1I,.

THEOREM 8. If X< Q is a continuum then we have the following relations among
these conditions:

R (1
O Sy 2
() = (#(X) = 0) = (o0(X) = 0) = (65(X) = 0) = (¥)
Moreover, if X is hereditarily indecomposable then (iv) = (i).

Proof. (i) = (ii). Suppose X is chainable and let ) be a sequence of arcs in 0
converging onto X. Since X is chainable, there exists a sequence of arcs G,) in Q
such that X =lim(G,,fy), X = LmG,, d(x,f,(x))<ln and f: X -G, is
a 1/n—map. Let £>0 be given. Since X is chainable, oo(X) = 0. Hence by Lemma 3
there exists an integer n, such that for n>n, a -component K, of

{0 e G x1) d(x, )<z}

separates G, x {0} trom G, x {1}. By [6, p. 438] there exists a locally connected con-
tinuum H,<K, which separates G,x {0} from G,{l}. Hence there exists an arc
M,c H, which separates G,x {0} from G,x {1}.

(i)=(iii). Let G,) be a sequence of graphs in Q such that Lim G,= X=1im(G,, /"),
fi: X~ G, is a 1/n—map and let ¢>0 be given. Let %, be a nested sequence of
open chain covers of X in Q such that mesh%, <1/n and let I, = {J %, be the nerve
of %,. Without loss ot generality G, (J %,,. Letr,: J %, — I, be a 1/n—retraction.
Let Gy =G, x1, be the graph of r,|G,. Then Gf ~ G, and G separates G, x {0}
from G,x{1} in G,x1,.

(i) = 6(X) = 0. See [8].

o(X) = 0 <« g4(X) = 0. See [5].

oo(X) = (v). Let >0 be given. By Lemma 3 there exists an integer n, such
that for n>n, there exists a component K, of {(x,y)e G,x1,| d(x, y)<&} which
separates G, x {0} from G, x{1}. Since G,x I, is embedded in the suspension of G,
(cf. the proof of Lemma 3) which is a locally connected unicoherent continuum, it
follows that there exists a locally connected continuum H,<X, which separates
G, x {0} from G,x {1}. ([6], p. 438). Since G, is a finite graph and K, is open in
G, xI, it follows that there exists a graph C,=XK, which separates G, % {0} from
G, x{1}.

(i) = (iv) and (jii) = (iv) trivial.

Suppose X is hereditarily indecomposable and satisfies (iv). Let I) and G,)
be sequences in Q which satisfy (iv). We will show that X is chainable. Let &¢>0
be given. Without loss of generality we may assume that I, and G, ate piecewise
linear (n = 1,2, ...)in Q. Let n be an integer so large that the projection /1 X - G,
moves points less than ¢ and there exists a graph
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Gr=Cln, &) = {(x, ) € G,x1,| d(x,y)<s}

such that G separates G, x {0} from G, x {1} in G,x I, and such that G* is homeo-
morphic to G,. We may suppose, by compressing G slightly in the second coordi-
nate, that Gy n(G,x{0,1}) = @, since G¥ =C(n, &) which is open in G,xI,. Let
g, <& such that £, is an &;-map. Let >0 be such that 4y <e—e, and the diameter
of f;7 1(S(x, m))<e for cach x € G,. Let G, =G be irreducible with respect to separat-

“ing G,x {0} rom G,x {1} in G,x1I,.

Let {x, ..., x,,} be the branch-points and endpoints of G,. It is not difficult
to see that if x, is a branch-point of G,, then there exists in G} at least one branch-
point of the form (x, y) for soms y; € I, since G, separates G, x {0} from G, x{1}.
In fact the order of G, at (x,, ) is at least as great as the order of G, at x,. Since
G,=Gy ~ G,, it follows that G, has exactly one branch point in {x,} x I,. Let U be
a connected neighbourhood of x, in G, such that Cl(U) contains only one vertex
of the graph G,,. If (x,, z) € G, such that the component C of (x,, z) in Gj N ({x;} x L)
does not contain (x;, y,), then there exists an arc 4 = U having x, as an endpoint such
that some neighbourhood of C in G is contained in A4 x I,. By adjusting G, slightly
in the open set C(n, &) we may suppose G, n ({x,} x I,) is connected for each branch-
point x, of G,. By a further small adjustment of G, we may assume G;, N ({x,} x I)
= {(x;, yo)} for each branch-point x, of G, and that G, is piecewise linear in G, x I,.
It follows that G, is homeomorphic to G, under a homeomorphism which takes x, to
(%, yo) for each te{l, .., m}.

If G, does not contain any branch-point, then G, is either an arc or a circle. The
proof is compléte if G, is an arc, If G, is a circle, let (G,, p) be the universal covering
space of G,. Since o(X) = 0, X is tree-like. Hence the projection f,: X — G, has
a lifting f,: X — &, such that f, = p o f,. It follows that f, is an ¢-map of X onto
an arc, Hence we may assume that G, contains at least one branch-point.

Let A be an arc in G, with end points x; and x; such that 4 contains no other
points of {x, ..., ,.}. Then 7] 2(4) N G, is an arc 4'. By Corollary 2 there exists
an g-map ¢: fy ‘(4) ~ A’ such that '

07 0 2)) =70 g MO ) =£710p) and d(), meg () <n

or each x e f; HA). .

If C is a simple closed curve in G, such that Bd(C) in G, is at most a single
point x;, then 77 4(C) N G, is a simple closed curve C'. Choose an ar¢ K= C\{x}
with end point a, and b, such that diam(f, *(CI(C\K)))<e and ({x}x1,) m.G;
is a singleton for each x & CL(C\K). Since niy *(K) n Gy is an arc K’ < C” there exists
as above an g¢-map g: f; {(C) =» C’ such that for each x e CI(C\K)

F) = g~ ({x}x 1) n Gy) and d(f(x), my 0 g(x))<n  for each xefiNC).

It follows that there exists an e-map f: X ~ G, such that d(£,(x), 7, o h(x))<n
for xe X.
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We claim that m, o h: X — I, is a 4e-map. To see this Jet x, y € (m, o ”H(8).

By Note 4, m,|G} is a 2s-map, it follows d(h(x), h(y))<2e and henoe
| d(my h(x), 7 h(y))<2e.
Also
d(x, m h(x)) < d(x, [,(0)) +d( (%), m h (X)) S e +n<e
Hence
dx, y)<d(x, mgh(x))+d(mh(x), n h(W)+d(m h(3), y)<ds .

Since & was arbitrary X is chainable.

for ecach xe X .

ProBLEM 9. Suppose X is a hereditarily indecomposable continuum such that
0o(X) = 0. Does X satisfy condition (iv) and, as a consequence, is X chainable?

5. Applications. In this section we will give some partial solutions to Problem 9.
Tt is known ([10] and [13]) that continua X with ¢(X) = 0 are atriodic and tree-like.
The reason for allowing graphs (rather than trees) in the inverse limit description
of X in the following theorems is that this makes it easier to satisfy the condition
concerning the number of branch-points on azcs in G, (cf. the proof of Corollary 14).

THEOREM 10. Let X = lim(G,, fy") be a hereditarily indecomposable continuum
in Q with o(X) = 0 where each G, is a graph with the property that each simple closed
curve in G, has at most one point in its boundary in G,. Suppose also there exists an
integer N such that for each integer n and each arc A<G,, A contains at most N
branch points of G,. Then X is u pseudo-arc.

Proof. We may suppose by the remark at the end of section 1 that the graphs G,
are embedded in @ such that X' = LimG, and f,;" moves no point of G,, more than 1/n
for each m>=n.

Let ) be a sequence of arcs in Q such that Lim/, = X.

For each 6>0 and each positive integer n let

Cn, 8) = {(x,)) € G, xI,| d(x,5)<5}.

Let &>0 be given. By Lemma 6, let &= gy>e,>...>ey>0 and let
my<m,<...<my be integers such that if (x, y) e C(n, ¢;,,) where nm;, then no
component of G, x ,\C(n, &;) meets both {x} xI, and G,x{y}. By Lemma 3 we
may suppose there is a component K(n, gy) of C(n, ey) such that K(n, &y) separates
G,x{0} from G,x{1} in G,x I, for nzmy. By Lemma 5 we may suppose no com-
ponent L of G,xIL\C(n, sy) has n,(L) = G, for nzmy.

If m>my and G,, has no branch-points, then G,, is an arc or a simple closed
curve. In either case K(m, ey) contains a continuum homeomorphic to G,, which
separates G, x {0} from G, x{1}.

Now, suppose m>my and x, is a branch-point of G,,. Let (x,, t;) € C(m, &y)
and let Hj, ..., H,, be the closures of the components of G,\{x,}. After reindexing
if necessary we may suppose Hy, ..., H,, are not arcs or simple closed curves and each
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of Hy, 41, ..., Hy, i8 an arc or a simple closed curve. Let K(m, ey-;) be the com-
ponent of C(m, ey_4) which contains (x;, ;). By the choice of my and &y no com-
ponent of G, xI,\K(m, ey_,) meets both {x;}x 7, and G, x{t;}. We will show
that K(m, ey—,) separates G, x{0} from G, x{l} in G,x1,.

If K(m, ey) N K(m, ey—,) # O, then K(m, &y) = K(m, gy~,) and there is no-
thing to prove. Hence suppose K(m, ey) N K(m, ey_;) = @&. Then =,(K(m, ey—y))
= @, since if

(K, ey_1)) # G,
then * :
K(m, ey—y) 0 [Gx {0}] # @ 5 K(m, ey_1) N [G,x{1}]

and this contradicts the fact that K(m, ey) separates G,, x {0} from G, x {1} in G,, x I,,.
We may suppose without loss of generality that K(m, ey) separates G, X {0} from
K(m, ey—q). Let @i G, x I, - ¥ = G,xI,/G,x{0} denote the natural projection,
then Y is a locally connected unicoherent continuum. Now G, xI,\C(m, ey-1)
separates K(m, gy) from K(m, ey-,) in G,xI,. Hence ¢(G,x1,\C(mn, en—1))
separates @ (K(m, ey)) from ¢@(K(m, ey-;)) in Y. Hence a component L of
@((Gux I,\C(m, &y-,))) separates these sets. Then L n ?(G,x{0})) = @ and
@~ Y(L) is a component of G, xI,\C(m, ey;) such that n,(L) = G,,. This con-
tradicts the choice of my. We have proved that K(m, ey_,) separates G, X {0} from
Gy X {1} in Gyxdy.

Let M, be a graph in the open set K(m, ey_,) which is minimal with respect
to separating G, x {0} from G, x{1} and such that ({x,}x L) n M; = {0y, 1)}
For cach i, ke, +1<i<n,, (H;xI,) n M, is homeomorphic to H;.

For each i, 1<i<k;, let x,; be the unique branch-point of H; which separates
every other branch-point of H; from x;. Let Mj be the closure of the component of
MN{%Xa,15 ve» Xa e} ¥ I,) which contains (%, ). Let M. ' be a minimal sub-

ni
continuum of M} which contains M N ( kUHHixIm) and meets {x,;} xI, for
=Ky
each i=1,.., k. For each i=1,..,k; let (x5, t,) € My . Notice that_if
ie{l, .. k}and Aisthearcin G, with end-points x, and X, ;, then (4;x I,) 0 My
is an arc. Also MY (B, % I, is homeomorphic to B, where B, is the subcontinuum
of G, which is minimal with respect to containing

{x2.1 » "'7'x2.hx} 4 Hk1+1 V.Y Hﬂl ‘

For [=1,..,ky let Hyg, .., Hy,, be the closures of the components of
G,\{x,,;} which do not contain x;. After reindexing if necessary we may suppose
Hyyq, ooy Hypy, are not arcs or simple closed curves and Hik, 41, s Hipy, are
arcs or simple closed curves, Let K(m, &y~z2. i) be the component of C(m, En-2)
which contains (xy,;, 12,)). As above, K(m, &y-2, i) separates G,x {0} from G,x{1}
in G,xI,. ‘

”2,{ . . .. .
Let M, be a graph in K(m, ex-z,1) 0 ( U1 H,;x1I,) which is minimal with
. =


GUEST


146 L.G. Oversteegen and E.D. Tymchatyn

n2,i

respect to sepalatmg U H, ;% {0} from U ;x{1} in U H,;x1I, and such that

My ({xg,3 1) = {(xz,l, 13,0} For each j=1, k2 ; let x;;; be the
unique branch-point of H;; which separates x;; from every other branch-point
of H;;. As above, let MZ,, be, a minimal subcontinuum of M,; which contains

n2,1

My;nl U

J=ka,i+1

(H;;% I,)] and meets {x;;;} x I, for each j =1, .., k3.

33
Then My = M} U |J My, is a continuum homeomorphic to n,(M3) which

meets {x}x I, in precisely one point for each branch-point of (M +') and which
separates m;(M3)x {0} from 7 (M3)x {1} in m,(M3)xI,. One can continue this
argument inductively through at most N stages to construct a graph
M = My =C(m, &) such that M is homeomorphic to G, and M separates G,, x {0}
from G, x{l} in G, x1I,. The theorem follows from Theorem 8.

THEOREM 11. Let X be a hereditarily indecomposable continuum in Q such that
a(X) = 0. Suppose X = 1im(G,, fy") where each G, is a graph such that:

(1) if Cis a simple closed curve in G,, then C has at most one boundary point in Gy;

(2) there exists an integer N and a sequence of arcs A, < G, such that if Bc G,\4,
is an arc, then B contains at most N ramification points of G,.

Then X is a pseudo-arc.

Proof. Let >0 be given. Let I, be a sequence of arcs in Q such that Lim 7/, = X.
We may assume that the graphs G, are piecewise linearly embedded in Q such that
LimG, = X and f,: X = G, moves no point more than 1/n. By Lemmas 3 and 6
choose &= gy>€;>...>ey4,>0 and integers m,<..<my,, such that if
nzmyzy, GoS(X,644) is a connected graph and (x,y)eGxI, such that
d(x,y)<e;4; then a component of C(n, &) = {(a,b) € GxI,| d(a, b)<e,} separates
{x}x1I, from Gx{y} in Gx I, and a component of C(n, ey.,) separates G, x {0}
from G,x {1} for n>my.,,.

Let n2myyq, 4,=G,=S(X, ey4,). Let Ky be a piecewise linear arc in

{tx, ) e d,x L] d(x, ¥)<eyis}

which is irreducible with respect to separating 4,x {0} from A,x {1} in 4,x1,.
We may suppose that the natural projection f,: X - G, moves each point of X
a distance less than f ey, Let {x,, X5, ..., x;} be all the branch-points of G, on 4,,.
We may assume that K, n [{x;} xI,] is a finite set for i = 1, ..., e. Let H; be the
closure of the union of the components of G,\{x;} which are disjoint from 4,.
Then H,nH;=@ if i#j Let {(x;, 1), .., i)} = {({x} x L) A Ko}
and define

1 5y
K =Ku U1 ['Ul (Hix{t; )] =G, x1, .
i=1 j=

Notice that =; restricted to every component of K;\K, is a homeomorphism.
For each n>0, let K, be a homeomorphic copy of Ky embedded in Q such that
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the natural projection &,: K, - G, moves points less than #, (ie. & =m0k,
where A,: K, - K| is a homeomorphism and 7 : G, x I, — G, is the usnal projection).
Let B, be the maximal arc in K, such that {,(B,) = 4,. For each sufficiently small n
there exists an arc L, = {(x, y) e B,x I,| d(x, y)<&:N+2} such that L, projects homeo-
morphically onto B, by ny: K, ><I - K,.

We will show that there exxsts 8 }éeyrp-map @: X — K. Choose a taut open
chain cover % = {U,...., U} of G, such that:

(1) each U, is connected,

(2) for each vertex (v, t) of the plecevwse linear arc K|, there exists exactly one
element U;e % such that ve U,

- (3) for each element U, € % there is at most one point v € U; such that (v,.t) is
a vertex of K, for some tel,, .

(4) for each 7= 1,...,[ there exists exactly one element U,e% such that
H,nCl(U,) # @.

Let # = {W,, ..., W,} be a taut open chain cover of K, such that W} is con-
nected, C1{(W¥;) contains at most one vertex of X, and {11:1(Wj)}j-’= , refines %. The
map 7;|Ko: Ky — Ay induces a (pattern) map nf: {l,...,p} =+ {1, .., n} such that
¥ @) —==t(z+1)|<1, t = 1,...,p—1. By [14, Theorem 3], there exists a taut open
chain cover ¥ = {V{, ..., ¥,} of X such that V,c Uy, for t =1, ..., p. It is now
not difficult (cf. the proof of Corollary 2) to construct a 4 ey, ,-map ¢: X — K; = K,
(this map is not necessarily onto) such that d(x, @(x))<éys+a

For each branch-point x € B, of K, let (x, »,) be the unique point on L, and
let C, be the closure of the union of the components of K,\{x} disjoint from B,.
As in the proof of Theorem 10 (recall d(x,y,)<ey+,), there exists a graph
M,<{(u,b)e Cyx 1| da,b)<e} such that M, is homeomorphic to &,
M, ({x}x 1) = {(x, )} and M, separates C,x {0} from C,x{I}. .

By Lemma 7, K = L, u U {M,] xe B, is a branch point of K} is a graph

in K, x I, which separates K, x {0} from K,x {1}, K is homeomorphic to X, and

d(a b)<s for each (a,b) e K. The theorem now. follows by Theorem 8.

Turorem 12. Let X be a hereditarily indecomposable continuum in Q such that
o(X) = 0. Suppose X = lim(G,, ) where each G, is a graph such that:

‘ (1) if C is a simple closed curve in G, then C has at most one boundary point in G, °

(2) there exist integers N and M and families of arcs %4, ..., B, in G, for
each n such that:

(a) each are in G\ 6 (U 4,,) contains at most "N branch points,

i=1

(b) A, consists of a single arc and for i = 2, ..., M each arc in B,; intersects

i-1
U ( U ,,) in exactly one point,
(c) each pair of elements “of B, intersects in at most ené point.

Then X is a pseudo-arc.
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Proof. The case M = 1 was done in Theorem 11. The proof is similar to that
of Theorem 11 and is omitted. '

COROLLARY 13. Let X be a hereditarily indecomposable continuum with ¢(X) = 0.
If there exist an integer N and a sequence T,) of trees with at most N branch-points
such that X = lim(Ty, fa), then X is a pseudo-arc. :

Proof. This follows immediately from Theorem 10.

COROLLARY 14. If X is a continuous image of the pseudo-arc such that every proper
subcontinuum is @ pseudo-arc, then X is a pseudo-arc. £

Proof. It follows from the Boundary Bumping Theorem [6], p. 172 that X is
indecomposable and hence hereditarily indecomposable. By [13], Theorem 15,
. 0o(X) = 0. Let x € X and let 6>0 be given. Let U be an open neighbourhood of x
of diameter less than e. If C is any component of X\U, then C is either a point or
a pseudo-arc. Hence there exists an open &-chain cover %¢ of C such that U %
is open and closed in X\U. Since X\U is compact there exists an integer n and
Cy, .., C, components of X\U such that %, U ..U %, cover X\U. Let
¥y ={Wels| Wn U= 0} and for ie{2,..,n} let

Vi={WNUuvl Ve¥;,VnU=2@}.

[ j<i
Then (U ¥ ) n (U7 ;) =@ fori#j

Let ‘

¥V =St(U,{U e, v ..0Uc) VYV 1V.. VY.

Then ¥~ is an open cover of X of mesh less than 3¢ such that the nerve of ¥~ has at
most one branch-point. The corcllary now follows from Theorem 10.

A continuum X is said to be almost chainable if for evely &>0 there exists an
open cover % of X such that mesh(%)< ¢ and a chain ¢ = {Cy, ..., C,} in % with
X<S(U ¥, e, CIC) n C(C) # B if and only if |i—j]<1 and

ClC,u...uC)=C,U...uC,_; UCKC).
COROLLARY 15 (Lewis [11]). If X is an almost chainable homogeneous continuum,
then X is a pseudo-arc. '

Proof. By [3], all proper subcontinua of X are pseudo-arcs. By the proof
of [12, I, Theorem 3.6], ¢(X) = 0 and hence by [13] X is the continuous image of
the pseudo-arc. The resuvlt follows from Corollary 14.

ProBLEM 16. Suppose X is a homogeneous hereditarily indecomposable con-
tintum such that ¢(X) = 0. Does X satisfy the conditions of Theorem 127
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