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On strongly measure replete lattices and
the general Wallman remainder

by
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Abstract. Let X be an abstract set and £ a lattice of subsets of X. 8-tight regular measures
are defined and their properties are investigated especially under mappings. Finally, tightness as
well as ¢-smoothness and T-smoothness are characterized in terms of the general Wallman re-
mainder,

1. Introduction. Let X be an abstract set and £ a lattice of subsets of X.
My(®) denotes the C-regular finitely additive measures on 2A(E), the algebra
generated by 8. In the first part of this paper, we define the set of £-tight measures
M4(®), and consider those lattices €, for which ML) = Mg(8), the strongly
measure replete lattices. We consider how this property is preserved under lattice
extension and lattice restriction, and then how it is preserved under “well-behaved”
mappings between two sets, The general results extend in particular the work of
Moran [12] on strongly measure compact spaces, and yield new results when applied
to various specific lattices such as the closed sets in a topological space.

In the second part of the paper we see how the notion of an £-tight measure
can be expressed in terms of induced measures on Ix(f), the general Wallman
space associated with X. We investigate this relationship not only for £-tight
measures but also for o-smooth and t-smooth regular measures. For these general
résults we need only assume that 8 is a disjunctive lattice. This greatly extends
the results of [4] where it was necessary to assume that £ was § and normal in
order to utilize the Alexandroff Representation Theorem [1]. Since there are many
important topological lattices which. are either not § or not normal such as the
closed sets in a Ty topological space or the clopen sets in a T, 0-dimensional space,
these general results enable us to treat all these cases as well as the zero set lattice
in a Tychonoff space and the Borel sets in a T, topological space as special settings

for our general results.

We begin by defining the general notions involved and introducing the no-
tations which will be used throughout. We also give a bit of background material
in order to make the paper reasonably self-contained.
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2. Background and notation. We follow the notation and terminology in [1],
[2],and [3]. Let X be an abstract set and £ a lattice of subsets of X. It is assumed
that &, X e 8, although this is not necessary for some of our results. We denote by:

1) A(L), the algebra generated by £;

2) o(8), the o-algebra generated by &;

3) 6(8), the lattice of all countable intersections of sets from 8;

4) ©(2), the lattice of arbitrary intersections of sets of £;

5) o(®), the smallest class closed under countable intersections and unions
which contains £;

6) s(&), the lattice derived Souslin sets.

Next, we denote by M (£) those finite valued finitely additive bounded measures on
A(L). An element pe M(8)is o-smoothon L if L,e8 n=1,2,..,and L, | @
implies u(L,) — 0. We say that p is ¢-smooth on (L) (at times simply ¢-smooth)
if 4,eA(®),n=1,2,..,and 4,| O implies p(4,) - 0. This is, of course, equiv-
alent to saying that p is countably additive.

We tacitly assume throughout that all measures are non-negative. ThlS is,
of course, no loss of generality since any ze M(®) can be split into its positive
and negative pieces. We will also assume at times that any countably additive
e M(2) has been extended uniquely to o(8), and we demote the extension
also by u.

Let pe M(8); p is R-regular if for any 4 e A(L),
u(d) = sup{u(L)] Lc4,Le8}.

It is easy to see that if p is 8-regular then u is o-smooth on (L) if and only if
it is g-smooth on L. An element peM(®) is t-smooth on L if for every net
{L;}, L €8, such that L, | &, we have u(L,)) — 0.
We denote:
Mg(2) = the set of 2-regular measures of M(8);
M,(£) = the set of ¢-smooth measures on £ of M(2);
M°(8) = the set of o-smooth measures on (L) of M(2);
MR(2) = the set of @-regular measures of M(2);
®(2) = the set of &-regular measures of M (&) which are also z-smooth on £,
1(8), Ix(Q), Ix(®), and IF(Q) are the subsets of the corresponding M’s
consisting of the non-trivial zero-one valued measures.
For pe M(8), the support of p, S(u) = N{Le8 nlL) = u(X)}.
8 is replete if for any pe I(), u # 0, S(u) # @.
We next recall some lattice terminology. £ is called:

a) complemented if L e & implies L' € & (where prime denotes complement),
that is, £ is an algebra.

b) separating if, for any two elements x # y of X, there exists an element,

- Le® such that xeL and y¢L.

©) T, if, for any two elements x # y of X, there exist 4, Be £ such that
x €A and yeB and 4' n B =@, -
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dY disjunctive if for any x € X and 4 € 8 such that x ¢ 4, there exists a B e
such that xe B and A n B = .

e) regular if for any xe X, and 4e & such that x¢ A there exist B,Ce@
such that xe B, AcC’ and B'n C' = .

- f) normal, if for any 4, Be £ such that A " B = @& there exist C,DeQ

with 4=C’, B=D', and C'n D' = @.

g) delta lattice (5-lattice) if 6(8) =
) compact if for any collection {L,} of sets of 8, (L, = @& implies there
exists a finite subcollection with empty intersection.

Similarly we define & countably compact or Lindeldf.
i) countably paracompact if for every sequence {4,} of sets of & such that
A, | 9, there exists a sequence {B,} of sets of £ such that, for all n, 4,=B; and
B, | 9.

Let £, and &, be two lattices of subsets of X. 8, semi-separates 8,
if Ae 8, Be g, and A n B = @ implies there exists Ce &, BcC, and 4n C
= @. R, separates £, if A, Be 2, and 4 n B = @& implies there exist C,De L,
such that AcC, BcD and Cn D = &. 8, is £,-~countably paracompact (£, —cb)
if for any sequence {B,} of sets of £, with B, | @, there exists a sequence {4}
of sets of 8, with B,—4;, (B,c4,) and 4, | @ (4, | 9).

If K is a subset of X, K is called -compact if the lattice

EKn2={Knd:4Aeg}

is compact. Similarly, we define X to be 8-countably compact, etc.

C(£) will designate the set of all real-valued 2-continuous functions defined
on X, where /: X — R is called 2-continuous if f™*(E)e 2 for any closed set
EcR. 3(8) designates the lattice of zero sets of functions in C(8).

If X is a topological space, 3 designates the lattice of closed sets. We alsc
write 3y = 3(3y) in this case. Also, Sy designates the compact subset of X.

Now let X be an abstract set and £ a lattice of subsets. If x € X, then g, is
the measure concentrated at x so p(4) = {(1) i. z:z where 4 € A(Q). p, e (L)
if and only if @ is disjunctive. This gives rise to a mapping €: X — Ir(8) where
(E(x) = g, for xe X, if £ is disjunctive. € will be one-to-one if £ is separating.
If @ is separating and disjunctive and if X is given the t(8) topology and Ix(2)
is given the Wallman topology, then & is a homeomorphism of X into Ix(®)
(see [2] for details). The Wallman topology is obtained by taking the totality of
all W(L) = {uelx(Q)| u(L) = 1} where Le & as a base for the closed sets. For
a disjunctive £, Ix(2) is always a compact T; space and will be T, if and only if
£ is normal, and is called the general Wallman space associated with X and 8. If
X is a topological space and £ a particularly chosen lattice, Ix(2) clearly yields
well-known compactifications of X.

If € is separating and disjunctive, we will, in the sequel, identify X with its
image €(X) in I(2). Also, in this case, it is easy to-see that I3(€) = X. We also
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make use of the fact that if u € M3(®), then its extension to a(£) is 3(8)-regular,
and, consequently, £-regular if £ is a delta lattice; in fact, if £ is a delta lattice,
u* is 8 outer-regular on all subsets and therefore Q-regular on the u*-ineasurable
sets, in particular on ¢ (8).

DermNiTioN 1. X is 8-measure replete (or simply £ is measure replete) if for
any pe Mg(®), p#0, S(u) # @.

THEOREM 2.1. If & is a §-lattice and if pe My(®), then pe ME(2) if and only
if for any net {L)} of & with L, |, p*(\ L,) = infu(L,). Also, ue ML) if and
only if for any net {L,} of & which is a filter base, u*((\ L,) = infu(L,).

Proof. See [15].

- TeeoreM 2.2. If Lis a d-lattice, then My(®) = Myp() if and only if S(n) # @
Sfor all pe Mg(8), p>0.

Proof. Let pe My(®). Since {Le &| u(L) = u(X)} is a filter base with inter-
section S(x), we have u*(S(1)) = u(X) by Theorem 2.1.

Conversely, let pe Mp(8), u>0. Suppose u ¢ My(£). Then there exists a net
H={L}+ X, L, e &, such that sup,u(L;) = a<pu(X). There exists a subsequence
{L.,} 4 such that limp(L,) = a<pu(X). Let L= L, €& since & is a §-lattice.
Define ¢ on ¢(8) by ¢(B) = u(Bn L) where Beo(f). It can be shown that
o€ Mz(®) and that S(g)=L. Also, S(g) # & by hypothesis. Let x e S(o) so xe L,
and x e Ly where Lg is in the original family H and § # a, for any n. If oLy =0,
then o(Lg) = ¢(X). Hence, x & S(o) =L, a contradiction. Therefore, we must have
that ¢(L;)>0. Then

WLy U U L) = p(Ly 0 L) = p(E)+p(Ly o L) = p(U L) +e(Lp)>a,
which is a contradiction since Ly U L] <L; where 8, a,<f, and Lj, is in H, and
supu(Ly) = a. Thus pe ME(L). B i

Now we can apply the above results to the following cases:

(1) Let €= 34 and X be a Ty, space. Then (A): ue ML) iff for any
Z,e 3x, Zy 4> WX\ Z,) = infp(Z,). (B): ue ME(Q) iff for Z,€ 3x, {Z,} is a filter
base, p*(() Z,) = infu(Z,). This generalizes a result of Varadarajan [16].

(2) Let X be a topological space and £ = Jy. Then (A): pe ME(J) iff for
Fe€3x, Fo ¥y p¥(\ F) = infu(F). (B): pe ME(S) iff for F, e 3x, {F.} is a filter
base, u*(N F,) = infu(F,). This generalizes a result of Gardner [8].

(3) Let 8 =3y and X be a T3y space. Then X is measure compact, (i.e.,

®(3) = Mi(3)) iff S(u) # @ for any HE My(3), u>0. This yields as a special
case a theorem of Moran [13].

(4) Le.zt X be a topological space and 8 = J,. Then Jx is Borel measure
compact (i.e., MR(J) = Mx(J)) iff S(u) # @ for any pe Mi(3), u>0. This yields
a special case of Gardner [8].

DeriNITION 2. Let pe MZ(8), p>0. Then p is called 2-tight if for every
&>0, there exists Ke & = @-compact sets such that ux(K')<e. The collection
of £-tight measures is denoted by M5(Q).

icm°

203

On strongly measure replete lattices am_l the general Wallman remainder

Note. pu(K)<e < p*K)2pu(X)—e. v

DEFINITION 3. X is R-strongly measure replete (simply £ is strongly measure
replete) if ML) = Mx(2).

THEOREM 2.3. My(2)cMi(8)c ML) My(L). |

Proof. The proof is not difficult and will be omitted.

THEOREM 2.4. Let £ be a §-lattice, and let ue My(S). Then for any ve M, (T2
extending p, v<p* on 8. If ve Mi(xQ), then v = p* on 8.

Proof. Let F= (\L,e18, L,e® and L,|. Then Vv(F)Y<Sv(Ly) = u(Ly-

o .
Since @ is a &-lattice, we have v(F)<infu(L,) = p*(N\ L) = w*(F). Hence, v<S p*
on 78 If ve Mi(x®), then v(F) = infv(L,) = infu(L,) = p*(F) so v = u* on
2. N ‘

Note. (1) If € is separating and disjunctive, and if ueMg(D), then we will
show that u extends uniquely to a v € Mg(t2) (see Theorem 5.7).

(2) It is easy to see that if @ is separating, disjunctive and normal (or if £ is
ust T;), then & = collection of £-compact sets is contained in 2.

THEOREM 2.5. If & is separating, disjunctive and normal (or if 8 is separating,
disjunctive and T3) and if pne My(®), then there exists a unique extension of @ to
ve My(tL) and even v e My(tQ). Also, every A€o (z8) is K-regular with respect
to v, where & = the collection of L-compact sets.

Proof. Since pe M&(®), pe Mi(®) by Theorem 2.3, and by note (1) above,
p extends uniquely to v e Mi(z8). Also by note (2), K18 Let 4eo(z8). Then
there exists Fc A, Fe t@ such that v(4—F)<%e where ¢>0. Since p is Q-tight,

_there exists Ke Sct® such that p*(K)>p(X)—%e. By Theorem 2.4, v = pu*

on 78, so v(K)zu(X)—%e Therefore v(X—K)<}e. Now consider R=KnF
€18, Re &, and Kc=Fcd and, since F-R = F-K,

v(Afﬁ)sv(A—F)+v(F-K)§v(A——F)+v(X—K_)<%t—;+%s =e,

which completes the proof. B

Combining Theorem 2.5 and Theorem 2.3 in [3], we have:

THEOREM 2.6. If £ is 8, separating, disjuhctive and normal (or if & is 8, separating,
disjunctive and Ty) and if 6(8)<s(8), then for pe M°(2), we have (1) pe Mg(8),
(2) if w is also R-tight, then there exists a unigue extension of 1 to ve Mp(z®) and
even v€ My(t®), and every A e o(z8) is K-regular with respect to-v.

COROLLARY. If X is a metric space, then (1) every Borel measure is Ny -regular;
(2) if u is @ tight Borel measure, then every Borel set is Sty-regular with respect to i

Proof. The conditions of Theorem 2.6 are already satisfied here for £
=18 = Jy.

3. Extension and restriction. In this section we investigate the behavior of
strongly measure replete when the lattice is enlarged or restricted.

2 — Fundamenta Mathematicae CXXII/3


GUEST


204 G. Bachman and M. Szeto
THeOREM 3.1 (General Extension Theorem). Let 8; &8, be lattices of sub-
sets of X. Then any pe My(2;) can be extended to-a ve My(R,). If pe My(£,),
then v € M(R,) if 8, is 8 countably paracompact. This will also be true if L, is
a 8-lattice and R, is just ¢(8,) countably paracompact, or even just S: countably
paracompact where S;f are the .u*-measurable sets.

Proof. See [5]. M

TueorReM 3.2, Let &, and R, be -lattices of subsets of an abstract set X such
that 8, <L, <18, Then if (a) ¢(2)=s(8,), or if (b) 8 semi-separates 8, then
R, strongly measure replete implies that &, is strongly measure replete.

Proof. In either case, if ve MR(8,) then its restriction g = Vlgye,) & Mg(Ly)
(see [3)). Since £, is strongly measure replete, there exists Ke & = 8;-compact
sets such that
) PHE)ZpX) 5 = v(X)~¢.

Now K being £;-compact implies that X is t&,-compact, and therefore X is
£,-compact. Since £, and 8, are §-lattices, if EcX then
HXE) = infu(L))
= infy

where EcL}, L, € &
where EcL, L, €8,
and

Vv¥(E) = infv(Ly) where EcLj, L,e@,.

Theref.ore Vv¥(E)<p*(E), and in particular, v¥(K)<p*(K). But if . KcL;, L,e &,
then since L, = [\ Ly,, Ly, €$8,, we have K< {JLi,, and since K is £,-com-
o 13

pact, K< (lelm =L, L,e® and L{cLj Hence, v*X) = p*(X) and (1)

implies that v*(K)>v(X)—¢ and, since K is 8,-compact, it follows that £, is
strongly measure replete: M :
THEOREM 3.3. Let 8, and 8, be §-lattices of subsets of an abstract set X such
t_hat 2,c8,. If (a) 8, is 8 countably paracompact or, more generally, if 8, is
Just o(8,) countably paracompact, or if (b) 8, is countably paracompact and £,

separates R,, then L, strongly measure replete implies that 8, is strongly measure
replete, :

Pro?f. In case (b) it is easy to see that £, is 8, countably paracompact so
we need just consider case (a). Let pe M3(2,). By Theorem 3.1, we can extend U
to ve Mg(8,). Since £, is strongly measure replete, for any &>0, there exists K,
£2,-compact, such that V¥(K)2v(X)—¢ = p(X)—e. But K is £,-compact anc;
as before (see proof of Theorem 3.2) p*(K)=v*(K). Thus p*(K)zu(X)—e, and
8, is strongly measure replete. B o - ’
Now we have the following api)lications:

(1) Let X be a Ty, space. Let £; = 3y and €, = 3. Then by Theorem 3.2,

part (a),’X strongly. measure compact (i.e., 3y strongly measure replete) =
strongly measure replete. *

s
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. - (2) If X is countably paracompact and normal, then S strongly measure
replete = 3y is strongly measure replete (i.e., X strongly measure compact) by
Theorem 3.3, part (b).

4. Mappings. In this section we will present a number of mapping theorems
between spaces of regular lattice measures and then we will show how these results
can be applied to questions on the preservation of strong measure repleteness.

Let 8, be a lattice of subsets of X and £, a lattice of subsets of Y. A mapping
T: X Y is 8 —8, continuous if T-%(®,) is contained in £,. It is 2. —-2,
closed if T(8,)=8,. If T is a surjection which is £;—&, continuous and closed
such that T~ '{y} is &,-compact for any y € ¥, then T is called 2, — 8, perfect.

THEOREM 4.1, Let 8, be a §-lattice of subsets of X and £, a §-lattice of sub-
sets of Y. Suppose T: X — ¥ is ,—8, continuous and that Tt Mg(2,) - M(2;)
where T is defined for pe M2, by Tu = uT™%, then T: Mx(%,) — Mup(2,)-

Proof. Let jie Mg(2,). Then there exists an 2,-compact set, K,, such that
p*(K,) > u(X)—e where e>0. Clearly T(K;) is 8,-compact. Let v = Ty = pT ™%
Then v¥(TK,) = infuT ~*(L;) where TK; cLy, Ly e &, But TK, <L) if and only
if K, =T 'TK; =T~ YL,) = T(L3). However, S

u*(Ky) = infu(Ll) where K;<Lj, Ly€ £,
< inful YLy where KyeT (L), Lye £,.

Hence, p*(K)<V¥(TKy). Also, v(Y) = pI' 'Y = p(X). Therefore, v TK,)
SME)Zp(X)—e = v(¥)—s, 50 v = Tpe My(2,). W

Note. The condition T: Mz(2,) — M;(Qz) will be satisfied if 8, isa §-lattice
and ¢(L,)cs(8,). It will also be satisfied if T~ Y(8,) semi-separates 2, eg,
if T is also 8, —8, closed. ’

Tueorem 4.2. (1) If T: X = Y is 8, —8, continuous and surjective and - if
ve My(R,), there exists o€ Mp(8,) such that v = 0T~ = To. (2) If in addition,
ve M8, and if 8y is T=Y8,) countably paracompact or if 8, is T™Y(8,) cb,
then there exists g € Mg(2,) such that v = oT~* = To.

Proof. For ve Mg(2,) we define uT~(A) = v(A4), where A€ A(L,). This
defines p on T~HA(LY)) = AT H(Ly)) and p is well-defined for if T7(4)
= T~(B), then since T is surjective, 4 = B. Also ue M (T 7(8,)) and by Theo-
rem 3.1,  can be extended to o € Mx(Ly). Now for 4e W(L,), oI~ H(A) = uT~14)
= v(4). Henice v =T " = To. For part (2) the proof is straightforward. W’

© THEOREM 4.3. Let 8, =8, <18, be lattices of subsets of X -where 2 and L,
are S-lattices and o(8;)<=s(8)) or 8 semi-separates L. Let 2,=8,c18, be
lattices of subsets of Y such that 8, is £; countably paracompact (or cb) and where
8, and £, are 5-lattices. Let @) T: X — Y be £,—8, continuous and surjective,
and let 8 be T™(2,) countably paracompact (or cb), then 8, strongly measure
replete implies &, strongly measure replete. In particular, if (b) T is 2,— 82, perfect,
then &, strongly measure replete implies 8, strongly measure replete.

o
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-Proof. Since &, is &, countably paracompact, £, is countably paracompact,

and in case (b) it can be shown that 2, is T~*(2,) countably paracompact (see
[3]), so we need just consider case (a). Let v € Mg(2,); then by Theorem 3.1, v can
be extended to o & ME(2,). Also, by Theorem 4.2, ¢ = uT~* where pe M(L,).
Since £,=8,<=18, and &, 8, are J§-lattices, using Theorem 3.2, we have
that £, is strongly measure replete. Then by the same argument as in the proof
of Theorem 4.1, ¢ = uT~'e Myp,). From which it follows, since v = luces
and since £, 8,, that ve Mg(8,) and so 2, is strongly measure replete. M
) Note. In general, it is easy to see that for lattices £,, £, of ¥ such that
8,c8,, if 8, is countably paracompact and if 8, separates £,, then 8, is 8,
countably paracompact {cb). Thus the initial hypothesis of Theorem 4.3 concerning
£, and 2, will be satisfied in this case.

Now we can apply the previous theorems to the following cases:

(1) Let X and ¥ be T3, topological spaces. Let T: X — Y be perfect. Take

8 = 3xcIx = 8 =124,

£ = 3BycIy = 8y =18,
If Y is countably paracompact and normal, then X strongly measure compact
implies that Y is strongly measure compact.

(2) Let X and Y be topological spaces, and T: X — Y be perfect. Take

L = Jx =Ly =18,

L =3y=28,=18,. _
Assume that Y is countably paracompact and normal. Then Jy strongly measure
replete implies Jy strongly measure replete.

THEOREM 4.4. Let T: X — Y be bijective and let 2, and L, be §-lattices of
subsets of X and Y, respectively. Let T be 2,—8, continuous and o¢(2,)—0c(2,)
closed. Then 8, strongly measure replete implies 8, strongly measure replete.

Proof. We may identify X and .Y (via the map x — Tx). Then 2,<=8,, and
a(2,) = 6(8,). The result now follows directly from Theorem 3.3, part (a).

The following example is an immediate application of Theorem 4.4.

ExameLE (Moran [12]). Let X and Y be Ty, topological spaces, and let
T: X — Y be continuous and bijective such that T~ is Baire measurable. We take
2y = 3y, 8 = 3y and recall that T continuous implies T is 33— 3y continuoys.
Then X strongly measuré compact implies Y strongly measure compact.

LemMa 4.1, Let 8y and , be lattices of subsets of X and Y, respectively and
let T: X — Y be 8;—8, closed. Then given any ScY and any L] € L] such that
T~YS)<Ly, there exists Ly € 85 such that ScLj and T-NLj)<L;.

Proof. Omitted. &

LemMA 4.2. Let 8, and 8, be lattices of subsets of X and Y, respectively and

b

let T: X = Y be 8, ~8, continuous and L, —t8, closed such that Ty is 8-
compact for each y € Y. Let K, be £,-compact, then T~*(K,) is £,-compact.

e ©
Im - On strongly measure replete lattices and the general Wallman remainder 207

Proof. Let K, = T"'(K,;) and suppose K;c ULﬁ,aGQ_h then for ‘each

o N N
y € K, there exists a finite subcollection of the {L},} = H,. which covers Ty,
Let L, = U H,e &, so T~'y=L). Since T is £,—18, closed, there exists O,
such that y € 0, ;€ (tL,)" and T“(Ozly)CE'y (by Lemma 4-.1). Now K,c L;') (79

n
Since K, is {,-compact, it is 7&;-compact; therefore K, < ~U1 0,5, Therefore
. i= -

n n
K, =T '(K)e UT 0,,)< ULy, So the collection {L}}izt,.m cOVETs Ky
iZ1 1

and since L}, = U H,,, H = H,, U ... U H,, covers T™*(K;) = K, and each H,
consists of only a finite number of elements of a given covering. Hence T (K3)
is £,-compact. B

THEOREM 4.5. Let £, and 8, be 5-lattices of X and Y respectively and o(£;)
cs(2,). Let T: X~ Y be £,—8, continuous and L,—18, closed such that
T~y is Q,-compact for each y€ Y. Then £, strongly measure replete implies £,
strongly measure replete. ‘ ‘

Proof. Let yue ME(®,), then v = uI'~* & My(8,) since £, is § and o(2,)
c5(2,), 50 ve My(,) since £, is strongly measure replete. Therefore there
exists K, € &, = £,-compact sets such that

YE)Zv(Y)—e = p(X)—e.
Now K, = T~Y(K,) is £,-compact by Lemma 4.2, and
p*(Ky) = infp(Ly) where Ky, Lie . ,
Let K,cL!, Ly 8,50 Ky nLy = @ or T™*(K;) n Ly = @. Therefore K, 0 TLy

= @: for if yeK, nTL;, then yeK, and y = TXx, xeL,, and TxeKz, 50
xeT Y(K;) nL,, a contradiction. Hence K,=(TL,Y € (z8,). Now if we let
" i

TL, = (Lo (LY = ULba then Ko ULy o=@L) or Kool = ULy
i=1 is

<(TL,Y, L} e . Therefore v*(K;)<v(L)<v*(TLy)). But LT ~}TL,)'; there-
fore Li=>(T™'(ILy) =T H((IL,))=>T *(L3). So p(Ly)zpT~ (L) = v(Ly)
>vK,) and L{>K,;. Therefore u*(K;)2v*(Kp)Zu(X)—s, hence pe MR(Ly).
Thus £, is strongly measure replete. || .

Note. Theorem 4.5 is also true if T is surjective and if instead of assurning £,
to be § and ¢ (2,) =s(8,), assume T-4(8,) semi-separates &,, for then v e Mz(L,;)
also and the same proof follows. This will be the case if T'is 2, £, closed.

The following two examples are applications of Theorem 4.5:

(1) Let T: X — Y be coutinuous, perfect and 3-closed, where X and Y are
T, spaces. Then ¥ strongly measure compact implies X' strongly measure compact.

(2) Let X and Y be topological spaces. Let T': X — Y be perfect. Then. using
the note following Theorem 4.5, Jy strongly measure replete implies 3y strongly
measure replete. : oo
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CoROLLARY. Let E< X. Let 2y be a 6-lattice of subsets of E such that A E
<8¢ where 8 is a & lattice of subsets of X. If ¢(®)cs(8) and if ﬁEcrﬁ then 8
strongly measure replete implies 8 strongly measure replete.

Proof. The injection map i: E— X is 2;—2 continuous and i is QE~rL
closed. Also for ye X, i1y is Q- -compact and ¢(2)cs(®). Therefore by Theo-
rem 4.5, £ strongly mcasure replete implies 25 strongly measure replete. M

We also have-immediate application for the above corollary:

(1) Let X be Tyy. Take £ = 3y, 25 = 3z, Ectf Then LNE=3nE
<3, and if We Bp= 8, then W= FAE, F,Ect8, so We<f Therefore
2ol And of course ¢(8)<s(®), hence by the corollary, any closed set in
a strongly measure compact space is strongly measure compact,

(2) Let X be a topological space. Take £ = Jy, Fe 2 and £ = ;. Then
Jx N E = Jg, and if We Jg, then Wer, so 8,18, If 0(Ty) =5(Iy), using the
corollary, we have any closed set E in a fopological space X such that cr(Sx)cs(Sx)
and such that Jy is strongly measure replete, if 5 is strongly measure replete

5. The remainder Tp(€)— X. In this section we initiate a study of the general
remainder Jo(2)—X. To each ue My(2) we associate (see below) two measures i
and £ defined on certain algebras of subsets. of Iz(€). In terms of these measures
we then get useful criteria for when y is also o-smooth, r-smooth or tight. This
work generalizes the work of [4] where it was necessary to assume that £ was
d-normal in order to utilize the Alexandroff Representation Theorem [1]. Here
we only assume 2 is separating and disjunctive. Even the separating condition
is not critical for all theorems if one replaces X by its image in Jx(2) under the
map x — p,. Getting rid of the assumption of § and normal enables us to consider
together remainders such as wX- ~ X, where 0X is the Wallman compactification
of X [17], Bo X~ X, where B, X is the Banaschewski compactification of X (see [6]),
in addition to of course X— X. Our work here, therefore, substantially generalizes
{4] which itself generalized the work of [11] and [91 where only the special top:

ological case of X a Tychonoff space, and £ = 3x = the lattice of zero sets was
considered,

Let £ be separating and disjunctive..

If 4eUR), let W(A) = {pelx() u4) =
we have the following properties:

(1) W(4 U B) = W(4) U W(B),

@) W(4~ B)= W(4) n W(B),

Q) W) = w4y,

@ AW (®) = w(AQ)),

(5) A>B if only if W(4)> W(B.

Now let- u € Mg(8), define

1}, clearly for A, Be A(g),

L(W(A) = u(4).
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Then it is easy to see fie Mg(W(2)) and conversely if ve My(W(L)), define for
Ae AL,
u(d) = v(W(4)

th Mg(Q) and v = [i. . ‘
en\f’: noli )that since W(Q) is a compact lattice, My(W(9) = MEW (L)

= My(W(2)) = Mx(W(D).

(a) o-Smooth.
THuEOREM 5.1. Let & be a lattice of subsets of an abstract set X. Let & be sep-
arating and disjunctive, and pe M (L) Then the Sfollowing are equivalent:

(1) pe MYQ).
@ 8O WL = 0, ( WLITu®—X, L, Lie &

1 1
®) n(ﬁ W(LY) = 0, 5 WY <T@ ~TLQ), L, Lie L.

@) pHX) = pI(D)-
Proof. (1) = (2). Suppose pe Mg(2) and suppose ﬂ W(L)cIp(®)— X,

i i i = D) - 0.
L;{, L& & Then intersecting both sides with X, we get QL‘ &, so u(Ly) —

Now a( N W(L)) =.1im[1(W(L;)) = limu(L;y) = 0.
1
(2) = (1). Let L; § @. I p, e ) W (L), then pu, € W(L) for all i and (L) =1
1
A ; A = diction. Therefore
for all i, and so ux(QLi) = 1; hence x € OLi &, a contradic

6W(Li)cIR(B)~X and by hypothesis, ﬂ(a W(L)) = 0. So Limp(W(L)) =0
where p(W(L)) = p(L); therefore pe MF(2).

(1) = (3). Let pe Mx(®). Suppose SW(L()CIR(Q)—-I,‘{(H), Ly, Lieg
Then () W(L)=In(®)—~T5E) I~ X and by (2), A( Fﬁ W(Ly) = 0.

(3)l = (1). Let L, { @. If ve m WL, v e TL(®), then v(L) = 1 for all i and
v( n L) =1, a contradiction since v & I(2), and m L, = . Therefore n W(L)

cI(®)—-I%(2) and so by assumption a( (1] W(L)) = 0. Hence a(Ww(L)) =
where A(W(L)) = p(Ly), Ly B, Lie & Therefore ue M7(2).
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D)= @, Aulla®-X) = supA( ()WL) (where () L) IO~ ) = 0
1

if (2) holds. But 2(Ip(8)—X)+2*(X) = f*(Ix(R)). Therefore A*(X) = A(Ix(2))
and conversely. B

N‘ote. Let pue M(®). Define i’ on W(W,(D)) = W,(A()) by

H(Wa(B)) = u(B),
where W, (4) = {ue IZ(Q)| p(d) =1}, AeA(L). Then it can be shown that

WeMyW, (), and conversely if ge Mg(W, (L), then ¢ = g, ue Mg(Q).
Furthermore, we bave the following theorem:

THEOREM 5.2. If pe Ma(D), then pe MZ(Q) iff u' € MWL)

BeAQ),

Proof. If pe Mg(®) and if W,(L,) | @, L, &, then ) W,(L,) = & where
1

(1) WAL, = W,(O L), so.L,{ Q. Since peMgy®), p(WJL)) = (L, - 0.
Therefore p' e Mx(W,(). Conversely if u' e Mz(W,(2)), and if L, | @, then
WiL,) 4 @, and u(L,) = p'(W,(L,)) - 0. Therefore pe M3(L). W

" COROLLARY. Let £ be a separating and disjunctive lattice of subsets of an ab-
stract set X. Then Ig(R) is W, (8)-replete.

Proof. Let u'elx(W,(9). Then the associated pelf(€) and conversely
b’y Theorem: 5.2. Now S(u) = ()WL) where u(W,(L))=1, Leg But
(WD) =1 < p(l)=1 < peW/L). Therefore peS(), so IYL) is
W (2)-replete. W

TueoreM 5.3. If e MROW(®) and if ¥ X) = o(Ix(D) then o= p
where pe MZ(L).

.Pr.oof. Since ¢ € M3(6W(®)), ¢ is defined on AW (). Consider the
restriction of ¢ to A(W(L)) and denote it by ¢ again. Then ge MR(W(2)) since
W(8) separates (L) because W(L) isa compact lattice. Thus @ = fi, pe My(2).
Consequently, g*(X) = fi(Jz(2)) and therefore e Mz(®) by Theorem 5.1. B

Now we will tie in some of these results with those in [4].

THEOREM 5.4. Let £ be a separating and disjunctive lattice of subsets of an
abstract set X. (1) If 8 is 6-normal, then BEW@)=sW(3(®). () If ¢ is

normal and countably paracompact, and if () W(L)<Ix)~X, Ll thén there
. 1

exists Ko € 3(sW(R)) such that () W(L,)=Ky<In(®)—X, and if 8is also §; K,
1 . ’
= N W), Le3®. .
Proof. (1) If £ is separating, disjunctive and.- & -normal, then Cy(8)

= C(I(2)) (in the sense of f—f where fe Cy(®) and [ fdu = C(Ix(g
(see [4]). Suppose K,e3(tW(L), then Kob= f-l(o),I f/:: c,,{g?ea;rfdn‘( 1@3

Rl
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= (e R@l JOISUn). Lot K = (@] @IS} Then K,

e3(W(®), and K,nXe3(®). Let K,nX=L,={xeX| |fI<i/n},
L,e®, L, . Then K,oL,, and so K,>W(L,) = L,. So K, = () K,> () W(L,).
Now let p € Ky, then f(u) = 0. Since X = W(X) = Iz(®), there exists a net {1}
such that u,, — . Then f(u,) — f(1) = 0. Therefore for any n, there exists «, such
that for all a3y, | f (#e )| <1/n. Hence p, € L,cW(L,), and since p,,, — u, it€ W(L,)
for any n. Therefore pe (| W(L,), and K, = (} W(L,), where L, 3(2). Thus
Ky e W(3(£)) and therefore J(xW(Q)=sW(3(D).

(2) Suppose & is countably paracompact, and consider () W(L,), L, € &, L, {.
: 1

Suppose ﬁ W(L,) cIx(&)— X, then as we know ()L, = . Therefore by count-
ably paralcompact, there exists I,e & such that L,=L, and NI, =@ So
6 W(L) <I®)—X. Now since L,=L,, we have W(L,)< w(Ly = WLy,
thercfore?] W(L,,)ca WLy cIy ®—X.

Ife ;s normal, 1then (Tx(®), TW(8)) is compact and Tj.

Also 6 W(L,) is compact and 6 WLy W(L,), which is open for any n.

" Therefore there exists K,, a compact G; set such that N\ W(L,)= K, = w(L,y
1
(by Baire-Sandwich Theorem). Therefore ) W(L,)c () K, (where ) K, is also
1 1 1
compact Gp) © | W(L)Y <In(®-X. So N WEL)cK,clx(f)—X where K,
1 1

= ) K, is compact G, and therefore € J(:W(2)). W
1 &

Note. Since for any lattice 8, W(8) and consequently tW(&), is compact,
it follows readily that, without any added assumptions as in Theorem 5.4,
3(EW(R)<o(W(Q) always holds. '

THEOREM 5.5. If R is separating, disjunctive, and &8-normal and countably para-
compact, and if pe Mg(R), then pe Mg(R) if and only if A(Ko).= 0 for all K,
cly(®)— X, where K, € 3(zW(R)). i

' ., 0 . E
Proof. Suppose u € ME(L), then by Theorem 5.1, A( N W(L,)) = 0 whenever
1
() W(L)=I(®)~X where L,e€,L, |. By Theorem 54, any K;e3(zW(2)
! :

can. be written in the form Ky = () W(L,); L, € 8, L, |, and so if Koclp(®)—X
1
it follows that A(K,) = 0. / ) :
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Conversely, let pe Mp(®) and A(Kg) =0 for all K,e3(W(Q)" K,
o . 0 0
CI(8)— X. Then by Theorem 54, (N W(L,) = 0 where ) W(L)cIx(®)-X,
: 1 1

L,€ 8, and, by Theorem 5.1, pe Mz(2). M-
Note. Theorem 5.5 is a generalization of a theorem of Knowles [11].

(b) r—Smooth.

THEOREM 5.6. Let & be a disjunctive and separating lattice of subsets of an
abstract set X, and let p e Mg(R). Then the following are equivalent:

) ne My, | V v.

(2) fi vanishes on every closed set of Ip(8)-X, where fie M, R(’CW(ﬂ)) and
fi is the unique extension of fi to AW (L)).

() (X)) = A(I(2)- ; ‘

Proof. To show (1) = (2), we let pe My(®). Suppose | W(L)=I(®)~X,
L,e8, L, }. Then cleatly N\ L, = @, so p(L,) > 0. Now we can extend (uniquely

since W(R) separates tW (L)) by our general extension (see Theorem 3.1) ‘fi to
e My(cW(®)), so fi is defined on A(zW (L)),

Since tW(®) is compact and jie M(tW(®)) clearly and since TW(L) is
a 8-lattice, by Theorem 2.1 f( (N W(Lp) = lim, A(W(L,) = lim,u(L,) = 0 if

N W(L)<Tx(®)— X. It follows that i vanishes on every closed set of Ix(®)—X:
Conversely, to show (2) = (1), we suppose that L, | &, L,e & Then (| W(L,)
CI(O~X, and so J(N W(L)) =0, where A(N W(L,)) = lim A(W(LY)

= lim,u(L,), therefore lim,u(L,) = 0, and so pe Mp(2).
The steps needed to show (2) <> (3) are similar to those shown in proving
(2) <> (4) of Theorem 5.1. W

Note. (A) If £ is normal, then in Theorem 5.6, (2) <> ji vanishes on every
compact set of Ip(€)—X.

(B) If € is not separating, we may work with the image of X under the map-
ping x — g, of X in Ix(8), and Theorem 5.6 still holds.

TreoREM 5.7. Let & be a separating and disjunctive lattice of subsets of an abstract
set X. If we My(®), then p can be extended uniquely to y e Mg(z2).

Proof. Let pe Mg(2). Then, from Theorem 5.6, we know that for every
KetW(R), Kcly(®-X, [K)=0. Now o(tW(®)n X = o(zW(Q) nX)
= ¢(18). Define for 4 € o(z8),

y(4) = f(4%)

y is well defined since X is fi-thick in Ix(2) (Halmos [10]) by (3) of The-
orem 5.6.

where A* N X = 4, A*eo(tW (D).

e
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For A € A(zQ); since fi is tW(8)-regular, for £>0, there exists K = (| W(L,)
€ tW(2) such that . ‘ “

) = B <AE)+e = J(N W(L)+e, A=K,

By the definition of y,7( Ly = (N W(Ly)), NLs= )WL) X. So y(4)
<p(NL)+e NLeetd, 4> N L, and this shows that y is 8-regular. Now

for 4 e AR),
V() = (W) = AW () = p(4).
Therefote y extends u. .
Suppose L, § @. Then ) W(L)<Iz( £)—X and (N W(L)) = 0.
Therefore 0 = (@) = y( N L,) = (N W) n X) = BN W) by the

definition of . )
Since i is t-smooth and tW(Q) is a &-lattice, we have BN WL

= lim, #(W(L,) (by Theorem 2.1) = lim,y(L,) by the definition of y. Therefore
0 = lim,y(L,) and it follows that y is 7-smooth. The uniqueness part is el-
ementary. W

(¢) Tight.

THEOREM 5.8. If & is separating, disjunctive and. normal, - and if pe Mg(®),
then the following are equivalent:

(1) peMr(®),

(2) X is j*-measurable and f*(X) = B (Ix(2)).

Proof. Let ue M&(®). Then for any ¢>0 there exists 'an Q-compact set K
such that py(K)<e. Now pe Mi(®) (since Mi(€)cMg(®) by Theorem 2.3),
s0 by Theorem 5.7, p can be extended to y € Mz(12).

: XK+ (K = p(X) = 7(X).
Also
where Kcd, Aeo(®)
where K< A4, Aea(f)

wH(K) = infu(4),
= infy(d),
= (K).
Therefore, p*(K)=y(K).
Since € is separating, disjunctive and normal (or since £ is T %), Ketf and
K=0L, L,e®, L,{. Thus
9(K) = y((\L,) = infy(L,) (by Theorem 2.1)
> infy(4), where 42K, A€ o(f)
=p4K).
Hence, y(K)>p*(K). Consequently,
‘ HAK) = y(K)

and  p(K) = y(K).
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Now e>p(K") = y(X~K) = f(Ig(®)—X) (by the definition of y). But, since & is
normal, IR(8) is compact T, therefore, KetW(8) so Ix(8)—XcIn(®)~K
which is open, and it follows that [*(Jg(8)—X)=0. Hence, Ig(&)—X is
fi*-measurable. Therefore, X is ji*-measurable, and

X)) = A(Ix(2))

Conversely, suppose X is fi*-measurable and @*(X) = fi(/g(2)). Then by The-
orem 5.6, ue My(R). Since f* is tW(®)-regular on [*-measurable sets, there
exists KetW(8), K< X such that

A(K)+e> 1Y) = A(In(D)

where £>0. K is clearly 8-compact and Ke 2. Also, as above

HHK) = 9(K) = ji(K).
Hence,

pHK)+e>G(Ix(8) = p(X).

Therefore, &>u(X)—p*(K) = py(K’) and so pe My(L). Note, in this part the
normality of £ is not needed. W

DEFINITION. Let £ be a lattice of subsets of an absttact set X. £ is Cech-
complete if Iy(@)~X is an F, set.

This is just a generalization of the usual topological notion (see [7]).

THEOREM 5.9. If & is separating, disjunctive, normal, Cech-complete, and
Lindeldf, then Mz(8) = MR (L) = My(2).

Proof. Since £ is Lindelof, it follows that Mg(®) = M;(ﬁ) Let pue M),
then g*(X) = ji(Zx(8))-(by Theorem 5.6). But since £ is Cech-complete,

L(®)-XeF,co(tW (D).

Therefore X e o(tW(8))= i*-measurable sets. So by Theorem 5.8, ue Mi(®).
Hence MZ(8)=My(8). Now My(2)cM3H(Q), therefore ML) = My(L).

We give some applications of the last theorem.

(1) Let X be a complete, separable metric space. Then Sy = 3y. Let N = RS
Since X is separable, X is Lindel6f. Since X is Cech-complete (see [7]) and since
(3x) = ¢(Bx), we get M(3) = MYT) = MY(3) = My(). '

(2) Let X be locally compact, T, and Lindeldf. Since = Ty is 4, regular,
and Lindelsf, 3 is normal. Since J is Cech—complete (see [7]) and since J is
disjunctive and separating, then applying Theorem 5.9 again, we have M¥J)
= MH(3J) = M(3J).

Note. If X is a locally compact, T,, paracompact and separable space, then

since paracompact and separable imply Lindelsf, we have again MY(3) = M;(S)
= Mx(3). :
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6. Further applications. In this section we give some further applications of
the general theorems of Section 5. We will only consider four particular topologxcal
lattices. We note in general that for € separating and disjunctive, W(L) =
These four spaces are: ‘

(1) X is a Ty space and & = J = lattice of closed sets.

(2) X is 0-dimensional and T,, £ = € = clopen sets.

(3) X is Ty, & = B = Borel sets.

@) X is Tay, &= 3 = zero sets.

Applying Theorems 5.1 and 5.5 we get:

(1) Let X be a T, topological space. Let p& Mg(3), then the following are
equivalent:

@ ne M)
o0 -

) A(NF)=0, NFicoX-X (F;eJ, closure in oX, the Wallman com-
1 1

pactification).
@) (N F) =0, NFicoX-Ix(3).
i
(iv) AX) = poX).

By Theorem 5.5, if X is normal and countably paracompact, then ue M(J)
iff p(K,) = 0 for any zero set K, of oX such that KocoX—X. H

(2) Let X be a O-dimensional and T, space. Let ue My(€) = M(€). Then
the following are equivalent:

() pe Mjé((E) M"(G)
) A( ﬂ C)=0, ﬂ C,cBoX—X (C;€ €, closure in fo X, the Banaschewski
compactlﬁcatlon)
@ii) a( ﬂ c)=0, ﬂ T, foX—v,X, where voX = Ix(€) = I’(E).
(iv) ﬂ*(X) ﬂ(ﬁoX) u
(3) Let X be Ty. Let pe My(®) = M(B), B = o(3) =
following are equivalent:
@ ne MR(SB) M"(EB)

@) a( ﬂ B) =0, ﬂ BcIx(B)—X = I(B)~X.

Borel sets. Then the

i) (N B) =0, Q B, Iy(B) ~I5(B) = 1(B)~I(B).
1

(v) p*(X) = A(Ia(B))-

By Theorem 5.5, pe My(®B) =
Ix(B) such that K,clx(®B)—X. B .

(4) Let X be a T, topological space. Let ue Mp(3),
the following are equivalent:

M°(B) iff p(K,) = 0 for any zero set K, of

3 = zero sets. Then
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® ﬂEMR(S)
(i) ﬁ(ﬂz) =0, ﬂZFﬁX—

(i) A( ﬂ Z)= 0, ﬂ Z,cBX—vX.

) Il*(X )=
compactification.

Also by Theorem 5.5, u e Mg(3) iff ﬂ(Ko) = 0'for any zero set K, of BX such
that KoycpX—X. W

Applying Theorem 5.6 to the same four spaces, we get:

(1) X e Mg(3), then e My(T) < fi vanishes on every closed set of wX—
<« fXX) = fj(oX).
@1 ﬂ € My(€) =
of B X—X.

(3) f peMg(B) = M(B), then pe Mi(B) < [i vanishes on every closed set
of i(B)—X = I(B)—X.

4) If pe Mp(3), then pe M3(3) < [ vanishes on every closed set of ﬂX X.

Finally if we apply Theorem-5.8 to the following spaces we have:

1) If X is T, and if pe My(3), then pe ME(J) iff f*(X) = f(wX) and X is
fi*-measurable. (Since X is normal, fX = wX.)

‘ (2) If X is O0-dimensional and T, and if pe M, =€), then e My(G) iff f*(X)
= fi(foX) and X is j*-measurable.

(3) If Xis Ty and 1f/.L eMR(QS), then Ue MR(EB) 1ff ¥ X) = ,u(IR(SB)) and Xis
[i* -ineasurable.

(4 If X is T3y and if yeMR(S), then p e My(3) iff F*(X) = f(8X) and X is
[i*-measurable. M

We take pleasure in acknowledgmg our 1ndebtedness to the referee for cor-
recting a number of errors, for strengthening several results, and for vastly improving
the entire presentation. )

/l(ﬁX ), where fX = Stone-Cech compactlﬁcatxon and vX = real

M(E), then pe Mi(€) <« [ vanishes on every closed set
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