On universal infinite-dimensional spaces

by

Leonid A. Luxemburg (Lexington, Ky.)

Abstract. In this paper we construct a universal compact metric space with given transfinite D-dimension. A similar result is proved for separable metric spaces. Since $D(X) = \dim X$ for finite-dimensional spaces, these results are extensions of well-known theorems for finite-dimensional spaces. Also we prove that every separable metric space X is contained in a compact metric space $K \in AR$ such that $D(K) \leq D(X) + 1$.

§ 1. Definitions and notation. In this paper we consider the transfinite D-dimension introduced in [1]. Henderson. Some of our results we announced in [2]. Luxembourg, without proof. All spaces in this paper are assumed to be metric and all mappings continuous. For every ordinal number β the equality $\beta = \alpha + n$ holds where α is a limit number or 0 and $n = 0, 1, 2, \ldots \ (\cdot)$. Then we put $K(\beta) = n$, $J(\beta) = \alpha$.

1.1. Definition. We put $D(\emptyset) = -1$. If $X \neq \emptyset$, then $D(X)$ is the smallest ordinal number β such that there exists a collection of sets $\{A_\delta: 0 \leq \delta \leq \gamma\}$, where γ is an ordinal number, satisfying the following conditions:

(a) $X = \bigcup \{A_\delta: 0 \leq \delta \leq \gamma\}$.
(b) Every set A_δ is closed and finite-dimensional.
(c) For any $\delta \leq \gamma$, the set $\bigcup \{A_\delta: \delta \leq \delta \leq \gamma\}$ is closed in X.
(d) $J(\beta) = \gamma$, $\dim A_\delta \leq K(\beta)$.
(e) For any point $x \in X$, there exists the greatest number $\delta \leq \gamma$ such that $x \in A_\delta$.

If there is no such number β, we put $D(X) = \Delta$ where Δ is an abstract symbol such that $\Delta > \beta$ for any ordinal number β. If conditions (a)-(e) hold, then equality (a) is called a β-D-representation of a space X.

It is evident that

1) if $X \subseteq Y$, then $D(X) \leq D(Y)$.

Moreover, $D(X) = \dim X - \text{Ind} X$ for finite-dimensional spaces. For any space X of weight \aleph_1, we have $|D(X)| = \aleph_1$ (see [1], Henderson, Theorem 10); consequently, for any separable space (in particular, a compact space) X, we have $D(X) \leq \aleph_1$ or $D(X) = \Delta$.

(\cdot) We always consider $\beta + 0 = 0 + \beta = \beta$.
1.2. Theorem. There is a universal element in the class of all compact spaces X such that $D(X) \leq \beta$ ($\beta < \omega_1$).

1.3. Theorem. There is a universal element in the class of all separable spaces X such that $D(X) \leq \beta$ ($\beta < \omega_1$).

We note that for every $\beta < \omega_1$ such that $\beta \geq \omega_0$, there exists a separable space X_β satisfying the following condition:

$$D(X_\beta) = \beta$$

and for any compact space $Y \subseteq X$ we have $D(Y) > D(X)$, (see [3], Luxemburg, Theorem 8.2). Consequently, universal elements in Theorems 1.2 and 1.3 are different for any $\beta \geq \omega_0$. These theorems are extensions of well-known results (see [4], Nöbeling) for finite-dimensional spaces. We will also prove the following theorem:

1.4. Theorem. For every separable space X there exists a compact space $Y \subseteq X$ and a homeomorphism $f: X \rightarrow Y$ such that $D(Y) \leq D(X) + 1$.

This theorem is an extension of a similar theorem for finite-dimensional spaces (see [5], Rothen). To prove this theorem, we need some preliminary constructions.

§ 2. The main constructions.

2.1. Definition. Let X be a compactum and

$$\varphi_X: X \times I \rightarrow CX$$

the identification mapping of the product $X \times I$, where I denotes the unit segment $[0, 1]$, onto the cone CX. (We obtain the cone by identifying all points of the set $X \times \{0\} \subseteq X \times I$. The point $\varphi(X \times 0) = a \in CX$ is called the apex of the cone CX).

2.2. Construction. Let $\sum X_i$, $i = 1, 2, ...$ be a discrete union of spaces X_i, $i = 1, 2, ...$. Suppose in any X_i there are two closed sets A_i and B_i, $A_i \cap B_i = \emptyset$, and for any i there exists a homeomorphism $g_i: B_i \rightarrow A_{i+1}$. We identify every point $x \in B_i$ in a space $\sum X_i$ with a point $g_i(x)$ for all i. Then we get a factor mapping:

$$\mu: \sum X_i \rightarrow \Phi$$

onto the factor space Φ. We shall consider a set $F \subseteq \Phi$ to be closed if and only if the set $\mu^{-1}(F)$ is closed. It is evident that for each i we have an embedding

$$f_i: X_i \rightarrow \Phi$$

and

$$\bigcup_{i=1}^{m} f_i(X_i) = \Phi$$

where f_i is a restriction of μ to X_i. We put

$$\Phi = \Phi(X_1, A_1, B_1, g_1), \quad X_i = f_i(X_i).$$

2.3. Definition. Let $\mathcal{F} = \{F_i: i = 1, 2, ...\}$ be a countable family of sets in a space X and let the set $U \subseteq X$ be open. Then the family \mathcal{F} is called simple with respect to U if

$$U = \bigcup_{i=1}^{n} F_i$$

and

$$F_i \cap F_j = \emptyset$$

for $i\neq j$.

2.4. Lemma. Let a space Φ be defined by equality (4); then the family of sets $\{X_i\}_{i=1}^{m}$ is simple with respect to Φ. Moreover, if the spaces X_i are compact, then Φ is separable and locally compact.

The lemma is evident.

2.5. Construction. Let $\{X_i: i = 1, 2, ...\}$ be a family of disjoint compact spaces, and for each i, there exists a homeomorphism $h_i: X_i \rightarrow X_{i+1}$. We put

$$B(X_i) = X_i \times I \times CX_{i+1}$$

where CX_i is the cone with the apex a_i. Let

$$A_i = X_i \times \{0\} \times \{a_i\} \subseteq B(X_i), \quad B_i = X_i \times \{1\} \times \{a_i\} \subseteq B(X_i).$$

Since A_i and B_i are homeomorphic to X_i, there exist homeomorphisms $g_i: B_i \rightarrow A_{i+1}$, $i = 1, 2, ...$. We put

$$\Phi = \Phi(B(X_i), A_i, B_i, g_i).$$

Since all spaces X_i are compact, all spaces $B(X)$ are also compact and, by virtue of Lemma 2.4, Φ is a locally compact, separable space. We put

$$\mathcal{S} = \mathcal{S}(X_i, h_i) = \{a_i\} \cup \{f\}$$

where \mathcal{S} is a compactification of Φ with an extra point a_i. Consequently,

$$\mathcal{S} = \{a_i\} \cup \bigcup_{i=1}^{m} B(X_i)$$

and

$$\mu: \mathcal{S} \rightarrow X_i$$

is an extension of Φ. We put

$$\mu^{-1}(0) = a_i, \quad \mu^{-1}(1/(i+1)) = S_i, \quad \mu^{-1}(1/(i+1), 1) = B(X_i).$$

where $S_i = B(X_i) \cap B(X_{i+1})$. Then we have a mapping $\Psi: F \rightarrow [0, 1]$. Let

$$\mu: X \rightarrow [0, 1]$$

be an extension of μ. We put

$$C_i = \mu^{-1}\left(\frac{1}{i+1}\right), \quad B_i = \mu^{-1}\left(\frac{1}{i+1}, \frac{1}{i}\right), \quad W = \mu^{-1}(0), \quad C_0 = \emptyset$$

for $i = 1, 2, ...$.

(5) $U = \bigcup_{i=1}^{n} F_i$

(6) $F_i \cap F_j = \emptyset$ for $i \neq j$.

(7) The family \mathcal{F} is locally finite on U and sets F_i are closed in X.

(8) $B(X_i) = X_i \times I \times CX_{i+1}$

(9) $A_i = X_i \times \{0\} \times \{a_i\} \subseteq B(X_i), \quad B_i = X_i \times \{1\} \times \{a_i\} \subseteq B(X_i)$.

(10) $\mathcal{S} = \{a_i\} \cup \bigcup_{i=1}^{m} B(X_i)$

(11) $\mu: \mathcal{S} \rightarrow X_i$.

(12) $\Psi^{-1}(0) = a_i, \quad \Psi^{-1}(1/(i+1)) = S_i, \quad \Psi^{-1}(1/(i+1), 1) = B(X_i)$.

(13) $C_i = \mu^{-1}\left(\frac{1}{i+1}\right), \quad B_i = \mu^{-1}\left(\frac{1}{i+1}, \frac{1}{i}\right), \quad W = \mu^{-1}(0), \quad C_0 = \emptyset$ for $i = 1, 2, ...$.

On universal infinite-dimensional spaces 131
Then
\[X = W \cup \bigcup_{i=1}^{n} B_i, \quad C_i = B_i \cap B_{i+1}. \]

By virtue of (12) and (13), \(f(F \cap C_i) \subset S_i \). Since \(X_i \subset AR \), by virtue of (11), the set \(S_i = B(X_i) \cap B(X_{i+1}) \) is also an AR-space. Consequently, for any \(i \), there exists a mapping \(g_i : C_i \rightarrow S_i \) of the restriction of \(f \) to \(F \cap C_i \). We put
\[g(x) = f(x) \text{ for } x \in F, \quad g(x) = g_i(x) \text{ for } x \in C_i, \quad g(W) = \omega. \]

Then we have a continuous mapping \(g : R = F \cup W \subset \bigcup_{i=1}^{n} C_i \subset X \), and clearly
\[g(R \cap B_i) = B(X_i) \subset X, \quad g(B_i \cap B_{i+1} \cap R) \subset S_i. \]

Since \(X_i \subset AR \), the cone \(CX_i \subset AR \) and consequently \(B(X_i) = X_i \times I \times CX_i \subset AR \). Therefore, for each \(i \), there is an extension \(k_i : B_i \rightarrow B(X_i) \) of the mapping \(r_i : B_i \cap R \rightarrow B(X_i) \subset X \), where \(r_i \) is a restriction of \(g \) to \(R \cap B_i \). We put
\[k(x) = k_i(x) \text{ for } x \in B_i, \quad k(x) = \omega \text{ for } x \in W. \]

Then clearly \(k : X \rightarrow X \) is a continuous extension of \(f \).

2.8. Lemma. Let \(F \) be a family of sets \(F = \{ F_1 \} \) be simple with respect to \(U \subset X \).
Answer: Suppose the family of spaces \(\{ X_i \} \) (\(i = 1, 2, \ldots \)) satisfies the conditions of construction 2.2, and for each \(i \), there exists a homeomorphism \(\Phi_i : F_i \rightarrow X_i \) such that
\[g_i \circ \Phi_i(x) = \varphi_i(x) \quad \text{for} \quad x \in F_i \cap F_{i+1}. \]

Then the mapping \(\Phi : U \rightarrow \Phi(X) \) is defined by the equality
\[\varphi(x) = f_i \circ \Phi_i(x), \]
where \(f_i \) is a homeomorphism (3), is a homeomorphism and
\[\Phi(F_i) = X_i \circ f_i(X_i). \]

The lemma follows directly from Construction 2.2.

2.9. Lemma. Let \(Y \) be a compactum, \(CX \) the cone over \(X \in AR \) with the apex \(a \) and
\[B(X) = X \times I \times CX, \quad A_i = X \times \{ 0 \} \times \{ 0 \} \subset B(X), \quad i = 0, 1 \in [0, 1]. \]

If there exists a homeomorphism
\[f : Y \rightarrow X, \]
then for any disjoint closed subsets \(F, G \subset Y \) and any homeomorphisms
\[f_0 : F \rightarrow A_0, \quad f_1 : G \rightarrow A_1, \]
there exists a homeomorphism \(g : Y \rightarrow B(X) \), which extends \(f_0 \) and \(f_1 \).

Proof. Let \(\pi_1 : B(X) \rightarrow X \times I \) be a projection. Since \(X \in AR \) and \(I \in AR \), we have \(X \times I \in AR \). Therefore, there exists a mapping \(k : Y \rightarrow X \times I \), which extends \(\pi_1 \circ f_0 \) and \(\pi_1 \circ f_1 \) to \(Y \). Then,
\[(15) \quad k \text{ is injective on } F \cup G. \]

Let \(\mu : Y \rightarrow [0, 1] \) be a continuous function such that \(\mu^{-1}(0) = F \cup G \). Let a mapping \(h : Y \rightarrow X \times I \) be defined by the equality
\[h(y) = (f(y), \mu(y)). \]

We put \(l(y) = \varphi_x \circ h \), where \(\varphi_x \) is a mapping (1). Then, clearly,
\[(16) \quad l \text{ is injective on } Y \setminus (F \cup G). \]

We put \(g(y) = (k(y), l(y)) \), then by virtue of (15) and (16) \(g : Y \rightarrow B(X) \subset X \times I \times CX \) is injective on \(Y \). Since \(Y \) is compact, \(g \) is a homeomorphism.

2.10. Lemma. Let \(X \) be a compactum and the equality
\[(17) \quad X = \bigcup \{ A_\beta \mid \beta \in J(\beta) \} \]
be a \(\beta \)-D-representation such that \(A_{\beta(x)} \) consists of exactly one point. Let there exists an increasing sequence \(\{ \gamma_\alpha \} \) of ordinal numbers such that
\[\sup \gamma_\alpha = x = J(\beta) \supseteq \omega_0 \]
and a sequence of absolute retracts \(\{ X_i \} \) satisfying the following conditions:
\[(18) \quad \text{Every compactum with } D \text{-dimension } \leq \gamma_\alpha \text{ has an embedding in } X_i. \]

\[(19) \quad \text{There exists a homeomorphism } h_i : X_i \rightarrow X_{i+1}, \text{ for } i = 1, 2, ... \]

Then there exists a homeomorphism
\[h : X \rightarrow X(X_i, h_i) \]
such that
\[(20) \quad h^{-1}(\omega) = A_{\beta(x)} \]
where \(\omega \) is the compactification point in \(X = X(X_i, h_i) \).

Proof. By virtue of Lemma 8.2 in [3], Luxembourg, there exists a family of sets \(F_i \), simple with respect to \(X \setminus A_{\beta(x)} \), such that
\[D(F_i) \leq \gamma_\alpha. \]

By Definition 2.3, the sets \(F_i \) are closed in \(X \) and are consequently compact. Let the sets \(B(X_i), A_i, B_i \) be defined by conditions (8) and (9); \(g_i : B_i \rightarrow A_{i+1} \) are homeomorphisms from Construction 2.5. Since \(A_i \) and \(B_i \) are homeomorphic to \(X_i \) by virtue of (18) and (22), there exist homeomorphisms
\[(21) \quad f_i : F_i \rightarrow X_i, \quad k_i : F_i \cap F_{i+1} \rightarrow B_i, \quad r_{i+1} : F_i \cap F_{i+1} \rightarrow A_{i+1} \]

then for any disjoint closed subsets \(F, G \subset Y \) and any homeomorphisms
\[f_0 : F \rightarrow A_0, \quad f_1 : G \rightarrow A_1, \]
there exists a homeomorphism \(g : Y \rightarrow B(X) \), which extends \(f_0 \) and \(f_1 \).
By virtue of Lemma 2.9 there exists a homeomorphism \(g_1 : F_1 \to B(X) \) which is an extension of \(h_1 \) and \(r_1 \). Consequently, from (23), it follows that
\[
g_1 \circ \varphi(x) = \varphi_1 \circ (x) \quad \text{for} \quad x \in F_1 \cap F_1^{+}.\]

By Lemma 2.8 there exists a homeomorphism \(\varphi : \mathcal{N} \setminus A_{M} = \Phi = \mathcal{N} \setminus \Phi_0. \) We put \(h(x) = \varphi(x) \) for \(x \notin A_{M} \) and \(H(A_{M}) = \omega. \) Then, clearly, \(h \) is a desired homeomorphism.

§ 3. Natural sums and \(\beta \)-\(D \)-representations of compacts. In Sections 3 and 4 the symbol \(\beta \) is intended to denote infinite ordinal numbers. In what follows we need some information about the natural sum of ordinal numbers; see [6], Toulmin, and [7], Hausdorff (7).

Every ordinal number \(\beta \) has a unique representation:
\[
\beta = a_1 + \ldots + a_n(1)
\]
where \(a_1, a_2, \ldots, a_n \) are indecomposable transfinite numbers such that \(a_1 < \beta \). (A transfinite number \(\xi \) is called indecomposable if \(\xi \) is not the sum of a finite number of ordinal numbers less than \(\xi \).) The representation (1) is called canonical. It is evident that \(K(\beta) = a_n+1. \)

1. DEFINITION. Let (1) be a canonical representation of \(\beta \) and
\[
\gamma = \delta_1 + \ldots + \delta_\mu(2)
\]
be a canonical representation of \(\gamma \). Let \(\xi_1, \ldots, \xi_{\mu+\beta} \) be elements of the set \(a_1, \ldots, a_\mu, a_{\mu+1}, \ldots, a_{\mu+\beta} \) with decreasing order \(\xi_1 > \xi_2 > \ldots > \xi_{\beta+1} \). Then the natural sum \(\gamma \oplus \beta \) is defined by the equality \(\gamma \oplus \beta = \xi_1 + \ldots + \xi_{\beta+1}. \)

If \(n = 0, 1, 2, \ldots \), then by definition \(\gamma \oplus n = \gamma + n = \gamma \oplus \gamma. \) It is evident that \(\beta \oplus \beta = \gamma \oplus \beta. \)

In [1], Henderson, Theorem (8), it was proved that for any spaces \(X \) and \(Y \)
\[
D(X \times Y) \leq D(X) \oplus D(Y)(3)
\]

2. LEMMA. Let (1) and (2) be representations of \(\beta, \gamma \) and \(a_{n+1} = 0. \) Let \(\gamma < \beta \) and \(l \) be the first integer such that \(\delta_l > a_{l+1}. \) Then \(\delta_l < a_{l+1}. \)

Proof. If \(\delta_l = a_{l+1} \), then, since the sequence \(\{a_i\} \) is decreasing, \(\delta_l > a_{l+1} \) for \(j < l. \) Besides that, clearly \(l < p+1. \) Therefore, \(\delta_l \) is an indecomposable transfinite number.

Consequently, \(\delta_l > a_{l+1} + \ldots + a_{\mu+1} \) and \(\gamma \geq a_1 + \ldots + \delta_l > a_{l+1} + \ldots + a_{\mu+1} + a_{\mu+1} = \beta. \)

This contradiction proves the lemma.

3. LEMMA. Let \(CX \) be the cone over a compact space \(X. \) Then
\[
D(CX) = D(X \times I) \leq D(X) + 1(4).
\]

Proof. Let \(a \) be the apex of \(CX; \) clearly, \(CX \setminus \{a\} \) can be embedded into \(X \times I. \)

Consequently (see [1], Henderson, Theorem (8)),
\[
D(CX \setminus \{a\}) \leq D(X \times I) \leq D(X) + 1.
\]

Moreover, it is evident that the adding of a point to a nonempty set whose \(D \)-dimension is defined does not change its \(D \)-dimension.

3.4. LEMMA. If \(D(X) < a \) and \(a \) is indecomposable transfinite, then \(D(B(X)) < \alpha \) where \(B(X) = CX \times X \times I. \)

The lemma follows from Lemma 3.3 and (3).

3.5. LEMMA. Let \(L \) be a compactum such that
\[
L = \bigcup \{A_\gamma : \gamma \in J(\alpha)\}
\]

for some point \(l \in L, \) and \(\{H_\gamma\} \) be a family, simple with respect to \(\Phi, \) such that \(D(H_\gamma) \leq \gamma \leq \alpha. \) Then there exists a \(\alpha \)-\(D \)-representation of \(L \)
\[
L = \bigcup \{A_\gamma : \gamma \in J(\alpha)\}
\]
such that \(A_{H_\gamma} = \{l\}. \)

Proof. For each \(i, \) since \(D(H_\gamma) \leq \gamma_i, \) by Lemma 1 in [1], Henderson, there exists a \(\gamma_i \)-\(D \)-representation of the space \(H_i \)
\[
H_i = \bigcup \{A_{\gamma_i} : \mu \in J(\gamma_i)\}
\]
such that
\[
dim A_{H_i} = \delta \in \mu(\kappa). \]

We put \(A_{H_i} = \bigcup \{A_{\gamma_i} : \mu > J(\gamma_i)\} \) and \(A_{H_i} = \{l\} \cup \bigcup \{A_{\gamma_i} : i = 1, 2, \ldots\}. \)

From the sum theorem it follows that
\[
dim A_{H_i} = \kappa = \dim(\beta). \]

Moreover, \(A_{H_i} = \{a\}. \) It is easy to see that the equality \(L = \bigcup \{A_\gamma : \delta \in J(\alpha)\} \) is an \(\alpha \)-\(D \)-representation of \(L. \)

3.6. LEMMA. Let \(a \) be an indecomposable ordinal number and, for \(i = 1, 2, \ldots, \)
\(X_i \) a compact space such that \(D(X_i) < a. \) There exists an \(\alpha \)-\(D \)-representation of \(X \),
\[
X = \bigcup \{A_{\gamma} : \gamma \in J(\alpha)\}
\]
such that \(A_{X_i} = \{a\}. \) Consequently, \(D(X) < a. \)

Our lemma follows from Lemmas 2.6, 3.4, and 3.5.

3.7. LEMMA. If \(X \) is compact, \(D(X) = \beta, \) and
\[
X = \bigcup \{A_\gamma : \gamma \in J(\beta)\}
\]
is a \(\beta \)-\(D \)-representation of \(X, \) then we have:
\[
C_\gamma = \bigcup \{A_{\gamma} : \delta \in J(\beta)\} \neq \emptyset
\]
and \(C_\gamma \) is compact for each \(\gamma \in J(\beta). \) In particular, \(C_{H_\gamma} = A_{H_\gamma} \neq \emptyset. \)
Proof. First we shall show that \(\mathcal{C}_\gamma \neq \emptyset \) for \(\gamma < J(\beta) \). Indeed, if \(\mathcal{C}_\gamma = \emptyset \), then
\[X = \mathcal{U}_\gamma = X - \mathcal{C}_\gamma. \]
By Lemma 8.3 in [8], Luxembourg, \(D(V) \cup J(\beta) \subseteq \beta \). This contradicts the condition of the Lemma. Therefore, \(\mathcal{C}_\gamma \neq \emptyset \) for \(\gamma < J(\beta) \). From condition (c) of Definition 1.1 the set \(\mathcal{C}_\gamma \) is closed in \(X \) and consequently is compact. Since \(\mathcal{C}_\gamma \subseteq \mathcal{C}_\gamma \) for \(\gamma < \gamma' \), we have
\[\bigcap \mathcal{C}_\gamma = \emptyset. \]
But from condition (e) of Definition 1.1 it follows that \(\bigcap \mathcal{C}_\gamma = A_{J(\beta)} \neq \emptyset. \]

3.8. Lemma. Let \(\mathfrak{B} \) be a \(\mu \)-D-representation of \(X \) and
\[Y = \bigcup \{ A_{\gamma} : \gamma < J(\beta) \} \]
be a \(\delta'(\beta) \)-representation of \(Y \). Then the equality
\[X \times Y = \bigcup \{ A_{\gamma} : \gamma < J(\beta) \} \]
is a \(\delta'(\beta) \)-D-representation of \(X \times Y \) by virtue of [1].
Henderson. From the definition of the natural sum it follows that \(J(\beta \oplus \delta) = J(\beta) \oplus \delta \). If \(\gamma < J(\beta) \) or \(\gamma < J(\beta) \), then \(\gamma \oplus \gamma' = J(\beta \oplus \delta) \). Consequently,
\[D(\beta \oplus \delta) = A_{J(\beta)} \times B_\delta. \]

3.9. Corollary. Let \(\mathfrak{B} \) be a \(\mu \)-D-representation of \(X \) and let \(K \) be an arbitrary space with \(\dim_K \leq m \); then the equality
\[X \times K = \bigcup \{ A_{\gamma} : \gamma < J(\beta) = J(\beta \oplus \delta) \} \]
is a \((\mu + m) \)-D-representation of \(X \times K \).

4. On compacta \(Z(a_\gamma) \).

4.1. Definition. Let \(X \) be a compactum and let
\[\beta = a_\gamma + \ldots + a_{\gamma + 1}, \quad a_{\gamma + 1} = n_0 = 0, 1, 2, \ldots, \quad a_{\gamma + \gamma} = 0 \]
be a canonical representation of ordinal number \(\beta \geq a_0 \) and let
\[X = \bigcup \{ A_{\gamma} : \gamma < J(\beta) \} \]
be a \(\beta \)-D-representation of \(X \). We put
\[Y(a_\gamma) = \bigcup \{ A_{\gamma} : a_\gamma < J(\beta) \}. \]
We note that by Lemma 3.7, \(Y(a_\gamma) \) is compact and \(Y(a_\gamma) \neq \emptyset \). Moreover,
\[Y(a_\gamma) = A_{J(\beta)} \]
Let
\[\gamma_1 : Y(a_{\gamma - 1}) \to Z(a_\gamma), \quad i = 1, \ldots, k \]
be a mapping on a compactum \(Z(a_\gamma) \) obtained by identification of all points of the compactum \(Y(a_\gamma) \). Let \(\beta_i = \gamma_1(Y(a_\gamma)) \). We also put
\[Z(a_{\gamma + 1}) = A_{J(\beta)} = Y(a_\gamma), \quad \beta_{\gamma + 1} : i = id : Y(a_\gamma) \to Z(a_{\gamma + 1}). \]
Thus, the compacta \(Y(a_\gamma) \) are completely defined for \(i = 0, \ldots, k \),
\[X = Y(a_\gamma) \Rightarrow \ldots \Rightarrow Y(a_\gamma) = A_{J(\beta)} \]
and the compacta \(Z(a_\gamma) \) are defined as quotient spaces for \(i = 1, \ldots, k + 1 \),
\[Z(a_\gamma) = Y(a_{\gamma - 1})/Y(a_\gamma) \quad \text{for} \quad i = k \]
and
\[Z(a_{\gamma + 1}) = Y(a_\gamma) = A_{J(\beta)} \]

We introduce one more notation. Let \(\gamma < a_\gamma \); then we put \(\gamma_{\min} = \gamma \). If \(a_\gamma + \ldots + a_{\gamma + 1} < \gamma < a_\gamma + \ldots + a_{\gamma + 1} \), then the ordinal number \(r_{\gamma + 1}(\gamma) \) is defined by the equality \(a_\gamma + \ldots + a_{\gamma + 1} + r_{\gamma + 1}(\gamma) = \gamma \) for all \(\gamma \leq \beta \).

4.2. Lemma. We put
\[B_{a_\gamma} = a_\gamma(\Delta_\gamma), \quad a_\gamma + \ldots + a_{\gamma - 1} \leq \gamma < a_\gamma + \ldots + a_{\gamma + 1} \]
Then the equality
\[Z(a_\gamma) = \bigcup \{ B_\beta : \beta \leq a_\gamma \} \]
is an \(a_\gamma \)-D-representation of the compactum \(Z(a_\gamma) \) and
\[B_{a_\gamma} = B_{a_\gamma} = \{ \beta_i \}. \]

Proof. The equality in (8) follows from (3), (7), and the construction of \(q_0 \). Since \(Y(a_{\gamma - 1}) \) is compact, the mapping \(q_0 \) is closed. The mapping \(q_0 \) clearly does not raise the dimension of closed finite-dimensional sets. Consequently, from (7), it follows that the sets \(\beta_\mu \) are closed and finite-dimensional. Thus properties (a) and (b) of Definition 1.1 are proved. Property (c) follows from the closedness of \(q_0 \). Condition (9) is evident and (e) follows from (9). Condition (4) is true because \(q_0 \) is a homeomorphism on \(q_1^*(Z(a_\gamma) \Delta \beta) \).

In the following two lemmas we adopt the notation of Definition 4.1.

4.3. Lemma. For any two distinct points \(x \) and \(y \) in the compactum \(X \), there exists a number \(i = 0, \ldots, k \) such that \(x \in Y(a_\gamma), y \in Y(a_\gamma) \) and \(q_\gamma(x) \neq q_\gamma(y) \).
Proof. For any point \(x \in X \), let \(\mu(x) \) be the greatest number \(i \) such that \(x \in Y(a_\gamma) \).
Let \(\mu(x) = \mu(y) = p \). Then: either \(p < k \) or \(p = k \).
In the second case \(q_\gamma(x) = \gamma \neq \gamma \). Since \(q_{\gamma + 1} \) is clearly injective on \(Y(a_{\gamma + 1}) \setminus Y(a_{\gamma + 1}) \), we also have \(q_{\gamma + 1}(x) \neq q_{\gamma + 1}(y) \) in the first case. If \(\mu(x) \neq \mu(y) \), for example, \(\mu(x) > \mu(y) = p \), then \(x \in Y(a_{\gamma + 1}) \), \(y \in Y(a_{\gamma + 1}) \). Therefore, \(q_{\gamma + 1}(x) = q_{\gamma + 1}(y) \).

4.4. Lemma. Let \(X \) be a compactum and, for \(i = 1, 2, \ldots, k + 1 \), there exists a homeomorphism
\[h_i : Z(a_\gamma) \to P_\gamma \in \mathcal{A}_R \]
in a space $P_t \in AR$. Then there exists a homeomorphism

$$h: X \to \prod_{i=1}^{k+1} P_t$$

of the space X in the product of the spaces P_t. Moreover,

$$h(x) = h_1(x_1) \times h_2(x_2) \times \cdots \times h_{k+1}(x_{k+1})$$

(10) If the set $A_{k+1} = \{x_i \geq 0\}$ in a β-D-representation (2) consists of exactly

one point b_{k+1}, then $h(A_{k+1})$ is a point whose i-th coordinate in the product

$$\prod_{i=1}^{k+1} P_t$$

is a point $h_i(b_i)$ ($h_i \in Z(x_i)$).

Proof. Since $P_t \in AR$ there exists an extension

$$g_i: X \to P_t$$

of the mapping $h_i = g_i$: $Y(x_{i-1}) \to P_t$. Let

$$h: X \to \prod_{i=1}^{k+1} P_t$$

be a mapping whose i-coordinate is g_i. Let x, y be a pair of distinct points in X.

Then, by Lemma 4.3, $g_i(x) \neq g_i(y)$ for some i. Since h_{i+1} is a homeomorphism,

$$g_i(x) = h_{i+1} + g_{i-1}(x) \neq h_{i+1} + g_{i-1}(y)$$

Consequently, $h(x) \neq h(y)$. Therefore, h is injective. Since X is compact, h

is a homeomorphism. Condition (10) is evident.

§ 5. On compacts P_t.

5.1. Construction. For each ordinal $\beta < \omega_1$, we will define a compactum P_β

and a fixed point $g_\beta \in P_\beta$. For each pair of compacts P_γ and P_β ($\gamma < \beta$), we will define a homeomorphism

$$h_{\beta\gamma}: P_\gamma \to P_\beta$$

(1)

We put

$$P_n = \mathcal{P}$$

for $n = 0, 1, 2, \ldots$

where \mathcal{P} is an n-dimensional cube. Points g_β, we select in an arbitrary way. Then, clearly, for $\gamma < \beta < \omega_0$, there exist homeomorphisms (1). Suppose, for $\beta < \beta_0$, compacts P_β and homeomorphisms (1) have been constructed. If b_β is indecomposable

transfinite, then there exists a sequence of ordinal numbers $\gamma(b_\beta, i)$ such that

$$\sup \{\gamma(b_\beta, i): i = 1, 2, \ldots = \beta_0 \}$$

and thus we put

$$P_\beta = \mathcal{P}$$

(2)

We define g_β as a compactification point in $\mathcal{P} = P_\beta$ (see Construction 2.5). Let

$\gamma < \beta$. Then, by virtue of (2), $\gamma < \gamma(b_\beta, i)$ for some i. By inductive assumption there

exists a homeomorphism $h_{\gamma(b_\beta, i)}: P_\gamma \to P_\beta$. Consequently, there exists a homeo-

morphism (1) because $P_{\gamma(b_\beta, i)}$ is homeomorphic to a subset of P_β (See (10) and (11)

in § 2.)

If β is a decomposable transfinite number and the equality

$$\beta = \alpha_1 + \cdots + \alpha_{k+1}$$

is a canonical representation of β, then we put

$$P_\beta = \prod_{i=1}^{k+1} P_{\alpha_i}$$

(5)

Let $\pi_i: P_\beta \to P_{\alpha_i}$ be a projection on a factor. Then the point g_β is defined by the equalities

$$\pi_i(g_\beta) = \eta_{\alpha_i}, \quad i = 1, \ldots, k+1.$$

Let $\gamma < \beta$ and let the equality

$$\gamma = \delta_1 + \cdots + \delta_{p+1}, \quad p = 0, 1, 2, \ldots$$

be a canonical representation of γ. Let $l < p + 1$ be the first number such that $\delta_l \neq \alpha_l$.

Then by Lemma 3.2, $\delta_l < \alpha_l$. If $l = k+1$, then clearly $P_\beta = P_\gamma \times \mathcal{P}^0$

where $n = \alpha_{k+1} - \delta_{k+1}$, and the homeomorphism $h_{\beta\gamma}$ exists. Let $l \leq k$; then α_l

is an indecomposable number. Since $\delta_l \leq \delta_i < \alpha_l$ for $s \geq l$, we have

$$\xi = \delta_1 + \cdots + \delta_{p+1} < \alpha_l.$$

By inductive assumption there exists a homeomorphism

$$h_{\beta\gamma}: P_\gamma \to P_\beta$$

(6)

Moreover, by our construction

$$P_\gamma = \prod_{i=1}^{k+1} P_{\alpha_i}$$

(7)

By virtue of (5), (6), and (7) there exists a homeomorphism (1).

5.2. Lemma. $D(P_\beta) \leq \beta$.

Proof. We will prove this lemma by induction on β. If $\beta < \omega_0$, then clearly

$D(P_\beta) = \beta$. Let β be a decomposable transfinite number and let (4) be its canonical

representation. Consequently, by virtue of (3), § 3, and (5), along with Definition 3.1

and inductive assumption,

$$D(P_\beta) \leq D(P_{\alpha_1}) + \cdots + D(P_{\alpha_{k+1}}) \leq \alpha_1 + \cdots + \alpha_{k+1} = \beta.$$
be its canonical representation. Then, by inductive assumption and by Lemma 4.2, there exist embeddings

\[h_i: Z(q_i) \to P_{a_i}, \quad i \leq k, \quad h_{k+1}: Z(q_{k+1}) = A_{ij(k)} \to P_{2k+1} \]

such that

\[h_i^{-1}(q_i) = \{b_i\} \quad (i \leq k), \]

where \(\{b_i\} = B_{a_i} \) (see Lemma 4.2, conditions (8) and (9) of § 4). Since, by Lemma 5.4, \(P_{a_i} \in AR \), by Lemma 4.4 there exists a homeomorphism

\[h: X \to \bigcup_{a_i \leq k} P_{a_i} \times P_{2k+1} = P_{a_k + 2k + 1}. \]

If the set \(A_{ij(k)} = Z(q_{k+1}) \) consists of exactly one point, then we consider a mapping \(h_{k+1}: Z(q_{k+1}) \to P_{2k+1} \). By virtue of Lemma 4.4 there exists a homeomorphism (2) such that \(h(A_{ij(k)}) \) is a point whose \(i \)-coordinate is \(h(b_i) \). By property (5) and by Definition 1 this point is \(q_{a_i} \). Therefore, condition (3) holds. Let \(\beta \) be an indescomposable ordinal number. Then there exists a canonical representation of \(\beta \)

\[\beta = \alpha_1 + \alpha_2, \quad \alpha_1 = 0. \]

By inductive assumption, Construction 5.1, Lemma 2.10, and Definition 4.1, there exists a homeomorphism

\[g: X \to Z(P_{a_j(k)}), h(g(\alpha)) = P_0 = P_{a_k} \]

such that \(g^{-1}(q_\alpha) = b_1. \) If \(A_{ij(k)} \) consists of exactly one point, then the mapping \(q_\alpha: X \to Z(q_\alpha) \) is a homeomorphism and \(g(A_{ij(k)}) = \{b_i\}. \) Therefore \(h = g 	imes q_\alpha \) is a homeomorphism and condition (3) holds. Clearly, the case when \(A_{ij(k)} \) is \(0 \)-dimensional but not of cardinality 1 can be settled as above.

6.2. THEOREM. If \(f: X \to Y \) is a closed mapping of a space \(X \) onto a space \(Y \), then:

(a) If sup \(\{ \text{dim} f^{-1}(y): \gamma \in Y, k = 0, 1, 2, \ldots \} \), then

\[D(X) \leq D(Y) + k. \]

(b) If \(f^{-1}(y) \) consists of no more than \((k+1) \) points for each \(y \in Y \), then

\[D(Y) \leq D(X) + k. \]

This theorem extends Hurewicz's formulas for finite-dimensional spaces.

Proof. (a) Let \(D(Y) = \beta \) and

\[Y = \bigcup \{ B_\gamma: \gamma \leq J(\beta) \} \]

be a \(\beta \)-representation of \(Y \). We put

\[A_\gamma = f^{-1}(B_\gamma). \]

Then

\[X = \bigcup \{ A_\gamma: \gamma \leq J(\beta) = J(\beta + k) \}. \]
We will prove that (10) is a \((\beta+k)-D\)-representation. By Hurewicz's formula for finite-dimensional spaces (see [9]),
\[
\dim A_\beta \leq \dim B_\beta + k.
\]
In particular, for \(J(\beta) = J(\beta+k)\)
\[
\dim A_{J(\beta+k)} \leq \dim B_{J(\beta+k)} + K(\beta+k) = K(\beta+k).
\]
Therefore, conditions (a) and (b) of Definition 1.1 hold. Conditions (c) and (e) follow from (9). Hence, (10) is a \((\beta+k)-D\)-representation of \(X\) and inequality (6) holds.

(b) Let \(D(X) = \beta\) and let the equality
\[
X = \{B_\gamma : \gamma \leq J(\beta)\}
\]
be a \(\beta-D\)-representation of \(X\). We put
\[
A_\gamma = f(B_\gamma).
\]
Then
\[
f(X) = Y = \bigcup \{A_\gamma : \gamma \leq J(\beta) = J(\beta+k)\}.
\]
By virtue of Hurewicz's formula for finite-dimensional spaces (see [10])
\[
\dim A_\gamma \leq \dim B_\gamma + k, \quad \dim B_\gamma \leq \dim A_{J(\beta+k)} + k = K(\beta+k).
\]
Moreover, the sets \(A_\gamma\) are closed because \(f\) is a closed mapping and the sets \(B_\gamma\) are closed. Therefore, conditions (a), (b), (d) of Definition 1.1 hold. Condition (c) holds because \(f\) is a closed mapping. Condition (e) holds because the set \(f^{-1}(Y)\) is finite for every \(y \in Y\). Hence equality (12) is a \((\beta+k)-D\)-representation of \(Y\) and (7) holds.

6.3. Theorem. Let \(X\) be a compactum, then \(D(X) \leq \beta\) if and only if there exists a zero-dimensional mapping \(f : X \to P_\beta\).

Proof. We will use the following two assertions:

14. (See [8], Luxemburg, Lemma 8.7.) Let \(X\) be a compactum and (1) be its \(\beta-D\)-representation. We define a mapping
\[
\pi : X \to X_\beta
\]
as the identification of all points of the set \(A_{J(\beta)}\). We put
\[
p = \pi(A_{J(\beta)}).
\]
Then the equality
\[
X_\beta = \bigcup \{B_\gamma : \gamma \leq J(\beta)\}
\]
is a \(J(\beta)-D\)-representation of \(X_\beta\) and the set \(B_{J(\beta)}\) is a point \(p\). Furthermore, \(\pi\) is injective on \(X \setminus A_{J(\beta)}\).

16. (See [8], Luxemburg, Lemma 8.8.) Let \(U\) be an open set in \(X\), \(A = X \setminus U\). If \(f : X \to K\) and \(g : X \to T\) are mappings such that
\[
\dim (f^{-1}(x) \cap U) \leq 0, \quad \dim (g^{-1}(y) \cap A) \leq 0
\]
for \(y \in T, x \in K\),
then the mapping
\[
F : X \to K \times T
\]
defined by the equality
\[
F(x) = (f(x), g(x))
\]
is zero-dimensional.

Let (1) be a \(\beta-D\)-representation of \(X\) and let \(\pi\) be the mapping (15). Then, by virtue of assertion (14) and Theorem 6.1, there exists an embedding
\[
h : X_\beta \to P_\beta \quad (\pi = J(\beta)).
\]
Therefore, by virtue of (14), the mapping
\[
q = h \circ \pi : X \to P_\beta
\]
is injective and consequently, zero-dimensional on \(U = X \setminus A_{J(\beta)}\). Since \(\dim A_{J(\beta)} \leq K(\beta) = n\) (condition (d) of Definition 1.1), there exists a zero-dimensional mapping \(r : A_{J(\beta)} \to I^n = n\)-dimensional cube \(I^n\) (see [11], Hurewicz). Let \(g : X \to I^n\) be any extension of \(r\). Then by virtue of (16), there exists a zero-dimensional mapping
\[
f : X \to P_\beta \times I^n = P_{\beta+n} = P_\beta
\]
which is defined by the equality:
\[
f(x) = (g(x), g(x)).
\]
On the other hand, let \(f : X \to P_\beta\) be a zero-dimensional mapping, then by Theorem 6.2 and Lemma 5.2.
\[
D(X) \leq D(P_\beta) \leq \beta.
\]
Proof. Of Theorem 1.2. Let \(R\) be a compactum and \(Z(R)\) be the class of all compacta \(X\) having a zero-dimensional mapping \(f : X \to R\). By virtue of [12], Pasynkov, Theorem 8.8, there is a universal element in the class \(Z(R)\). Let \(D_\beta\) be a universal element in the class \(Z(P_\beta)\). Then our theorem follows from Theorem 6.3.

6.4. Corollary. \(D(P_\beta) = D(D_\beta) = \beta\).

Proof. Since for any \(\beta\) there exists a compact space \(X\) with \(D(X) = \beta\) (see [1], Henderson), \(D(D_\beta) \geq D(X) = \beta\). By the definition of \(D_\beta\) there exists a zero-dimensional mapping \(F : X \to D_\beta \to P_\beta\). Therefore, by Theorem 6.2 and Lemma 5.2
\[
D(D_\beta) \leq D(P_\beta) \leq \beta.
\]

§ 7. Universal spaces for noncompact separable spaces. As mentioned in § 1, the universal element in the class of compact spaces \(X\) with \(D(X) \leq \beta\) does not coincide with the one in the class of separable spaces with \(D\)-dimension \(\leq \beta\) for \(\beta \geq \alpha_0\). To prove Theorem 1.3 we need some preliminary lemmas.
7.1. Lemma. Let the equality
\[X = \bigcup \{ A:\gamma \leq J(\beta) \} , \quad J(\beta) = \alpha \]
be a \(\beta \)-D-representation of a space \(X \) and let \(M \subset A_{J(\beta)} \) be an arbitrary set of dimension \(\text{Ind} \, M = \alpha \). Then the equality
\[(X \setminus A_{J(\beta)}) \cup M = \bigcup \{ B_\gamma : \gamma \leq J(\beta) \} \]
where \(B_\gamma = (A_\gamma \cap (X \setminus A_{J(\beta)})) \cup M \), is an \(\alpha + n \)-D-representation of \((X \setminus A_{J(\beta)}) \cup M \).

The lemma is evident. \(\blacksquare \)

7.2. Definition. Let \(\beta = \alpha + n \), \(\alpha = J(\beta) \), \(n = K(\beta) \)
and \(A_\beta \) be a universal \(n \)-dimensional compact space. Then (see [5], Bothe), there exists an \(\alpha + n \)-dimensional compact
\(\mathcal{R} \subset A_\beta \) such that \(\mathcal{R} \subset A_\beta \subset A \). Let \(g_\delta \in \mathcal{R}_\delta \) be a fixed point (see Construction 5.1). Let \(\pi_\gamma : P_\delta \times \mathcal{R} \to P_\delta \), \(\pi_\alpha : P_\alpha \times \mathcal{R} \to P_\alpha \) be projections. Then we put
\[S_\delta = P_\delta \times \mathcal{R} \quad \pi_\gamma (x) = g_\delta, \quad \pi_\alpha (x) = (x \in P_\alpha, x \in P_\delta \times \mathcal{R}) \quad \text{in (5)} \]

7.3. Lemma. \(D(S_\delta) \leq \beta \).

Proof. Let (8) ([5]) be an \(\alpha \)-D-representation of \(P_\alpha \) satisfying the conditions of Lemma 5.3. Then, by Corollary 3.9, the equality
\[P_\alpha \times \mathcal{R} = \bigcup \{ B_\gamma : A_\gamma \times \mathcal{R} : \gamma \leq J(\alpha + \beta) \} \]
is an \(\alpha + \beta \)-D-representation of the space \(P_\alpha \times \mathcal{R} \). We put
\[M = \{ x : x \in P_\alpha \times \mathcal{R}, \pi_\gamma (x) \in A_\alpha, \pi_\alpha (x) = g_\delta \} \]
Then \(M \) is homeomorphic to \(A_\alpha \) and consequently \(\text{dim} \, M = \alpha \). By Lemma 7.1 the equality
\[S_\delta = (P_\delta \times \mathcal{R} \setminus (A_\delta \times \mathcal{R})) \cup M = \bigcup \{ C_\gamma : \gamma \leq J(\alpha + n) \} \quad \text{(4)} \]
where \(C_\gamma = (P_\delta \times \mathcal{R} \setminus (A_\delta \times \mathcal{R})) \cup B_\gamma \cup M \), is an \(\alpha + n \)-D-representation of \(S_\delta \). Therefore \(D(S_\delta) \leq \alpha + n = \beta \). \(\blacksquare \)

7.4. Lemma. If \(D(X) \leq \beta \) and \(X \) is separable, then there exists an embedding \(f : X \to \mathcal{S}_\delta \).

Proof. Suppose condition (2) holds. Then, by Lemma 8.9 in [3], Luxemburg, there exists a compactum \(\mathcal{K} \supset X \) such that
\[\mathcal{K} = \mathcal{R} \cup \mathcal{B}, \quad \mathcal{B} \cap \mathcal{R} = \emptyset \quad \text{(2)} \]
\[X \supset \mathcal{B} \cup A_\alpha \quad (A_\alpha \subset \mathcal{R}) \quad \text{(3)} \]
We use here the notation of Definition 7.2.

(6) \(H \) is an open set such that there exists a family of compact sets \(\{ H_\beta \} \), simple with respect to \(H \), such that \(\text{D}(H_\beta) < \alpha \).

Let \(\pi : K \to L \) be a mapping onto the quotient compactum \(L \) which we obtain by identification of all points of \(\mathcal{R} \subset K \); we let \((\mathcal{R}, \mathcal{L}) = \{ l \} \subset L \). Then by condition (6), Lemma 3.5, and Theorem 6.1, there exists a homeomorphism \(g : L \to P_\alpha \) such that
\[g(l) = g_\delta \subset P_\delta \]
Since \(\mathcal{R} \subset \mathcal{S}_\delta \), there exists a retraction:
\[r : K \to R_{\mathcal{R}} \]
We define mapping \(F : \mathcal{K} \to \mathcal{P}_\alpha \times \mathcal{R} \) by the equality:
\[F = (g \circ \pi, r) \]
From conditions (5) and (7) it follows that
\[\mathcal{F}(\mathcal{X}) = \mathcal{S}_\delta \subset \mathcal{P}_\delta \times \mathcal{R} \]
Since \(g \) is a homeomorphism and \(\pi \) is injective on \(H \), the composition \(g \circ \pi \) is injective on \(H \). Further, \(r \) is injective on \(\mathcal{R} \). Therefore, by virtue of (4), (6), \(F \) is injective on \(K \). Since \(K \) is compact, \(F \) is a homeomorphism. Let \(f \) be a restriction of \(F \) to \(X \), then \(f \) is also a homeomorphism and by virtue of (9), \(f(\mathcal{X}) = \mathcal{S}_\delta \).

Proof of Theorem 1.3. Since \(\mathcal{S}_\delta \) is contained in the compactum \(\mathcal{P}_\delta \times \mathcal{R} \), it is a separable space. Our theorem now follows from Lemmas 7.3 and 7.4.

§ 8. On compactifications. For any separable space \(X \) there exists a compactification \(\mathcal{K} \supset X \) such that
\[D(\mathcal{K}) \leq D(\mathcal{X}) + 1 \]
(see [13], Kozlovsky, and [3], Luxemburg, for the proof). Moreover, for any separable finite-dimensional space \(X \) there exists a compactification \(\mathcal{K} \supset X \) such that
\[\text{dim} \, \mathcal{K} \leq \text{dim} \, \mathcal{X} + 1 \]
(see [5], Bothe). The following theorem is an extension of both these results.

8.1. Theorem. For each \(\beta < \omega_1 \) there exists a compactum \(\mathcal{Q}_\beta \subset \mathcal{K} \) such that
\[D(\mathcal{Q}_\beta) \leq \beta + 1 \]
and \(\mathcal{Q}_\beta \) contains a homeomorphic image of any separable space \(Y \) with \(D(Y) \leq \beta \).

Proof. We put
\[\mathcal{Q}_\beta = \mathcal{P}_\alpha \times \mathcal{R} \quad (A \subset \mathcal{R}) \quad \text{(3)} \]
(see Construction 5.1 and Definition 7.2). We have proved in § 7 (see (3)) that
\[D(\mathcal{Q}_\beta) \leq \alpha + n + \beta = \beta + 1 \]
Since \(\mathcal{Q}_\beta = \mathcal{S}_\delta \), it follows from Lemma 7.4 that \(\mathcal{Q}_\beta \) contains a homeomorphic image of each separable space \(Y \) with \(D(Y) \leq \beta \). Moreover, \(\mathcal{Q}_\beta \subset \mathcal{K} \) because \(\mathcal{P}_\alpha \subset \mathcal{K} \) and \(\mathcal{R} \subset \mathcal{S}_\delta \). \(\blacksquare \)
It is also easy to prove that $D(Q) = \beta + 1$

8.2. Definition (see [14], Zarelua). A mapping $f \colon X \to Y$ is called scattering if for each point $x \in X$ and for each neighborhood V of x there exists a neighborhood U of $f(x)$, $U \subseteq Y$, such that there exist open sets P and W satisfying the conditions:

$$f^{-1}(U) = P \cup W, \quad P \cap W = \emptyset, \quad x \in P \subseteq V.$$

It is easy to prove that for compact spaces the class of all zero-dimensional mappings coincides with the class of all scattering mappings. Therefore, by Theorem 6.2

(1) If $f \colon X \to Y$ is a scattering mapping and X and Y are compact, then $D(X) \leq D(Y)$.

As we mentioned above a separable space need not have a compactification with the same D-dimension (see [1]).

The following theorem gives a necessary and sufficient condition for the existence of such a compactification.

8.3. Theorem. Let X be a separable space with $D(X) = \beta$. Then the existence of a compactum $K \subseteq X$ such that $D(K) = D(X)$ is equivalent to the existence of a scattering mapping $f \colon X \to P_\beta$.

Proof. Let $f \colon X \to P_\beta$ be a scattering mapping. Then by virtue of [14], Corollary 5, Zarelua, there exists a compactification $K \subseteq X$ and a scattering extension $f \colon K \to P_\beta$ of the mapping f. Therefore, by virtue of (1), $D(K) \leq D(P_\beta) = \beta$. Moreover, $D(K) = D(X) = \beta$ because $K \subseteq X$. We have thus proved that our condition is sufficient. Let K be a compactification of X with $D(K) = D(X) = \beta$. Then, by Theorem 6.3, there exists a zero-dimensional and, consequently, scattering, mapping $f \colon K \to P_\beta$. Let $g \colon X \to P_\beta$ be a restriction of f to X. Then clearly g is also scattering.

8.4. Problem. Let \mathcal{S} be a class of all separable spaces and let \mathcal{X} be a class of all compact spaces. In each of these classes consider two subclasses for $\omega \leq \alpha \leq \omega_1$.

1. Spaces X with $\text{ind} X \leq \alpha$.

2. Spaces X with $\text{Ind} X \leq \alpha$.

So we get four classes of spaces for each α. Do there exist universal elements in these classes?

8.5. Remark. According to [2], § 8, Luxemburg, there exist compact spaces X having $\text{Ind} X = \alpha$ and an arbitrarily large $D(X) < \omega_1$. Therefore, there are no universal elements in the class of compact spaces X having $D(X) < \alpha$ and $\text{Ind} X \leq \alpha$. Analogous results could be obtained for the other three classes in Problem 8.4.

References

