

in this way across the (n+1)st row until $X_{n+1,n}$ has been constructed and an embedding of it into $X_{n,n}$. Finally, construct $X_{n+1,n+1}$ from $X_{n+1,n}$ the way that $X_{2,2}$ was constructed from $X_{2,1}$.

Remark. H. Cook has shown that $X_{\infty,\infty}$ is not hereditarily equivalent. It is an open question whether there exists a hereditarily equivalent (plane) continuum of positive span.

erences

- [1] R.D. Anderson, Hereditarily indecomposable plane continua, Bull. Amer. Math. Soc. 57 (1951), p. 185.
- [2] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), pp. 478-483.
- [3] C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), pp. 233-245.
- [4] H. Cook, Continua which admit only the identity map onto non-degenerate subcontinua, Fund. Matn. 60 (1967), pp. 241-249.
- [5] A. Emeryk and Z. Horbanowicz, On atomic mappings, Colloq. Math. 27 (1973), pp. 49-55.
- [6] W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), pp. 99-107.
- [7] An uncountable collection of mutually exclusive planar attriodic tree-like continua with positive span, Fund. Math. 85 (1974), pp. 75-78.
- [8] Hereditarily indecomposable tree-like continua, Fund. Math. 103 (1979), pp. 61-64.
- [9] Hereditarily indecomposable tree-like continua II, to appear.
- [10] K. Kuratowski, Topology, vol. 2, New York-London-Warszawa 1968.
- [11] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), pp. 199-214.
- [12] S. Mardešić and J. Segal, e-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), pp. 146-164.

UNIVERSITY OF ALABAMA IN BIRMINGHAM Birmingham, AL 35294

Received 17 May 1982

Another universal metacompact developable T_1 -space of weight \mathfrak{m}

b

J. Chaber (Warszawa)

Abstract. Let \mathfrak{m} be an infinite cardinal number. We use the d-line constructed in [Ch2] in order to construct a simple universal metacompact developable T_1 -space of weight \mathfrak{m} analogous to a universal metric space of weight \mathfrak{m} constructed implicitly in the proof of the Nagata-Smirnov metrization theorem.

Let $\mathfrak m$ be an infinite cardinal number. In [Ch2], we constructed a universal metacompact developable T_1 -space of weight $\mathfrak m$. The construction was based on a method of constructing mappings into metacompact developable T_1 -spaces from [Ch1].

In section one of this paper we give another construction of a universal meta-compact developable T_1 -space of weight m. This construction is related to a method of constructing mappings into metacompact developable T_1 -spaces investigated in [Ch3]. It is simpler than the construction in [Ch2] and has its metric analogue.

In section two we generalize the construction from [Ch2] in order to obtain an orthocompact developable T_1 -space of weight 2^m containing all orthocompact developable T_1 -spaces of weight m. The universal metacompact developable T_1 -space of weight m constructed [Ch2] is contained in this space in a natural way. We indicate some relations between the two constructions of universal spaces (Remark 2.7).

All our constructions are based on the d-line D (denoted by T(0) in [Ch2]). In section three we construct a d-interval D^* and discuss the problem of extending mappings into D and D^* .

We use the terminology and notation from [E]. All mappings are assumed to be continuous and all spaces are assumed to be T_1 -spaces. The last section requires the knowledge of [Ch2].

The d-line D [Ch2] (a similar, but more complicated space has been constructed earlier in [H]) is N^{N+} , where N is the set of natural numbers and $N_+ = N \setminus \{0\}$. The topology of D is generated by the subbase

$$\mathscr{P} = \{B_n(i) \colon n, i \geqslant 1\} \cup \{B_n(i,j) \colon n, i, j \geqslant 1\} \cup \{D\},\,$$

249

where

$$B_n(i) = \{ d \in D \colon d(n) \ge i \} \quad \text{for} \quad n, i \ge 1 ,$$

$$B_n(i,j) = \{ d \in D \colon d(n) \ge i \Rightarrow d(n+1) \ge j \}$$

$$= (D \setminus B_n(i)) \cup B_{n+1}(j) \quad \text{for} \quad n, i, j \ge 1 .$$

J. Chaber

It is easy to see that D is a T_0 -space and each element of $\mathscr P$ is an F_σ -set in D. Thus D is a developable T_1 -space of countable weight. The point $(0,0,...) \in D$ will be denoted by 0.

A collection \mathcal{U} of open subsets of a space X is said to be interior-preserving if the intersection of every $\mathscr{U}' \subset \mathscr{U}$ is open in X.

A space X is said to be metacompact (metalindelöf or orthocompact) if each open cover of X has a point-finite (point-countable or, respectively, interiorpreserving) open refinement. It is well known that a developable space is metacompact (metalindelöf or orthocompact) iff it has a development consisting of pointfinite (point-countable or, respectively, interior-preserving) covers. Observe that D (any space with a countable base consisting of F_{σ} -sets) has a development consisting of two-element covers.

A space X is said to be semi-stratifiable [C] if each closed subset A of X can be represented as a G_{δ} -set $\bigcap_{k\geqslant 1}W_k(A)$ in such a way that $A\subset A'$ implies $W_k(A)$ $\subset W_k(A')$ for $k \ge 1$. Developable spaces are semi-stratifiable.

In what follows m denotes a fixed infinite cardinal number, $\mathcal{P}(m)$ is the power set of m and Fin(m) is the set of finite subsets of m.

The spaces constructed in this paper depend on m. Since m is fixed, we shall often omit the symbol m.

1. The space S(m). One of the most familiar universal metric spaces is the product of countably many hedgehogs J(m) [E, 4.4.9]. The Bing metrization theorem can be considered to be a corollary to the fact that, for any discrete collection $\{U_n: \alpha \in \mathfrak{m}\}\$ of functionally open subsets of a space X, there exists an $f: X \to J(\mathfrak{m})$ such that U_{α} is the inverse image of the open spine of J(m) corresponding to α [S].

If the collection $\{U_{\alpha}: \alpha \in \mathfrak{m}\}$ is locally finite, then $J(\mathfrak{m})$ should be replaced by K(m), which is a "hedgehog" whose spines are cubes of finite dimensions.

More precisely, $K(\mathfrak{m}) = \{x \in I^{\mathfrak{m}}: |\{\alpha \in \mathfrak{m}: x(\alpha) \neq 0\}| < \aleph_0\}$ considered with the topology of uniform convergence.

It is easy to see that J(m) is naturally embedded in K(m) and that the Nagata-Smirnov metrization theorem can be proved by constructing an embedding into $K(\mathfrak{m})^{\aleph o}$.

Let $S(\mathfrak{m}) = \{s \in D^{\mathfrak{m}} : |\{\alpha \in \mathfrak{m} : s(\alpha) \neq 0\}| < \aleph_0\}$ and consider S with the topology generated by the products of open subsets of D with all but a finite number of factors equal to a neighbourhood of 0 in D (more precisely, the intersections of such products with S).

It is easy to check that S is a metacompact developable T_1 -space of weight m. For $\alpha \in \mathfrak{m}$, put $H_{\alpha} = \{ s \in S : s(\alpha) \neq 0 \}$. Clearly, $\{ H_{\alpha} : \alpha \in \mathfrak{m} \}$ is a point-finite collection of open subsets of S. We have (see [Ch2, Theorem 1]).

1.1. Theorem. If X is a perfect space and $\{U_{\alpha}: \alpha \in \mathfrak{m}\}$ a collection of open subsets of X which is point-finite as an indexed collection, then there exists a mapping $f: X \to S(\mathfrak{m})$ such that $f^{-1}(H_{\alpha}) = U_{\alpha}$ for $\alpha \in \mathfrak{m}$.

An immediate consequence of 1.1 is

1.2. COROLLARY. The space $S(m)^{\aleph_0}$ is universal for all metacompact developable T1-spaces of weight m.

The proof of 1.1 will be based on the following lemma.

1.3. Lemma. If $\{V(i)\}_{i\geq 1}$ is a decreasing sequence of open subsets of a perfect space X and $\bigcap_{i \ge 1} V(i) = \emptyset$, then there exists a mapping $f: X \to D$ such that $f^{-1}(B_1(i))$ = $V(i), f^{-1}(D \setminus \{0\}) = V(1)$ and $X \setminus f^{-1}(B_n(i,j)) \subset V(1) \setminus V(j)$ for $n, i, j \ge 1$.

Proof. We modify a reasoning from [Ch2]. We construct, by induction on $n \ge 1$, sequences $\{V_n(i)\}_{i \ge 1}$ of open subsets of X such that

(i)
$$V_1(i) = V(i)$$
 for $i \ge 1$ and, for $n \ge 1$,

(ii)
$$\{V_n(i)\}_{i\geqslant 1}$$
 is a decreasing sequence and $\bigcap_{i\geqslant 1}V_n(i)=\emptyset$,

(iii)
$$V_n(j) \subset V_{n+1}(j) \subset V(1)$$
 for $j \ge 1$,

(iv)
$$V_n(i,j) = (X \setminus V_n(i)) \cup V_{n+1}(j)$$
 is open in X for $i,j \ge 1$.

The sequence $\{V_1(i)\}_{i\geq 1}$ satisfying (ii) is defined by (i). Suppose that $\{V_n(i)\}_{i\geq 1}$ is given. For $i \ge 1$ let $\{U_n(i,j)\}_{j\ge 1}$ be a decreasing sequence of open subsets of X such that $X \setminus V_n(i) = \bigcap U_n(i,j)$.

Put

(v)
$$V_{n+1}(j) = V_n(j) \cup \bigcup_{i=1}^{j-1} (V_n(i) \cap U_n(i,j)).$$

From the inductive assumptions it follows that (ii) and (iii) are satisfied. Moreover, from (ii) and (iii) it follows that, for $i \ge j$, $V_n(i) \subset V_n(j) \subset V_{n+1}(j)$ and, consequently, $V_n(i,j) = X$. If i < j, then, by virtue of (v), $V_n(i,j) = U_n(i,j) \cup V_{n+1}(j)$. This shows that (iv) is satisfied and completes the inductive construction.

For $n \ge 1$ put $V_n(0) = X$ and define $f(x)(n) = \max\{i \ge 0: x \in V_n(i)\}$. This gives $f: X \to D$ satisfying $f^{-1}(B_n(i)) = V_n(i)$ and, consequently, $f^{-1}(B_n(i,j))$ $=V_n(i,j)$. Thus f is continuous and (i) and (iii) imply that $f^{-1}(B_1(i))=V(i)$, $f^{-1}(D\setminus\{0\}) = V(1)$ and $X\setminus f^{-1}(B_n(i,j)) = X\setminus V_n(i,j) = V_n(i)\setminus V_{n+1}(j)\subset V(1)\setminus V(j)$.

Proof of 1.1. Suppose that X is a perfect space and $\{U_{\alpha}: \alpha \in \mathfrak{m}\}$ is a collection of open subsets of X such that $\{\alpha \in \mathfrak{m}: x \in U_{\alpha}\}$ is finite for $x \in X$.

Since X is a perfect space, one can construct, for $k \ge 1$, collections $\{E_{\alpha}(k): \alpha \in m\}$ of closed subsets of X which are locally finite as indexed collections and satisfy $\bigcup E_{\alpha}(k) = U_{\alpha}$ for $\alpha \in \mathfrak{m}$ (if X is developable and $\{\mathscr{U}_k\}_{k \geq 1}$ is a development of X, then $E_{\alpha}(k) = X \backslash St(X \backslash U_{\alpha}, \mathcal{U}_{k})$ satisfy the above conditions).

For $\alpha \in \mathfrak{m}$ put $V_{\alpha}(1) = U_{\alpha}$ and $V_{\alpha}(i) = U_{\alpha} \bigcup_{k < i} E_{\alpha}(k)$ for i > 1. Let $f_{\sigma} \colon X \to D$

be a mapping satisfying the requirements of Lemma 1.3 with respect to the sequence $\{V(i)\}_{i=1}^{N}$.

Since $f_{\alpha}^{-1}(D\setminus\{0\}) = U_{\alpha}$, it follows that $f = \bigwedge_{\alpha \in \mathfrak{m}} f_{\alpha} \colon X \to S$ and $f^{-1}(H_{\alpha}) = U_{\alpha}$.

Thus it remains to prove that f is a continuous function.

From the definition of the topology of S it follows that it is sufficient to show that, for any (subbasic) neighbourhood B of 0 in D, $\{f_{\alpha}^{-1}(B): \alpha \in \mathfrak{m}\}$ is interior-preserving in X.

Take $B = B_n(i,j)$. For $\alpha \in \mathfrak{m}$, $X \setminus f_{\alpha}^{-1}(B_n(i,j)) \subset V_{\alpha}(1) \setminus V_{\alpha}(j) \subset \bigcup_{k < j} E_{\alpha}(k)$. Thus $\{X \setminus f_{\alpha}^{-1}(B): \alpha \in \mathfrak{m}\}$ is locally finite in X and consequently $\{f_{\alpha}^{-1}(B): \alpha \in \mathfrak{m}\}$ is interior-preserving.

- 1.4. Remark. If X is additionally assumed to be collectionwise normal, then $S(\mathfrak{m})$ can be replaced by $K(\mathfrak{m})$ in 1.1.
- 1.5. Remark. Let $Y(\mathfrak{m}) = \{ y \in D^{\mathfrak{m}} : | \{ \alpha \in \mathfrak{m} : y(\alpha) \notin B \} | < \aleph_0 \text{ for each neighbourhood } B \text{ of 0 in } D \}$ and consider Y with the topology generated in the same way as the topology of S. It can be checked that Y is a quasi-developable [Be] T_1 -space with a point-countable base of cardinality \mathfrak{m} . If X is a semi-stratifiable space with a point-countable collection $\{U_\alpha : \alpha \in \mathfrak{m}\}$ of open sets, then one can use [Ch3, 4.4] in order to define sets $E_\alpha(k)$ which allow us to construct, as in the proof of 1.1, $f: X \to Y$ such that $U_\alpha = f^{-1}(\{y \in Y : y(\alpha) \neq 0\})$. Thus $Y(\mathfrak{m})^{\aleph_0}$ contains topologically all metalindelöf developable T_1 -spaces of weight \mathfrak{m} . Unfortunately, it can be shown that $Y(\mathfrak{m})$ is not a perfect space (even for $\mathfrak{m} = \omega_0$).
- 2. The space $Z(\mathfrak{m})$. The existence of $f\colon X\to S(\mathfrak{m})$ satisfying the requirements of 1.1 was based on the possibility of representing each U_{α} as the union of a countable collection $\{E_{\alpha}(k)\}_{k\geqslant 1}$ of closed subsets of X such that $\{E_{\alpha}(k)\colon \alpha\in\mathfrak{m}\}$ was locally finite in X for $k\geqslant 1$.

If $\{U_{\alpha}: \alpha \in \mathfrak{m}\}$ is an interior-preserving collection of open subsets of a semi-stratifiable space X and $P(a) = \bigcap \{U_{\alpha}: \alpha \in a\} \setminus \bigcup \{U_{\alpha}: \alpha \notin a\}$ for $a \subset \mathfrak{m}$, then each P(a) can be represented as the union of a countable collection $\{E(a,k)\}_{k\geqslant 0}$ of closed sets such that $\{E(a,k): a \subset \mathfrak{m}\}$ is discrete in X for $k\geqslant 0$ [J, 4.8]. We shall use this observation in order to generalize the construction of $T(\mathfrak{m})$ and $T'(\mathfrak{m})$ from [Ch2, Theorem 1, Remark 6].

Let $Z(\mathfrak{m}) = \mathscr{P}(\mathfrak{m}) \times D$ and put

 $G(a,i) = \big\{ (b,d) \in Z \colon a \subset b \text{ and } \big(a \neq b \ \Rightarrow \ d(1) \geqslant i \big) \big\} \quad \text{ for } a \subset \mathfrak{m} \text{ and } i \geqslant 0 \,,$

 $G_n(i) = \mathscr{P}(m) \times B_n(i)$ for $n, i \ge 1$,

 $G_n(i,j) = \mathscr{P}(\mathfrak{m}) \times B_n(i,j)$ for $n, i, j \ge 1$.

Consider Z with the topology obtained by taking the sets defined above as a subbase of Z.

One can modify the proof of the developability of $T(\mathfrak{m})$ from [Ch2] in order to show that Z is an orthocompact developable T_1 -space. Clearly, the weight of Z is $2^{\mathfrak{m}}$.

For $\alpha \in \mathfrak{m}$, put $G_{\alpha} = G(\{\alpha\}, 0)$. Clearly, $\{G_{\alpha} : \alpha \in \mathfrak{m}\}$ is an interior-preserving collection of open subsets of Z. We have (see [Ch2, Theorem 1])

- 2.1. THEOREM. If X is a semi-stratifiable space and $\{U_a: \alpha \in \mathfrak{m}\}$ an interior-preserving collection of open subsets of X, then there exists a $g: X \to Z(\mathfrak{m})$ such that $g^{-1}(G_a) = U_a$ for $\alpha \in \mathfrak{m}$.
- 2.2. COROLLARY. The space $Z(\mathfrak{m})^{80}$ contains topologically all orthocompact developable T_1 -spaces of weight \mathfrak{m} .

Proof of 2.1. Suppose that $\{U_a: \alpha \in \mathfrak{m}\}$ is an interior-preserving collection of open subsets of a semi-stratifiable space X. Let P(a) and $\{E(a,k): a \subset \mathfrak{m}\}$ for $k \geqslant 0$ be as in the introduction to this section.

Put $V(i) = X \setminus \bigcup \{E(a, k): a \subset \mathbb{M} \text{ and } k < i\}$ and let $f: X \to D$ be a mapping satisfying the requirements of 1.3 with respect to the sequence $\{V(i)\}_{i \ge 1}$. Define $g(x) = (\{\alpha: x \in U_a\}, f(x)) \in Z$.

Clearly, $g^{-1}(G_a) = U_a$ and the proof of the continuity of g reduces to a simple observation that

$$g^{-1}(G(a,i)) = \bigcap \{U_{\alpha} : \alpha \in a\} \setminus \bigcup \{E(b,k) : b \neq a \text{ and } k < i\}.$$

- 2.3. Remark. If $E(\emptyset, 0) = P(\emptyset)$, then $g(X) \subset \{(a, d) \in Z : a \neq \emptyset \text{ or } d = 0\}$. Since $P(\emptyset)$ is closed, we can always assume that $E(\emptyset, 0) = p(\emptyset)$.
- 2.4. Remark. If $\{U_\alpha: \alpha \in m\}$ is point-finite as an indexed collection, then $g(X) \subset Fin(m) \times D = T(m) \subset Z(m)$ (see [Ch2, Theorem 1]).
- 2.5. Remark. If $\{X \setminus U_{\alpha} : \alpha \in \mathfrak{m}\}$ is locally finite as an indexed collection then $g(X) \subset \{(a,d) \in Z : \mathfrak{m} \setminus a \in \operatorname{Fin}(\mathfrak{m})\}$ (see [Ch2, Remark 6]).
- 2.6. Remark. A weak form of Lemma 1.3 (sufficient for proving 2.1) can be obtained from 2.1 by observing that $\{U_{\alpha}\colon \alpha\in\omega_{0}\}$, where $U_{0}=X$ and $U_{\alpha}=V(\alpha)$ for $1\leqslant\alpha<\omega_{0}$, is point-finite, $p\colon T(\mathfrak{m})\to D$ defined by p(a,d)=(|a|,d) is continuous and consequently $f=p\circ g\colon X\to D$, where $g\colon X\to T(\omega_{0})$ is given by 2.1, satisfies $f^{-1}(B_{n}(i))=V(i)$ for $i\geqslant 1$.
- 2.7. Remark. The function $f: T(\mathfrak{m}) \to S(\mathfrak{m})$ defined by $f(a,d)(\alpha) = p(a,d)$ if $\alpha \in a$ and $f(a,d)(\alpha) = 0$ if $\alpha \notin a$ is continuous. The restriction of f to $\{(a,d) \in T: a \neq \emptyset \text{ or } d=0\}$ (see 2.3) is a homeomorphic embedding of this subspace of $T(\mathfrak{m})$ into $S(\mathfrak{m})$.
- 3. A developable T_1 -compactification of D and extensions of mappings. The results of [Ch2] and the first section of this paper show that D can be considered to be a generalization of the real line (a d-line). It is easy to observe that $\{B_1(i,1)\colon i\geqslant 1\}$ is a countable open cover of D with no finite subcover. We shall construct a developable T_1 -compactification D^* of D (a d-interval).

Let $\omega N = N \cup \{\omega\}$ be the Alexandroff compactification of N and consider ωN with a well-order generated by the natural homeomorphism of ωN onto $\omega_0 + 1$. Put $D^* = \{d \in \omega N^{N_+} : d(n+1) = \omega \text{ implies } d(n) = 0 \text{ for } n \ge 1\}$. Consider D

5 - Fundamenta Mathematicae CXXII/3

with the topology generated by the sets $B_n(i)$ and $B_n(i,j)$ defined in D^* for all $n, i, j \ge 1$ by the formulas defining the corresponding subbasic sets in D.

It is easy to see that D^* is a T_0 -space and that each of the sets generating the topology of D is an F_σ -set. Thus D^* is a developable T_1 -space of countable weight. Moreover, we have

3.1. Proposition. The space D^* is a T_1 -compactification of D.

Proof. Clearly, D is a dense subset of D^* . Suppose that D is not compact. Then there exists an open cover $\mathscr U$ of D^* such that no finite subcollection of $\mathscr U$ covers D^* and $\mathscr U$ consists of subbasic sets of D^* [E, 3.12.2].

For $n \ge 1$ let d(n) be the lowest upper bound of $\{i \ge 1: B_n(i,j) \in \mathcal{U} \text{ for a } j \ge 1\}$ in ωN .

Observe that, since $B_n(i,j) \cup B_{n+1}(j,k) = D^*$ and $B_n(i) \cup B_n(i,j) = D^*$, it follows that

- (*) if $B_n(i,j) \in \mathcal{U}$, then d(n+1) < j,
- (**) if $B_n(i) \in \mathcal{U}$, then d(n) < i.

As a consequence of (*), we infer that d(n)>0 implies $d(n+1)\neq \omega$, which means that $d=\{d(n)\}_{n\geq 1}\in D^*$.

Let B be an element of \mathscr{U} containing d. Suppose that $B = B_n(i)$. Then, by virtue of (**), d(n) < i and $d \notin B$. Thus B is of the form $B_n(i,j)$ and (*) shows that d(n+1) < j. From the definition of d(n) we obtain $d(n) \ge i$ and, consequently, $d \notin B$. The contradiction shows that D^* is compact.

In [Ch2, Corollary 2] we proved that, if A is a closed subset of a perfect space X and g is a mapping of A into D, then there exists a mapping $f: X \to D$ which is an extension of g. The same reasoning can be used in order to prove the non-trivial part of the following characterization of perfect spaces (an analogous characterization of perfectly normal spaces is implicitly contained in the formulation of the Tietze extension theorem in [K, XII,5,Theorem 1]).

3.2. THEOREM. A space X is perfect iff for each closed subset A of X and $g: A \to D^*$ there exists an extension $f: X \to D^*$ of g such that $f(X \setminus A) \subset D$.

It is natural to expect that any mapping g of a closed subset A of a d-normal [Ch3] (= D-normal [Br2]) space X into D (D^*) can be extended to $f: X \to D$ (D^*). In [Ch2, Remarks 3.4] we have observed that such an extension exists if A is a G_{δ} -set (the same method can be applied to mappings into D^*). It turns out that the assumption that A is a G_{δ} -set is essential.

3.3. Example. A normal space X containing a closed subset A such that there exists a mapping $g: A \to D$ which cannot be extended to any mapping $f: A \to D^*$.

Let $X = R_Q$ [E, 5.1.32]. Put A = Q and let $\{q_m\}$: $m \ge 1$ be an enumeration of Q. The function $g: A \to D$ defined by $g(q_m) = (1, m, m, m, ...)$ is continuous because $g^{-1}(B)$ is either empty or co-finite for subbasic subsets of D.

Suppose that $f: X \to D^*$ is an extension of g. Consider $f^{-1}(B_1(1))$ and $f^{-1}(B_2(i))$ for $i \ge 1$. Each of these sets contains an open and dense subset of R and

consequently the intersection of these sets contains a point $x \in R$. For d = f(x) we have $d(1) \ge 1$ and $d(2) = \omega$, which contradicts the fact that $f(x) \in D^*$.

The possibility of extending mappings defined on a closed subset A of a d-normal space X can be characterized in terms of D-open sets [Br1] (= inverse images of open subsets of D [Ch2, Remark 3]).

- 3.4. THEOREM. For a closed subset A of a d-normal space X the following conditions are equivalent:
 - (i) any $g: A \to D$ has an extension $f: X \to D$,
 - (ii) any $g: A \to D$ has an extension $f: X \to D^*$,
 - (iii) if $\{V(i)\}_{i\geq 1}$ is a decreasing sequence of D-open subsets of A and $\bigcap_{i\geq 1} V(i)$
- = \emptyset , then there exists a decreasing sequence $\{W(i)\}_{i\geq 1}$ of D-open subsets of X such that $\bigcap_{i\geq 1} W(i) = \emptyset$ and $W(i) \cap A = V(i)$ for $i\geq 1$.

Proof. (i) \Rightarrow (ii) is obvious. Suppose that (ii) is satisfied and let $\{V(i)\}_{i\geq 1}$ be as in (iii). The proof of Lemma 1.3 shows that there exists a mapping $h: A \to D$ such that $h^{-1}(B_1(i)) = V(i)$. Consider $g: A \to D$ defined by g(x) = (1, h(x)) for $x \in A$. Let $f: X \to D^*$ be an extension of g and put $W(i) = f^{-1}(B_1(1) \cap B_2(i))$ for $i \geq 1$. It is easy to check (see the reasoning in 3.3) that $\{W(i)\}_{i\geq 1}$ has the required properties.

The proof of (iii) \Rightarrow (i) is a modification of the proof of Theorem 2 in [Ch2].

References

- [Be] H. R. Bennett, On quasi-developable spaces, Gen. Top. Appl. 1 (1971), pp. 253-262.
- [Br1] H. Brandenburg, On spaces with a Go-basis, Archiv. Math. 35 (1980), pp. 544-547.
- [Bt2] Separating closed sets by continuous mappings into developable spaces, Canadian J. Math. 33 (1981), pp. 1420-1431.
 - [C] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), pp. 47-54.
- [Ch1] J. Chaber, Mappings onto metric spaces, Topology Appl. 14 (1982), pp. 34-41.
- [Ch2] A universal metacompact developable T₁-space of weight m, Fund. Math. 121 (1984), pp. 81-88.
- [Ch3] On d-paracompactness and related properties, Fund. Math. 122 (1984), pp. 175-186.
- [E] R. Engelking, General Topology, Warszawa 1977.
- [H] N. C. Heldermann, The category of D-completely-regular spaces is simple, Trans. Amer. Math. Soc. 262 (1980), pp. 437-446.
- [J] H. J. K. Junnila, Neighbournets, Pacific J. Math. 76 (1978), pp. 83-108.
- [K] K. Kuratowski, Introduction to Set Theory and Topology, Warszawa 1977.
- [S] M. A. Swardson, A short proof of Kowalsky's hedgehog theorem, Proc. Amer. Math. Soc. 75 (1979), p. 188.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW 00-901 Warsaw

5*

Received 30 June 1982