in this way across the (n+1)st row until \(X_{n+1} \) has been constructed and an embedding of it into \(X_n \). Finally, construct \(X_{n+1,n+1} \) from \(X_{n+1,n} \), the way that \(X_{2,2} \) was constructed from \(X_{2,1} \).

Remark. H. Cook has shown that \(X_{n,n} \) is not hereditarily equivalent. It is an open question whether there exists a hereditarily equivalent (plane) continuum of positive span.

crances

Another universal metacompact developable
\(T_\gamma \)-space of weight \(m \)

by

J. Chaber (Warszawa)

Abstract. Let \(m \) be an infinite cardinal number. We use the \(d \)-line constructed in [Ch2] in order to construct a simple universal metacompact developable \(T_\gamma \)-space of weight \(m \) analogous to a universal metric space of weight \(m \) constructed implicitly in the proof of the Nagata-Smirnov metrization theorem.

Let \(m \) be an infinite cardinal number. In [Ch2], we constructed a universal metacompact developable \(T_\gamma \)-space of weight \(m \). The construction was based on a method of constructing mappings into metacompact developable \(T_\gamma \)-spaces from [Ch1].

In section one of this paper we give another construction of a universal metacompact developable \(T_\gamma \)-space of weight \(m \). This construction is related to a method of constructing mappings into metacompact developable \(T_\gamma \)-spaces investigated in [Ch3]. It is simpler than the construction in [Ch2] and has its metric analogue.

In section two we generalize the construction from [Ch2] in order to obtain an orthocompact developable \(T_\gamma \)-space of weight \(2^m \) containing all orthocompact developable \(T_\gamma \)-spaces of weight \(m \). The universal metacompact developable \(T_\gamma \)-space of weight \(m \) constructed [Ch2] is contained in this space in a natural way. We indicate some relations between the two constructions of universal spaces (Remark 2.7).

All our constructions are based on the \(d \)-line \(D \) (denoted by \(T(0) \) in [Ch2]).

In section three we construct a \(d \)-interval \(D^* \) and discuss the problem of extending mappings into \(D \) and \(D^* \).

We use the terminology and notation from [E]. All mappings are assumed to be continuous and all spaces are assumed to be \(T_\gamma \)-spaces. The last section requires the knowledge of [Ch2].

The \(d \)-line \(D \) [Ch2] (a similar, but more complicated space has been constructed earlier in [H]) is \(N^m \), where \(N \) is the set of natural numbers and \(N_\omega = N \setminus \{0\} \). The topology of \(D \) is generated by the subbase

\[\mathcal{P} = \{ B(i); n, i \geq 1 \} \cup \{ B(i,j); n, i, j \geq 1 \} \cup \{ D \}, \]

UNIVERSITY OF ALABAMA IN BIRMINGHAM

Birmingham, AL 35294

Received 17 May 1982
where

$$B_n(i) = \{ d \in D : d(n) \geq i \}$$

for \(n, i \geq 1 \),

$$B_{n,i}(j) = \{ d \in D : (d(n) \geq i) \land (d(n+i) \geq j) \}$$

$$= (D \setminus B_n(i)) \cup B_{n+i}(j)$$

for \(n, i, j \geq 1 \).

It is easy to see that \(D \) is a \(T_1 \)-space and each element of \(\mathcal{P} \) is an \(F_n \)-set in \(D \). Thus \(D \) is a developable \(T_1 \)-space of countable weight. The point \((0, 0, \ldots, \infty) \) is \(D \) and will be denoted by \(0 \).

A collection \(\mathcal{P} \) of open subsets of a space \(X \) is said to be interior-preserving if the intersection of every \(\mathcal{P} \subset \mathcal{P} \) is open in \(X \).

A space \(X \) is said to be metacompact (metalindeff or orthocompact) if each open cover of \(X \) has a point-finite (point-countable or, respectively, interior-preserving) open refinement. It is well known that a developable space is metacompact (metalindeff or orthocompact) if it has a development consisting of point-finite (point-countable or, respectively, interior-preserving) covers. Observe that \(D \) (any space with a countable base consisting of \(F_n \)-sets) has a development consisting of two-element covers.

A space \(X \) is said to be semi-stratifiable [C] if each closed subset \(A \) of \(X \) can be represented as a \(G_{\delta} \)-set \(\bigcap_{k \geq 1} W_k(A) \) in such a way that \(A \subset A' \) implies \(W_k(A') \subset W_k(A) \) for \(k \geq 1 \). Developable spaces are semi-stratifiable.

In what follows \(m \) denotes a fixed infinite cardinal number, \(\mathcal{P}(m) \) is the powerset of \(m \) and \(\text{Fin}(m) \) is the set of finite subsets of \(m \).

The spaces constructed in this paper depend on \(m \). Since \(m \) is fixed, we shall often omit the symbol \(m \).

1. The space \(S(m) \). One of the most familiar universal metric spaces is the product of countably many hedgehogs \(J(m) \) [E, 4.4.9]. The Bing metrization theorem can be considered to be a corollary to the fact that, for any discrete collection \(\{ U_{a} : a \in m \} \) of functionally open subsets of a space \(X \), there exists an \(f : X \to J(m) \) such that \(U_{a} \) is the inverse image of the open sphere of \(J(m) \) corresponding to \(a \in S \).

If the collection \(\{ U_{a} : a \in m \} \) is locally finite, then \(J(m) \) should be replaced by \(K(m) \), which is a "hedgehog" whose spines are cubes of finite dimension.

More precisely, \(K(m) = \{ x \in J(m) : \| x \| \neq \| 0 \| \} \) is considered with the topology of uniform convergence.

It is easy to see that \(J(m) \) is naturally embedded in \(K(m) \) and that the Nagata-Smirnov metrization theorem can be proved by constructing an embedding into \(K(m) \).

Let \(S(m) = \{ x \in D^n : \| x \| \neq \| 0 \| \} \) and consider \(S \) with the topology generated by the products of open subsets of \(D \) with all but a finite number of factors equal to a neighbourhood of \(0 \) in \(D \) (more precisely, the intersections of such products with \(S \)).

It is easy to check that \(S \) is a metacompact developable \(T_1 \)-space of weight \(m \).

For \(a \in m \), put \(H_a = \{ x \in S : x(a) \neq 0 \} \). Clearly, \(\{ H_a : a \in m \} \) is a point-finite collection of open subsets of \(S \). We have (see \[C2, Theorem 1])

1.1. Theorem. If \(X \) is a perfect space and \(\{ U_a : a \in m \} \) a collection of open subsets of \(X \) which is point-finite as an indexed collection, then there exists a mapping \(f : X \to S(m) \) such that \(f^{-1}(U_a) = U_a \) for \(a \in m \).

An immediate consequence of 1.1 is

1.2. Corollary. The space \(S(m)^m \) is universal for all metacompact developable \(T_1 \)-spaces of weight \(m \).

The proof of 1.1 will be based on the following lemma.

1.3. Lemma. If \(\{ V_i \}_{i \in I} \) is a decreasing sequence of open subsets of \(X \) and \(\bigcap_{i \in I} V_i = \emptyset \), then there exists a mapping \(f : X \to D \) such that \(f^{-1}(B_i) = V_i \) for \(n, i, j \geq 1 \).

Proof. We modify a reasoning from [Ch2]. We construct, by induction on \(n \geq 1 \), sequences \(\{ V_i(0) \}_{i \in I} \) of open subsets of \(X \) such that

(i) \(V_0(i) = V_i(0) \) for \(i \geq 1 \)

and, for \(n \geq 1 \),

(ii) \(\{ V_i(0) \}_{i \in I} \) is a decreasing sequence and \(\bigcap_{i \in I} V_i(0) = \emptyset \)

(iii) \(V_j(i,j) = V_{j+1}(i) \) for \(j \geq 1 \)

(iv) \(V_j(i,j) = \bigcap_{k \geq 1} V_{j+k}(i,j) \) is open in \(X \) for \(i, j \geq 1 \).

The sequence \(\{ V_i(0) \}_{i \in I} \) satisfying (ii) is defined by (i). Suppose that \(\{ V_i(0) \}_{i \in I} \) is given. For \(i \geq 1 \) let \(\{ V_j(i,j) \}_{j \in I} \) be a decreasing sequence of open subsets of \(X \) such that \(X \setminus V_j(i,j) = \bigcup_{k \geq 1} U_{j+k}(i,j) \).

Put

\(V_{j+1}(i) = \bigcap_{k \geq 1} V_{j+k}(i,j) \)

From the inductive assumptions it follows that (ii) and (iii) are satisfied. Moreover, from (ii) and (iii) it follows that, for \(i \geq 1 \), \(f^{-1}(B_j(i)) = V_j(i,j) \) and, consequently, \(V_j(i,j) = X \). If \(j \geq 1 \), then, by virtue of (iv), \(f^{-1}(B_0(i)) = V_0(i) \). This gives \(f : X \to D \) satisfying \(f^{-1}(B_0(i)) = V_0(i) \) and, consequently, \(f^{-1}(B_0(i,j)) = V_j(i,j) \). Thus \(f \) is continuous and (i) and (iii) imply that \(f^{-1}(B_1(i)) = V_1(i) \) and \(f^{-1}(D(0)) = \bigcap_{k \geq 1} V_{i+k}(i) \).

Proof of 1.1. Suppose that \(X \) is a perfect space and \(\{ U_a : a \in m \} \) is a collection of open subsets of \(X \) such that \(\{ a \in m : x \in U_a \} \) is finite for \(x \in X \).

Since \(X \) is a perfect space, one can construct, for \(k \geq 1 \), collections \(\{ E_k(k) : k \in m \} \) of closed subsets of \(X \) which are locally finite as indexed collections and satisfy \(\bigcup_{k \geq 1} E_k(k) = \emptyset \) for \(a \in m \) if \(X \) is developable and \(\{ \emptyset \} \) is a development of \(X \).

Then \(E_k(k) = X \setminus S(X, U_a, \emptyset) \) satisfy the above conditions.

For \(a \in m \) put \(V_a(i) = U_a \) and \(f_a(i) = U_a \setminus E(k) \) for \(i \geq 1 \). Let \(f : X \to D \)
be a mapping satisfying the requirements of Lemma 1.3 with respect to the sequence \(\{V_a\}_{a \in A} \).

Since \(f^{-1}(D \setminus \{0\}) = U_a \), it follows that \(f = \bigtriangleup f_a : X \to S \) and \(f^{-1}(H_a) = U_a \).

Thus it remains to prove that \(f \) is a continuous function.

From the definition of the topology of \(S \) it follows that it is sufficient to show that, for any (subbasic) neighbourhood \(B \) of \(0 \) in \(D \), \(\{f^{-1}(B) : a \in m \} \) is interior-preserving in \(X \).

Take \(B = B_k(i, f) \). For \(a \in m \), \(X \setminus f^{-1}(B_k(i, i)) = V_a(i) \setminus V_a(f) = \bigcup E_k(k) \). Thus \(\{f^{-1}(B) : a \in m \} \) is locally finite in \(X \) and consequently \(\{f^{-1}(B) : a \in m \} \) is interior-preserving.

1.4. Remark. If \(X \) is additionally assumed to be collectionwise normal, then \(S(m) \) can be replaced by \(K(m) \) in 1.1.

1.5. Remark. Let \(Y(m) = \{s \in \mathbb{D}^m : \{a \in m : \gamma(a) \notin \delta B \} < 2^\omega \) for each neighbour-}

hood \(B \) of \(0 \) in \(D \) and consider \(Y \) with the topology generated in the same way as the topology of \(S \). It can be checked that \(Y \) is a quasi-developable \(\{B \} \) \(T_1 \)-space with a point-countable base of cardinality \(m \). If \(X \) is a semi-stratifiable space with a point-countable collection \(\{U_a : a \in m \} \) of open sets, then one can use \([Ch3, 44]\) in order to define sets \(E_k(k) \) which allow us to construct, as in the proof of 1.1, \(f : X \to Y \) such that \(U_a = f^{-1}(\{y \in Y : \gamma(y) \neq 0 \}) \). Thus \(T(m) \) contains topologically all metrizable developable \(T_1 \)-spaces of weight \(m \).

Unfortunately it is not a perfect space (even for \(m = \omega_0 \)).

2. The space \(Z(m) \). The existence of \(f : X \to S(m) \) satisfying the requirements of \(S(m) \) was based on the possibility of representing each \(U_a \) as the union of a countable collection \(\{E_k(k)\}_{k=1}^\omega \) of closed subsets of \(X \) such that \(\{E_k(k) : a \in m \} \) was locally finite in \(X \) for \(k \geq 1 \).

If \(\{U_a : a \in m \} \) is an interior-preserving collection of open subsets of a semi-stratifiable space \(X \) and \(P(a) = \bigcap \{U_a : a \in m \} \setminus \{U_a : a \notin \Delta \} \) for \(a \in m \), then each \(P(a) \) can be represented as the union of an countable collection \(\{E_k(a, k)\}_{k=1}^\omega \) of closed sets such that \(\{E_k(a, k) : a \in m \} \) is discrete in \(X \) for \(k \geq 0 \). We shall use this observation in order to generalize the construction of \(T(m) \) and \(T(m) \) from \([Ch2, Theorem 1, Remark 6]\).

Let \(Z(m) = \mathcal{P}(m) \times D \) and put

\[
G(a, i) = \{s \in Z : a \in m \text{ and } (a \neq i \Rightarrow d(1) \geq i)\} \quad \text{for } a \in m \text{ and } i \geq 0,
\]

\[
G(a, i) = \mathcal{P}(m) \times B_k(i) \quad \text{for } n, i \geq 1,
\]

\[
G(i, i) = \mathcal{P}(m) \times B_k(i) \quad \text{for } n, i \geq 1.
\]

Consider \(Z \) with the topology obtained by taking the sets defined above as a subbase of \(Z \).

One can modify the proof of the developability of \(T(m) \) from \([Ch2]\) in order to show that \(Z \) is an orthocompact developable \(T_1 \)-space. Clearly, the weight of \(Z \) is \(2^m \).

For \(a \in m \), put \(G_a = G(a, 0) \). Clearly, \(\{G_a : a \in m \} \) is an interior-preserving collection of open subsets of \(Z \). We have \([Ch2, Theorem 1]\).

2.1. Theorem. If \(X \) is a semi-stratifiable space and \(\{U_a : a \in m \} \) an interior-preserving collection of open subsets of \(X \), then there exists \(\epsilon : X \to Z(m) \) such that \(g^{-1}(G_a) = U_a \) for \(a \in m \).

2.2. Corollary. The space \(Z(m) \) contains topologically all orthocompact developable \(T_1 \)-spaces of weight \(m \).

Proof of 2.1. Suppose that \(\{U_a : a \in m \} \) is an interior-preserving collection of open subsets of a semi-stratifiable space \(X \). Let \(P(a) \) and \(\{E_k(a, k) : a \in m \} \) for \(k \geq 0 \) be as in the introduction to this section.

Put \(V(i) = X \setminus \{E(a, k) : a \in m \text{ and } k < i\} \) and let \(f : X \to D \) be a mapping satisfying the requirements of 1.3 with respect to the sequence \(\{V(i)\}_{i=1}^\omega \). Define \(g(x) = (\{a \in m_k \mid f(x) \in E(a, k)\}) \in Z(m) \).

Clearly, \(g^{-1}(G_a) = U_a \) and the proof of the continuity of \(g \) reduces to a simple observation that

\[
g^{-1}(G_a(i, j)) = \bigcap \{U_a : a \in m \} \setminus \{E(a, k) : b \neq a \text{ and } k < i\}.
\]

2.3. Remark. If \(E(\emptyset, 0) = P(\emptyset) \), then \(g(x) = (\{a \in D : a \notin \emptyset \text{ or } d = 0\} \).

We shall close, we can always assume that \(E(\emptyset, 0) = p(\emptyset) \).

2.4. Remark. \(\{U_a : a \in m \} \) is point-finite as an indexed collection, then \(g(x) \in \mathcal{F}(m) \times D \).

2.5. Remark. If \(X \setminus U_a : a \in m \) is locally finite as an indexed collection then \(g(x) \in \{a \in D : a \notin \emptyset \text{ or } d = 0\} \).

2.6. Remark. A weak form of Lemma 1.3 (sufficient for proving 2.1) can be obtained from 2.1 by observing that \(\{U_a : a \in m \} \), where \(U_0 = X = U_0 = P(a) \) for \(1 \leq a < \omega_0 \), is point-finite, \(p : T(m) \to D \) defined by \(p(a, d) = (\{a \in m \} \), is continuous and consequently \(f = p : X \to D \), where \(g : X \to T(m) \) is given by 2.1, satisfies \(f^{-1}(E_k(i)) = V(i) \) for \(i > 1 \).

2.7. Remark. The function \(f : T(m) \to S(m) \) defined by \(f(a, d) = (a, d) \), if \(a \neq d \) and \(f(a, d) = 0 \) if \(a = d \) is continuous. The restriction of \(f \) to \(\{a \in m : a \notin \emptyset \) or \(d = 0\} \) is a homeomorphic embedding of the subspace \(T(m) \) into \(S(m) \).

3. A developable \(T_1 \)-compactification of \(D \) and extensions of mappings. The results of \([Ch2]\) and the first section of this paper show that \(D \) can be considered to be a generalization of the real line (a \(d \)-line). It is easy to observe that \(\{B_k(i, i) : i \geq 1\} \) is a countable open cover of \(D \) with no finite subcover. We shall construct a developable \(T_1 \)-compactification \(D^o \) of \(D \) (a \(d \)-interval).

Let \(aN = N \cup \{a\} \) be the Alexandrov compactification of \(N \) and consider \(aN \) with a well-order generated by the natural homeomorphism of \(aN \) onto \(aN + 1 \).

Put \(D^o = \{d \in aN^o : d(1) = a \} \) implies \(d(n) = 0 \) for \(n \geq 1 \). Consider \(D_1 \)
Another universal metacompact developable T_i-space of weight ω is a universal metacompact developable T_i-space of weight ω

References