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" Indeed if there was such a P then the sentence (Ex;).4(x,) would be abso-
tute w.r.t. M and this is not the case if &, = Bord M. Thus the classical Shoenfield
method can not be applied here.
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Continuous relations and generalized G; sets
by

Zofia Adamowicz (Warszawa)

Abstract. In the paper some purely topological analogues of the main notions connected with
forcing are considered. We compare the properties of the topo]oglcal notions with the propertles of
their forcing counterparts.

Introduction. The paper was inspired by studies on forcing.

If we consider the first original notion of forcing, i.e., the set of Cohen forcing
conditions 2<®, then 2<% codes a base of the natural product topology in 27. If x is
a fixed real in the Shoenfield universe 2, then the relation R, s I (f =x), is a rela-
tion between finite sequences s and ¢. If @ is a family of dense subsets of 27, then
the set X of reals @-generic over 2°¢ is a subset of 2. If 9 is so large that for
a e X, i,(x) can be defined then the function f (¢) = 7,(x) defined for « € X is a func-
tion from X into 2°. Since all R, X and f are objects connected with the topological
space ¢(2°,2<®), we can ask about their topological characterizations. Moreover,
we can study their topological properties. This leads us to the notions of aregular
relation, a g. G; set, a forcing function, and a continuous relation. These notions are
not restricted to the case of the Cantor space (2%, 2°) but the reader should always
have in mind this space or the Baire space (%, ©~) as the main illustration. The
mentioned notions are inspired respectively by

1) sets of the form {x: x is P-generic over M} for given P; M,

2) relations of the form {{p,q>: peP, p IF(xeq),qe @} for ~given
P,Q,M,xeM,

3) functions of the form f (@) = i,(x) for given P, M, x e M¥,

4) relations of the form {(x,»)>: {x,y) is generic over P>< Q, M} for given
P, QO M

In certain cases our topological notions characterize the appropriate forcing
notions, then we indicate it — Fact 2, Corollary 4 but in general the correspondence
is not strict. However, it turns out that certain topological theoretms about our
notions have analogues in the forcing theory. We prove a few such theorems, mainly
Fact 1 and Theorem 1. Indeed Fact 1, especially the fact that Dom f is g.G; for f°
satisfying certain assumptions corresponds to the fact that the function f(e) = 7,(x)
is defined for all generic «. Theorem 1 corresponds to the fact that if {x, 'y} is generic
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over Px Q then x is generic over P. Also the proof of Theorem 1 uses ideas of the
proof of the above fact about forcing.

Note that the topological and the forcing theorems are not strictly equivalent
but only analogous. We infer that notions characteristic for forcing and certain
theorems about forcing have their purely topological counterparts free of logical
notions. Perhaps this can serve to eliminate forcing from certain topological proofs.

Since there are a number of applications of forcing in topology and descriptive
set theory, we can ask whether it is possible to characterize forcing as a topological
method. Our answer is half positive. There are topological notions and operations
that behave like forcing and sometimes can replace forcing, as we show in the present
paper. However they are not exactly forcing. Probably there is no quite exact transla-
tion between forcing and any topological method. Thus forcing can hardly be called
a topological method.

The main - exposition of the topological aspects of forcing is Mostowski [5].

I think that the present exposition is in a sense deeper. Mostowski was not interested -

in eliminating logical notions from forcing. Moreover, Mostowski did not study
those relations and: functions in which we are interested but certain very general
forcing ‘notions, e.g. the relation p I ¢ (x). -

We have said that our notions and theorems have forcing counterparts. On the
other hand they have counterparts in elementary recursion theory and descriptive
set theory. For example the name “g.G,” comes from the fact that our 2.Gy sets
generalize the G sets as regards both their definition and some of their properties.
Theorem 1 is a generalization of a theorem about G sets in Polish spaces. At the
end of the paper we show that the standard proofs of some theorems about Turing
degrees and about degrees of constructibility follow the same pattern, This expresses
the connection between forcing and relative recursiveness. The main bridge here is
the notion of continuity, which plays a great role in the paper.

Let us consider a topological space (X, 0> where @ is a basis of a topology
in X. Assume ¢,¢'c@ and gnqg' # G = gnqg'el, ge0 = g # 3. Let us
remind what we mean by a tree in & and by a branch of a tree — these notions
were defined in [1].

Namely let T be called a tree in <%, 0) if it is a partially ordered set consisting
of a subset of @ with the ordering <. Let us identify the tree T with the subset of @
and write T=0. Let x be a branch of T iff (p)(xep — (Ep)y (x ep'sp)).

We shall say that a subset 4<% is generalized G (write g. G,) iff there is a tree
T<0O and a tamily @ of dense (w.r.t. the ordering) subsets of T such that 3 < & and
X€A = x is a @-generic branch of T} i.e. x is a branch of 7 and (D)a((Bp)p(x € D).

The idea to define the notion of a g. G5 set comes from forcing as we have already
said in the introduction. Indeed if M is an inner model, P € M is a partially ordered
set then P determines a topology 0 in the space & of ultrafilters of P (see [2]). Let
us identifz P with 0. Then the set 4 of M-generic branches of P is a 2.G; set and
PY(P)<P (P). Indeed, if @ = {D: D dense in P& DeM}, then xed = x is
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a @-generic branch of P. Conversely, if 4 is g.G; and the tree T is in M and the
family @ is included in M then A contains the set of M -generic branches of P.

The name “g.G,” comes from the fact that every G, subset of £ can be repre-
sented by the equivalence

xed = xis a 9-generic branch of T

for a tree T and a countable family &. Indeed let T = {pe 0: (Ex)(xep n 4)}
and let D, = {peT: pcA4,} where 4 = () 4, and 4, are open. Let 2 = (Dneo-

We shall show certain properties of g.G; sets. generalizing properties of G sets.

Although the notion of a g.G; set comes from forcing, we can show cer'fain
descriptive properties of such sets without referring to inner moi.iels and forcing.
Only in the proofs we shall use forcing ideas. We shall see that certain g. _G“ sets occur
in natural topological questions. Especially the notion of a g.G, set is connectefi
with the notion of continuity. We shall show for example that the domain of a maxi-
mal continuous function from (%, 0) to a 0-dimensional space defined at a'dense
set is always a g.G, set. This will serve us to give a topological characterization of
the forcing relation. Contrary to Mostowski [5] this characterization does not men-
tion logical notions..

Let us recall from [1] that a relation RE% x ¥ is called continuous in (Z,0>
w.r.t. {¥,0) iff

(C)r@ely € 4~ Ep)e(x €p&p N DomR=R™*(g))) -

We shall show that if R is continuous and g.G, then ZR (i.e. DomR) is g.G;5
under some natural assumptions. .

Also if R is continuous and g.G,, then under certain assumptions IIR
(i.e. {x: () R(x, ¥)}) contains a dense. g.G; subset. This can serve to study ?h.e
question whether a projective set A contains a g.G; subset and hence whether it
contains elements generic over an appropriate inner model. ,

Pirst let us consider a few natural examples of g G sets.

ExameLE 1. Let (%, 0% be of dim0. For instance Sﬂ’ , 0> can be tt.le space
{w?, w7 where in w, we take the discrete topology and wy © denotes the Tlchonow
basis. Let T<0 be a tree such that 7'is a dense subset of @ w.r.t. the order‘mg. Then
there is a family @ of dense subsets of @ such that x is a branch of T’ =xisa g -ge-
neric branch of 0. Hence the set 4 of branches of T'is g.G; both with the tree T’
and with the tree 0. ' i

Proof. Let pe 0. Let D, be defined as D, = {peT:p'Spvp' np = gy,
By the density of T'in @, D, is dense in T. Let & = {D,: pe0}. Letus show'that x
is a @-generic branch of @ iff x is a branch of T. Indeed let x be Z- genenc; Let
pe0. Let p'<p be such that xep'&p'eD, Then p'np# @ and thus p'sp.
Hence x is a branch of T because p’'€T. /

Conversely let x be a branch of T. Let p e 0.Ifxep th‘en EpN<p '(x ep/ eT).
Then p' € D,. If x ¢ p then by the fact that <%, O is of dimO0, there is a p’ such
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that p’ np = @& x€p'. Hence p' € D,. Thus x intersects D,. Hence x is Z-gen-
eric. W

~EXAMPLE 2. Let (Z, 0) = (o, wi®>. Let ASX be called w,—Gy iff 4 is
an intersection of w; open sets. Let T<® be a tree. Then the set of branches 4 of 7'
is ©; —G;. Indeed let (K;);,, be an enumeration of finite subsets of w,. Let x € &
Then x is a branch of T"iff (§),,(Ep)r(x e p=x} K,) where we identify a finite se-
quence with the neighbourhood that it determines.

Let Ay = U {peT: (Es)y,<a(p<s& doms = Ky)}. Let 4 = Q A

Then x € A = x is a branch of 7. Also conversely, if 4 is w, —G; then there is
a tree T and a family 9 of dense subsets of T" of power w; such that xe 4 = x is
a 9-generic branch of T. Hence on w; —Gj; set is g.G;.

ExamprE 3. Lét <%, 0) be c.c.c. Let 4= be w; —G; and be an intersection
of dense open sets. Assume Martin’s axiom and 2°>w,. Then 4 is dense.

Remark 1. It is reasonable to restrict our notion of a £.G; set to the notion
of 2 M-g.G; set for an inner model M (e.g. M = L) where by an M-g. G5 set we
mean a g. G, set with the tree T and the family 9 such that T'e M, @ <M. Hence
under appropriate assumptions it is easy to find sets that are not M-g.G;.

As we shall see by analysing the proofs, our Theorems 1 and 2 hold if we replace
everywhere “g.G;” by “M-g.G,”.

Remark 2. If in our definition of a g.G; set we drop the restriction <% then
every set would be 8.G; (provided that no singleton is open). Indeed let AS%.
Define D, = {pe 0: x¢p}. Then we have

x€eA = xis a @-generic branch of ¢

where 9 = {D,: x ¢ 4}.
Remark 3. If x is a 2-generic branch of T then we can assume that
* (D)a(P)r(xep — (Bp)p(x €p'<p)).

Indeed otherwise take for De 2,

D' ={peT: Agplg<p)} and 9 ={D:De9}.
For: the sequel let us mean by a @-generic branch of T a branch with. the prop-
erty (x).
Let us now pay attention to continuous functions.
Let (%, 0>,<#%, 0") be topological spaces, 0’ <Z. Let us recall from [1] that
we say that <&, 0") has the centralization property iff 0" (0"=0' & 0" is centra-
lized = () 0" # Q).

Let f: <%, 0> - (¥, 0">. Assume that Dom fis dense in <(Z, 0>. Let us say

that f is maximal continuous iff for every f* if /" continuous and f<f’ then f=f.

Facr 1. Let f: <%, 0% — (¥, 0"> be maximal continuous with q dense domain.
Let ¥, 0"y have the centralization property and be T,. 1- Then f is g.G; in (% 0>
XL, 0 and Domfzs g.G; in L%, 0>.
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Proof. Let us define a tree TSOx 0’ as fbllows: let

{p.9»€T = (pnDomfsfY(g).

Let us show that <x, ) € fif {x, y) is a branch of T. Let {x, ¥ €1, <x, y> € {p, g>.
Then by the continuity of f'there is a p'< p such that x e p’ & p' n Dom f=f~(g).
Hence {p’, 9> € T& (p'q><{pg). Thus {x, y> is a branch of T, To show the con-
verse let us show that the set of branches of T is a continuous function containing f
(and hence it is equal to f). Let {x, > e f = (x, y> is a branch of T. Then fef vy
the previous considerations.

Let us show that f'is a function. Indeed suppose that {x,y>,{x,y"> are branches
of T,y# y.Letyeq, y'eq, g g = & by the centralization property <Y, O’
is of dim0. By the fact that (x, y>, {x, y’) are branches of T, there are p, g, p’, G’
such that xep Nnp', yegsq, Y egd'cq' &<p,5>,<{p’, 7> eT. Hence

p nDomfsf~(g)& p' n Domf<f (7).
Let p"'<=p np’. Then
P nDomfsf g &p”’ nDomfsf (7).

Let Xe p n Dom f. Such an X exists by the density of domf. Then fXeqg
and f(X) e g’. This is a contradiction, because § N g’ = @.

Let us show now that f is continuous. Let {x,y) ef, yegq. Let {p,q>eT
be such that x € p, y € ¢’ Sq. Let x' e p n Dom f. Hence {x', ") € f for a 3. Suppose
that y' ¢ ¢'. By the fact that <&, ¢') is of dimO (this follows easily from the fact
that (%, 0') has the centralization property and is 77) there is a ¢ such that
y'eg&q ng= . Hence there is a {p’,g'> e T such that X’ ep'sp &y ef =¢q
because {x'y’> is a branch of T.

We have {p,q¢'>eT, <p,g'>eT. Hence p n Domfcf~ 1(q’)&p ~n Domf
=f~4(g"). Hence p' N Domfcf~ Ygh & p' nDomef @& qg' ng =G, As
before we obtain a contradiction. Thus p A Dom f<f~(g"). Hence follows that f is
continuous.

Moreover we have proved

(p.gpeT = (pnDomfcsf(g).
Let us show now that Domf is g.G;. Let for ge @', D, be defined as
peDy = (Bq)sflp, ¢ eT)v(E)Kp, ¢>eT& ¢ ng=19).
(D)geor-
Let us show that
xeDomf = x is a Z-generic branch of .
Let x e Dom f. Let g be given, We have f(x) & g or ' (x) ¢ ¢. If f (x) € ¢ then there is
adp,gdsuchthatxep & (¥ eqd<q& (p,q'>eT. Thenpe D,. Assume f (x) & q.

Hence let ¢' ng = &, f(x)eq’. Let p’, ¢ be such that (p q¢>eT, xep/,

q"<q', f(x)eq". Then p'e D,. Hence x is a Z-generic branch of @.
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Assume conversely that x is a @-generic branch of 0. Define
T,={ge0: B(xep&<p, e}

By the fact that f is a function, T, is centralized. Let y e (N T, Let us show that
{x,y) is-a branch of T. Indeed let {x, y> € {p, qy. Let p’ € D, be such that x ep.
Let ¢’ be such that (p/;qyeT&q'cq or ¢ ng=193. We have: ¢’ € T,. Thus
yeq'and hence ¢’ N g % &. Thus g<q. Letp’<p np,xep”. Then (p',q'>el
(because T has the property (p, q> e T& psp == <P, 4> € T) and {p", ¢"><<{p, O-
Hence {x,y) is a branch of T, and thus xeDom f. Thus Domf is g.G5. W

COROLLARY 1. From the proof of Fact 1 it follows that if f is maximal continuous
with a dense domain and (¥, 0" is separable then f, Dom f are Gj.

COROLLARY 2. If f is maximal continuous with a dense domain then thereisatreeT
such that i

(x,y>ef = (x,y) is a branch of T

(next we shall say in such a case that f is determined by T and T has the following four
properties -

W) <p,peT&p'<p = P, PeT,

(p.a>eT&g<q = {p,q>eT,

@ (P, eT&{p,¢>eT = qnqg #B&p,gngrel,

) (P EpI<yKp"s pel) = <p, 0 eT,

@) (@e

D, ={p: Bg)((g'<qvd na=0)&<p, > eT)}

is dense in 0.

Indeed (1), (2) follow directly from Fact 1 that

{p,g>eT = (p nDomfsf~*(g))

and (3), (4) use Fact 1 that Dom f is dense. Also conversely if T satisfies (1)-(4)
and ¢’ is countable then one can prove that the set of branches of T"is a maximal
continuous function with a dense domain.

Let us call a tree satisfying (1)~(4) — regular.

Assume that (%', 0>, <%, 0") are definable and identify them with their defini-
tions. Then we can speak about them in boolean extensions of the universe.

In [3], a relation R=@x @’ is called a forcing relation if it satisfies (1)~(4). This
name is justified. Namely we have

Facr 2. Let 0, 0' be topologies in &, ¥ respectively that are absolutely codable,
i.e. there are sets {0, <),{0', <') and isomorphisms ¢, ¢’ between {0, <),
{0, =) and {O', <>, {0, =) respectively such that the relations x € ¢(p) for pe 0
and y € ¢ (q) for q € O' are absolute w.r.t. boolean extensions of the universe (see [1]).
Let 0,0 have the centralization property both in the universe and in all its
boolean extensions.
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Then RSO xO' satisfies (1)~(4) iff there is a ye V° (the Shoenficld universe)

v,

such that R(p,q) is the relation p Ik (y € q). :

Remark 4. If @ is an absolutely codable topology in &, <O, <) is the set
coding O, then for p, p' € O the relations

psp’, p#9, pnp #9
are absolute under an identification of ¢ with O.
Indeed psp’ iff p<p’, p # @ simply for all pe O and p N p’ # B iff there
is an r in O such that r<p, r<p’.
Proof of Fact 2. Let us prove “=>". Let us identify @ with O, 0' with O'.
Work in ¥°. Note that (1)~(4) are absolute and so they are true in ¥° for §, &, R.
Let x be the canonical name of the O-generic element of %. Let O, be defined as

Oy ={qge 0" Bp)slxer& R(p, )} -
Let us show that finite subsets of O have non-empty intersections. So let ¢ ... g, € O%.
Then there are p, ... p, € O such that x € py N ... A p, and R(p;, q). Let pe O be
such that x e pS p; N ... 0 p,. Then by (1), R(p,q) and by 2), R(p, g1 0 .. O 4,).
Hence ¢, N ... N g, # @. By the centralization property of 0, there is y such that
ye&()O%. Let y be a Shoenfield constant satisfying y € () 0. We shall show that y
is as required.
Let us show first

(+%) @slyeq = Eppxep& R(p, ).
Let ge 0. If (Ep)s(x e p & R(p, ¢)), then evidently y e ¢ by the definition of y.
So assume that y e g. Consider

D,={pe0: E)s(d'sqva ng=B&RPp. 1))}
By (4), D, is dense. Hence (Ep)p,(x €p) (note that D, is absolutely definable with
the parameter ¢ which is an element of the standard set 0"). Take this p. Let ¢’ be
such that R(p,¢’) and ¢'Sq or ¢’ ng =@. But yeq n g because ¢'¢ 0;. So
q' nq #* @ and thus ¢’ &q. Hence by (1), R(p, q) and thus (Ep)s(x € p & R(p, 7))
So we have proved (k). ‘
To show that R(p,q) = p i (yeq) it is enough to show that
Rip,q)= (V°E(xep = yeq) for peO,ge0’.
Assume R(p, q). Then V° E R(p, §). Then by (x), in V° x € p = y € §. Conversely
let pe 0, geO' and assume that V° F (xep=>yeg). Suppose TR(p,q). If
(P") <o EP")< w{R(p", ) then by (3), R(p, ¢) contradicting our assumption. Thus

(EBp) <P Nep 1R(P", ) -
Take this p’. Consider D,. By (4), D, is dense. So there is ap’ in D,suchthatp”<p'.

Take this p". Then there is a ¢’ such that g'<q or ¢ ng=90 and R(P",q). If
¢'Sq then by (1), R(p", g) which contradicts the choice of p". Hence ¢’ ng = @.
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Work i in ve. Suppose that xe p” By the deﬁmtlon of y,yEq because RG", 7).
Hence ye 7. But x & p because p'cpandxe D= y €g.Hence y e 4. Contradiction
because 7 g' = @. Thus x ¢ p"".

We have shown that VO x¢p”. But ||x ep"|| = p"" # . Contradiction.
Hence R(p, 9).

The implication “«<” is obvious. Thus we have proved Fact 2. M

COROLLARY 3. Note that if {%,0),{¥, 0"y are the Baire space {®”, ®=
or the Cantor space {2°,2°°>, then the assumptions of Fact 2 are satisfied. Hence
we have for REw =" x ©~? or RS2 x2°®: Rsatisfies (1)-(4) iff there is a yeV® R
or V*™° such that R is the relation p & (y € ).

COROLLARY 4. Let us call a maximal continmious function with a dense domam
“a forcing function”. By Fact 1, Corollary 2 and Fact 2, if the topologies in question
satisfy the assumptions, then every forcing function restricted to generic x’s is a func-
tion f (x) = i(y) for a y, where i is the usual contraction of V° and x is identified
with {pe O: xep}.

Thus we obtain a characterization of the functions i(y) as restrictions of maximal
continuous functions with dense domains to generic X’s.

Let us now consider continuous relations. Let us prove a generalizgtion of the
following Louveau’s lemma:

LemMA. Let {%,0),{%, 0" be Polish spaces. Let RS% x% be continuous
and G5. Then DomR is G5 in (¥, 0).

THEOREM 1. Let (%, 0>,<¥, 0" be given. Assume either

(1) (%, 0" has the centralization property or

(2) ¥, 0" is a complete metric space.‘

Let REZ xW be 2.G5 in X XY, i.e. there are T, 9 such that

R(x,y) = “Ax,¥) is a D-generic branch of T” .

Fix T, 9 ond take “...” for the definition of R. Assume that the relation x € DomR
under the above definition of R is absolute w.r.t. bodean extensions of the universe,
and so are the assumptions (1), (2). Let R be continuous. Then DomR is g.G;.

Proof. First we shall show that we can assume about T the following property:
p,q>eT&p'<p&p nDomR # @ = {p',qyeT.

This property is called in [1] “the continuity of I™.
First notice that we can assume

Kp, Ir(ELx, p)R({x, y) €{p, ) -
Otherwise take an appropriate subtree. Then define .
T={p,@>e0x0": (B, @)1 ¢><Lp, D).
Then R(x,y) = {x, ) is a P-generic branch of T. Let now
T'={<{p,¢>eT: p o DomRSR™(g)}.
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Let for De 2,

= {{p, @ e T": (B, D)op, ) <<B> D)} »
9 ={D": Deg}.
Notice that
R(x,y) =<x,y) is a @' generic branch of T".

Indeed let R(x, y). Then by the continuity of R, {x,y) is a branch of 7. By the
fact that it is a & generic branch of T it is a @' generic branch of 7.

Conversely if {x, ¥ is a @'~ generic branch of T, then it is a &-generic branch
of T and thus R(x, ). Let P = {pe 0: (Bq)(Kp,q> eT)}.Letge ¢, De D, ne w.
Let .

Di={peP: (Bf)<(Kp,q» e D& q'sq&6(@)<1nv (1)<,@)<q
Kp, > ¢}
if <#¥, 0"y is metric. If <#, 0") is not metric we define D? analogously, dropping
only “8(¢")<1/n”.

Then D¢ is dense in P, Indeed let peP. Then either (p")<,(4)<{p"> ¢'> ¢ T and
then pe D? or there is a ¢'<g, p’< p such that {p’, ¢’> e T. Then there is a {p", ¢'">
<{p',q'> such that {p”,q">eD&S(¢")<1/n. Hence p'<p&p"e Di. Let
9 = {D%: DeD,qe0',ne o). Let us show that

xeDomR = x is a & generic branch of P.

If x e Dom R then there is a y such that R(x, y). By the fact that {x, y) is a &-ge-
neric branch of 7' we immediately obtain that x is a & -generic branch of P.
Assume now that x is a &-generic branch of P. Define the following tree

T,={qe0: Bp)(xep&<{p,q>eD}.

Let De@. Let D, = {ge0': (Bp)(xep&<{p,q) € D)}. Let us show that Dx is
dense in T,,. Let ge T. Then {p,q> e T& x e p for a p. By the fact that x inter-
sects DY, there is a p'<p such that xep' & p'e Di.

By the continuity of T, {p', ¢» € T and hence p’ e D implies (Eq") <4 p.q'>yeD
Hence ¢'€ D,, ¢'<q and thus D, is dense in T.

Let 9' = {D,: De®}. Let B be a complete boolean algebra such that

VB E(2' is countable).

Work in ¥®. Notice that there is a y which is a 9’-generic branch of T,. Indeed
let ' = {D,: new). If ¥, 0 is a complete metric space then we can assume
that g e D, — d(g)<1/n.

Define a sequence (g,)yeo as follows: let g, be an arbitrary element of Dy;
assume that g, has been defined, ¢, € D,

40241224, -
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We have g, € Ty. Let ¢'<g, be such that ¢'e D". Then §'=gq,. Let g,41€ D;yy

be such that g,, ; =¢". If (&, 0% is complete metric then (Ey) (v € () g)- If <%, 0")
: n

has the centralization property, then as well such a y exists — in this case we have
to be careful to ensure that y is a branch of T, but this is not difficult. Let us show
that {x,y)> is a @-generic branch.of T.

Indeed let us show first that it is a branch of T. Let

(p,@elx0, <x,y>elp, .

We have: y is a branch of T, thus there is a ¢'<q such that ¢’ € T,. By the defini-
tion of T, there is a p’ such that x e p' & {p'g'> e T. But then x is a branch of P thus
there is a p’’ such that xep”’=p np'.

By the continuity of T, and by the fact that p’’ € P we have {p”, ¢’> € T. Hence
{x,y> is a branch of T.

Let now D €. Let us show that {x, y> intersects D. By the fact that y inter-
sects D, there are g, p such that xep& yeqg&<{p,q)eD. Thus (x,y) is a
Z-generic branch of T. Hence R(x,y). W

COROLLARY 5. If R is G5 in the Baire or Cantor space and continuous then Dom R
is Gj.

COROLLARY 6. If R is w,— Gy, 0'<w,, R continuous, then DomR is w;—Gj.

Both corollaries follow from the proof of the theorem.

In the sequel let us denote DomR by XR and let IIR = {x: (»)R(x,»)}.

Up to now we have studied ZR for a g. G5 R. Let us now fix our attention on I1R.

It is very difficult to find a condition on R sufficient for the fact that ITR is g. G;.
We shall formulate a condition on R sufficient for the existence of 2 8.G; dense subset
of IIR.

THEOREM 2. Let {%, 0, (@ 0" beT, topaloglcal spaces with the centralization
property. Let REZ X% be continuous and g.Gs. Let T, 9 be such that

R(x,y) = <x,y) is a D-generic branch of T.

Let L[T, 9] be the smallest inmer model M such that Te M, 9<=M. Assume that
P(0) nLIT, 9] is countable (especially @ is countable). Let f: & — ¥ .be a forcing
function. Define R(x) as R(x,f(x)). Assume that for every forcing function f, R g is
dense in (%, 0. Assume that IIR is absolute. Then IIR has a dense g.Gs subset.

Remark 5. If <%, ¢") has a decomposition % = {J %, into clopen sets such
iel

that &, are compact then we can drop the assumption that for every forcing func-
tion f, R, is dense, We obtain as the conclusion:

if IIR is dense then it contains a dense g G; subset,

if IIR is non-empty then it contains a non-empty g.G; subset. Gencrally IIR
has'a g.G; subset 4 such that (p)f(d np # & =IIR N p = @).

We shall not give a proof of this remark here — the proof is rather complicated,
and is a slight. refinement of the proof of Theorem 4.1 of [4].
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Proof of Theorem 2. We shall show that every x which is generic over (D
L[T,2] is in IIR.

Indeed — let x be generic over @, L[T, 9]. Let f be a forcing function. Let us
show that R, is g.G; and continuous. Let D e 9. We can assume that D is dense
openin T, i.e.if {p,q> € D& P, 'y e T& P, ¢><{p, gy then (p’, ¢’y € D. Let
Dy be defined as follows

Dy = {p: (Eq)({p, 9> € D& p n Domfcf~*(¢))& (Ex),(f(x) € )}

Let us show that D is dense in 0. Indeed let p e 0. Let xe p n R, Then <{x, (%))

is a 9- generic branch of 7. Hence there isa {p’, ¢> in D such that p'< p & <{x, f (x)>

€ {p’, q'>. By the continuity of £, there is a p"” < p’ such that p”’ » Dom f<f~(g).
Notice that by the proof of Theorem 1, we can assume that T is continuous.

Hence {p", ¢)> € T and thus {p", g> € D. Hence p"’ € D, and thus D is dense in 0.
Let 9, = {D;: DeP}. Let us show that

xeR; = x is a & ,-generic branch of 0.

Indeed let x € R;. Then 1mmed1ately x is a 9;-generic branch of 0.

Assume conversely that x is a & ;-generic bianch of 0. Let D e 2. There is a p
in D; such that xep. Hence there is a ¢ such that {p,g)e D. We have
p n Domf<f~Y(g). Hence f (x)e g. Thus <{x,f(x)) is a 9-generic branch of T
and hence x € R;.

Thus for every forcing function f, x € R;. Notice that if y e L[x, T, 2], then
there is‘ a forcing function f such that y = f(x).  Hence

Lfx, T, 2] F (»)R(x, y) .

By the absoluteness of IIR, we have (»)R(x,y). Hence x eIIR. B

COROLLARY 7. If %, ¥, R are as before and we assume that for every forcing
Junction f, IIR n Dom f is dense, then we can drop the assumption that R, is dense.
Indeed if xeIIR n Domf, then we have (»)R(x,y) and especially R(x,f (x)),
i.e., Ry(x).

COROLLARY 8. If &, @, R are as before and IIR intersects every dense in an open
set, g.Gy subset of &, then IIR has a dense g.G, subset. If 0" is countable and IIR
intersects every dense in an open set Gy set, then IIR has a dense g Gy subset.

COROLLARY 9. Let A2 be ITL. Then A has a definition
x €4 = (¥)gu(En)Ro(Xpns ¥ pn> 1)
where R, is recursive. Let

R(x,y) =

Then R is G,, and continuous.

(EH)RO(X tn> y pa>s T’l) .

Notice that in Theorem 2 we can assume-only that Rf is dense only for such
functions f that f is determined by a tree in L[T', 2]. This follows from the proof of
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Theorem 2. For such functions Dom fis g. G, where the appropriate tree is also in
LT, 9] — this follows from the proof of Fact 1. Hence in our case we have: If 4
intersects every dense in an open set I3(L) set then A contains every Cohen number.

Notice that the converse is also true. Thus if 4 €Il then A intersects every
dense in an open set II3(L) set iff A contains all Cohen numbers.

Now let us apply our theorems to degrees.

Let us consider_a typical form of a theorem about degrees in recursion, give
a general version of its proof and then translate it to the case of degrees of constructi-
bility in ZF and give a condition under which the translation holds in ZF and the
proof can be translated as well ) ‘ o

Let <&y, 0p>, (%1, 0>, {¥, 0> be topological spaces, %;,¥<2” or
X, Yco®, 0; = 2°° or 0} = w*°. Let 0,, 0, be other topologies in &y, # réspec-
tively, and let @; be finer than @;. Let R(xq, x;, )SZox %, x¥ be closed in

0 X 0y x 03. Let Rec = {x € 2”: xisrecursive}. For simplicity assume 0 = 0] =27*,

EXAMPLES.

(1) (%, 0o>=42°,27, {&,0,>={Rec, discrete), (¥, 0,> =<, discrete),
Ry(xg, %15 my = Xp(n) # x4(n). '

) (o O = <2°,2°%, &, = {x€2%: (x), Rec}, 0, = {(s, (W) >:xe 2y},
¥ = {ye2®: (y), codes a recursive tree §2_<“°x2<‘” determining a continuous
function from 2° to 2% (), € Rec, (), e w}, 0, discrete. Let

Ry, %1, ¥) = g = (Moo} v (x1)0 = (1] & %o((),) # (x:):((12) -

(3) (%o 00> = <2°,2°%) = {F,0,>,% = {y: (30, (¥)1, ()2 code recursive
tree ©2°%x2°? determining continuous functions, (), € Rec}, 0, discrete. Let

Ri(xo, X1, y) = [350 = (Polx)Vvx = (J’)o((xo)o)]&
& [(x0do = (M1(x)vxy = (Mo((x0)1)] &
& [(x0)y = (M1(x1) vxy = (§)s] .

(4) Let the spaces (%, 0p>, {¥, 0,) be as in (3) é.nd (%0, as m (2). Let

Rufxo, %15 %) = [(x0do = (Do((x0)o) v ((x1do) = (Mo((¥o)1) v (x0)1
= (J’)1((x1)o)v (x1)o = (»)s]& (x0); = (J’)x((xo)o)&
& (xo)y # (%9)1 - .
Let (T,).c, enumerate all recutsive trees =2°”x2°® determining a function
from %, to &, continuous in 2° w.r.t. @, (it is clear what this means on the basis
of Corollary 8). Let A(x,) be of the forms:

(@ ((En)(T.(xo)(n) is not defined or (By)R (xg, Tu(xo), ),
®)  (QEN(T(x6)1}(m) is not defined or (By)R((o)o, T, {(%0)1), 1)) &
& (&) (En)(T{(x0)o)(m) is not defined or (Ey)R'((xo);, T{(%0)0)> 7)) »
(©)  ()En)(Tu(xo}(n) is mot defined or (By)R(xo, Tu(xo), ¥)) &
& ()(En)(To((%0)1) () is ot defined or (Ey)R'((xo)g, T(x0)1), ) &
" & () (Bn)(To(%0)o) () is not defined or (By)R"((x,);, T. ((x0)5)» 7)) s

IS
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(d) two first lines of (c).

As far as our examples are considered we have:

If (1) and A4 is of the form (a) with R = Ry, then A(x,;) = x, is not recursive;
if A is of the form (b) and R, R’ = Ry, then A4 (x,) = (x,), is not recursive in (xg),
and (xo); is not recursive in (xq)o.

If (2) and 4 is of the form (a) with R = R,, then 4(x,) = x, is of minimal
non-recursive Turing degree.

If (3) and A is of the form (c) with R = R;, R', R = R,, then A(x,) = x,

x0
determines an initial segment of Turing degrees of the form (xo)n<>(xo)1.
. Rec
If (4) and A is of the form (d) with R = R,, R' = Ry, then A(x,) = x, deter-
L ¢ )
mines an initial segment of the degrees of the form 1{52)?

In all the above cases “(Ex;)A(x,)” is a theorem of recursion theory.

Let us analyse briefly a typical proof of such a theorem. For simplicity let us
consider the case where 4 is of the form (a), i.e.

A(x0) = (e)(Bn)(T,(x0)(n) is not defined or (By)R (%o, Tu(*0),¥)) -

The cases (b), (¢), (d) need a somewhat more subtle treatment.

Let (&1, 07> = {{xea®: x codes a tree T}, discreted. Let R(xy, x(,y,n)
be defined as “x;(n) is undefined or R(xo,x;(%o),»)”. Then R is closed in
259x 0} x 05. We have A(xg) = (x,)az (Bn)(By) R(xo, %1, »,1).

Let us define a topology @, in &, with good properties such that R is continuous
in Oyx 0y w.r.t. 0,. Assume that 0, is discrete.

Let p € 0, if there are s€2°%, ¢, y, n such that p = s N {xg: R(x,, Tuxo)»)}
or p =5 {xg: To{x,)(n) is not defined} or if p is a finite intersection of sets of the
above form. If R is an alternative as in Example (2), then we can define p e 0, if
there are e, y’s such that

p=sni{xg xo= (J’)o(Te((xo)o)) and xo(()’)z) # T((Xo)i)((}’)z)}
or
p =30 {x: Tlxp) = (¥), and xo((}’)z) #* Te((xo)l)((J’)z)}
or
p =50 {xg0 Toxo)((3),) is not defined} -

or p is a finite intersection of sets ‘of the above form.

Then @, consists of sets that are closed in the usual topology 2<®, and hence 0,
has the centralization property., Moreover, R is continuous in @y x 0} w.r.t. 0,.
Next let us take a subset Py<0, such that :

(%) (p%)po(€)(Ex),a(x is a branch of P, and (Ey)(En) R(x, T.,y,n)).

We know that if the theorem (Exo)A(xo) is true, then such a Py 0@, exists.
However, it may be difficult to find such a P, explicitly. Notice that instead of 0,

3 — Fundamenta Mathematicae CXXIII, 2


GUEST


104 Z. Adamowicz

we could take any topology @ finer than @, consisting of sets that are closed in the
usual topology in %, and then we would preserve the centralization property of 07
and the property that R is continuous in 0y x @3 w.r.t. 0,. In practice we take usually
the topology of perfect sets with recursive codes included in an element of @,. Then
it we define

D, = {p: (By)(En)(p={xo: R(xo, Te(x),¥) or Tu(xo)(n) is undefined})},

then we can usually show that D, is dense in the topology defined above, and so, if
we take P, to be this topology itself, then P, has the property (%) (we have to
remark that P, is in fact a topology in the set of branches of P,, not necessarily in
the whole %,, but this does not lead to any difficulties).

Notice that IR is continuous in 0, w.1.t. 0 by the definition of @, and by the
continuity of R in @yx 0] w.r.t. @, together with Theorem 1, ZR is g.G; in
%y, 00y x %1, 07 ). By the density of the sets D,, the assumptions of Theorem 2
are satisfied (by 2K in the place of R). Hence ITZR = 4 is g.G,. Analyzing the proof
of Theorem 2 we can infer that if & = (D,).c, then any @-generic branch of P,
gives a solution of A.

Let us return to set theory. Let (%,2%°), {(Z'1,0,>,<{¥, 0, be spaces such as
those considered above, let R= %o x % x¥ be closed in 25°x2%°x 03, let (T,
be as above and let:

eeo

A(x0) = (€)(En)(Tu(x0) (n) is not defined or (By)R (x,, Ty(x5), ¥)) -

Assume that (Exo) 4 (x,)is a theorem of recursion theory. Let us perform the following
operation: replace in the definitions of (%', 05>, {Z1,0,), (¥, 0,5, R, R, (T)ecw
the word “recursive” by the word “constructible”. We can easily do it in our Exam-
ples (1)-(4) to have a better idea of the meaning of this operation. Then (in most of
the cases and especially in (1)-(4) we obtain spaces (%', 2=°), {&1,0,>, (¥, 0,>
such that 0; are L-codable (see [1]), R remains closed in 2%°x @, x 0, and instead
of the enumeration (7,),.,, we obtain an enumeration ( Tg):emf of constructible trees

S279x27% determining a function continuous in 2°° w.r.t. @,. By applying the
same operation of translation to 0, we would be able to prove, under the assumption
wi~w, that

(Exo)(&) (%o € Dom T; — (By) R (x0, T(x0), 7)) ,

i.e., that there exists an x; such that for every x, in &, which is recursive in x, and
a constructible parameter (consisting of a tree Ti) we have (Ey) R(x,, x4, y). Usually
this is not very interesting. However, we shall show a condition under which the
above predicate A (xo) is equivalent to the statement: for every x, in &, which is
constructible from x, we have (Ey)R(x,, x;, ¥). Then (Ex,)A(xy) is in our case
a theorem about degrees of constructibility. E.g. if (1) and A is of the form (a) with
R = R (under the appropriate translation), then A4(xy) = x, is not constructible;
if 4 is of the form (b), then 4 (x) = (x,)y, (Xo); 2re mutually non-constructible from
each other; if (2) and 4 is of the form (a) with R = R,, then 4 means that x, is of
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minimal degree of constructibility; and analogously if (3) (c) or (4) (d), the 4(x,)
means that x, determines the appropriate initial segment of degrees of constructibility.
As we said before, we can replace the theorem (Ex,)4 (xo) under the assump-
tion wk~w by an appropriate consistency theorem. Then in the last two examples,
i.e. (3) (c) and (4) (d), we infer that it is consistent that the degrees of constructibility
just form the given pattern.
Let @, be defined by the appropriate translation of the former definition of @,
i.e. pe 0, iff p is a finite intersection of sets of the form s v {xo: Tg(xo) (n) is not
defined} or 5 M {x: R(xy, Tu(xo), »)} for given a, n, y. Let P, be a subset of a re-
finement of @, with the appropriate property (+#%) and the centralization property:
Let us consider the following condition:

for every regular tree T< P, x O, and for every p € P, there is a g€ Py,
g<p and a tree T<2°°x2°® determining a function from %, to Z,
continuous in 2<° w.r.t. @, total on g and such that for x, g, T(x,)

= T(xo)

If <%, 0,> has the Moore property (see [1]), then condition (+##x) is a conse-
quence of, say, the following condition (f), which can be called “fusion lemma”
by an analogy to the Sacks “fusion lemma™ from his paper about perfect forcing:

(Fkk%)

(f) if (D,),eo is a constructible family of sets dense in P, and p € Py, then there
is a g<p in P, such that
(n) (Bm,) (Bsy ... Sp,) (@ N 5;€ D, and <51 V...V S, ).

Indeed, let us show that (f) = (esxx).
Let T be given and satisfy the assumption of (x#xx), and let p &€ Po. Define

D, = {p' € Py: (Ep)y, (Et)(rankp’ = n and
domt = n&p'<t&<{p,p*>e}.

Let ¢ be such as in the “fusion lemma” for p and the famlly (Dpeo (note that D,
are dense in Pg). Let T be defined as

{¢s,t>: snge D, for an n& (Ep(rankp' = n and {gn s,p1>eT)}.

Let us show that 7T'determines a function from ¢ to & which is total and continuous
on g in 2% w.r.t. 0,. Let xgeq. Then T'is defined at xo and

Txo) = U {t: (BHUs, 1> e ™.

Indeed, for every n there is a ¢ such that dom? = » and there is an s such that
xoeqnsand {s,t>e T Hence T(x,) is defined. Let (p}),c. be such that
(Br){domt = n& (BS)=x({g n s, piveT) & pr<i&rankp) = n).
Then T{(x,) € () pl, by the centralization property {Z'y, ;). On the other hand, T'(x,)
is then deﬁnec{l and T(x3) € () pL. Hence T{(xo) = T(,). It remains to show the con-
" .
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tinuity of the function T"in 2%¢ w.r.t. ¢,. Let T(x,) e p*. Then there is a p'<p*
such that T(xo) e p' and there is an s such that <g ns,5'> €T and x,es. Let
x5 € g n 5. Then T'(x}) € p! by the continuity of T'and by the fact that T'is total on q
(we have shown this a few lines above). But as we have just shown, T(xp) = T(xp).
Hence T{(xp) e p*, which we wanted to show.

Let us show that P;, ZR, (%o Py), {%;0,), satisfy the assumptions of
Theorem 2. .

Notice first that Ris closed in 0, x @, x 0, because, as we have already remarked,
it is closed in 259 x2%“x @05 and 0, are finer than 0. Hence R is g.G;. Moreover
by Theorem 1, ZR is g.G,. Notice that by the definition of @y, (ZR) is continnous in
(Zor 00> Wor.t. {Zy,0,).

Let T be a regular tree included in 04 x 0.

The crucial point is to show that

@ (P)rEx)somr(x € p° & B R(x, T(x), )},

i.e. the density of (ZR);, where f is determined by 7.

Note that for T there is a dense set Dy = {p € Py: T determines a total function
on p and there is a tree T, =2°° x 2°° determining a total function on p, continuous
in 2%° w.r.t. 0; such that for xo€p, T(xy) = T,(Xo)}.

Let us also note that P, has the following property:

(P°)zo(m)(Bx)yo (x is a branch of P, and (Ey)(Em)R(x, T,, 7, n),
ie., ‘

(P° po(m) (BX),, (x is a branch of P, and either T,(x)(n) is not defined or
ENR(x, T,(x),) .

Let p° € P,. Let g< p° be such that g € Dy. Take T,. Let x be such that xe g,
X is a branch of P, and there are y, n such that R(x, T,,y,n). Take y, n. Notice that
we cannot have “T,(x)(n) is not defined” because T, is total on g. Hence we have
R(x, T(x), y). Let r = {xo: R(%o, Tyx5)¥)}. Then'r & 0. By the fact that P,c0,
or P, is finer than @, there is an ' such that »’=r ~ ¢. Let x4 €1, x, be a branch
of P,. Let us show that x, is as required in (}). We have x, € domT because XoE€4.
Moreover, we have R(x;, T(x,), ») because R(x,, T, (x0), ¥) and T(x,) = T(xo).

By Theorem 2 we have:

every filter generic over Py, L determines a real x, such that

L(x0) F (x,)(EY)R (%, Xy, ¥)
i.e. L(xp) F A(x,). This is what we wanted to show,
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