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A condition ubder which 2-homogeneity and
representability are the same in continua

by

Judy Kennedy Phelps (Auburn, Ala)

Abstract. Our main theorem is the following: If X is a 2-homogeneous continuum and X
admits a non-identity primitively stable homeomorphism, then X is representable, The following
are corollaries to this theorem: (1) If M is the Menger universal curve and X is a continuum, then
M x X is not 2-homogeneous. (2) If X and Y are homeotopically homogeneous continua, then X — Y
is representable,

The main result in this paper is the following theorem: If X is
a continuum which is 2-homogeneous and X admits a primitively stable
homeomorphism which is not the identity, then X is representable.

C. E. Burgess [4] asked in 1955 whether, for n> 2, n-homogeneity
implies (n+ 1)-homogeneity. The above theorem gives a partial answer to this
question, since a representable continuum is n-homogeneous for each 7. (This
follows from results in [2], [3], [9], and [10]) Also, some corollaries follow
from the theorem. One gives that if M is the Menger universal curve and X
is a continuum, then M x X is not 2-homogeneous. This answers a question
asked by K. Kuperberg, W. Kuperberg and W. R. R. Transue in [8].
Another corollary generalizes a result of G. S. Ungar which follows from
results in [9] and [10].

Definitions, notation, background. In. this paper a continuum is
a compact, metric, connected space. If X is a continuum, H(X) denotes the
space of all homeomorphisms from X onto itself. It is well-known that H (X)
with the sup metric is itself a separable metric space and that it is also
a complete topological space, although it may not be complete with respect to
this metric.

If nis a positive integer, a space X is n-homogeneous means that if A
and B are 2 n-element subsets of X, then there is a homeomorphism he H(X)
such that h(4) = B. A space X is strongly n-homogenepus means that if A
= {ay, ..., a,} and B = {b,, ..., b,} are 2 n-element subsets of X then there
is a homeomorphism h such that h(a) = b, for every i < n X is countable
dense homogeneous means that if A and B are 2 countable dense subsets of
X, then there is a homeomorphism he H(X) such that h(4) = B.
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Let e denote the sup metric on H(X). For every ¢ > 0 and f e H(X), let
N,(f)={geH(X) e(f, 9) <&}.

A topological trangformation group (G, X) is a topological group G
together with a topological space X and a continuous map (g, x) = g(x) of
G x X into X such that (gh)(x) = g (h(x)), and, if & is the identity of G, &(x)
=x for all g and hin G and x in X. (G, X) is polish if both G and X are
separable and metrizable by a complete metric. When X is a continuum,
(H(X), X) is a polish transformation group.

For every x in X let G, denote the stabilizer subgroup of x in G, ie., G,
={geG| g(x) = x}. Let Gx denote the orbit of x, ie, Gx ={yeX| there is
geG such that g(x) = y}. If G/G, denotes the left coset space with the usual
topology, Edward G. Effros [5] has proved the following theorem:

Let (G, X) be a polish transformation group. Then the following are
equivalent :

(1) For each x in X, the map ¢gG,—g(x) of G/G, onto Gx is a
homeomorphism.

(2) Each orbit is second category in itself.

(3) Each orbit is G, in X.

@) X/G is T,.

G. S. Ungar [9 and 10] has used this theorem of Effros to get some very
nice results, Here, in the proofs that follow, the following theorems of his will
be used:

(1) If X is a homogeneous continuum, then for each x in X, the map
T.: H(X) > X defined by T,.(f)=f(x) for f in H(X) is an open, onto
map.
(2) Let’ F?(X) denote the 2nd configuration space of X, ie., F*(X)
={(x, y)e X? x # y}. Then Ungar has shown that if X is a 2-homogeneous
continuum, and x and y are points of X such that x s y, then the map
T.,: H(X)— F*(X) defined by T,,(h) = (h(x), h(y)) is open and onto.

(3) If X is 2-homogeneous, then X is locally connected.

(4) If X is an n-homogeneous continuum, then X is strongly n-homo-
geneous or X is the circle.

A homeomorphism h of H(X) is said to be primitively stable if there is
an open set o in X such that ko =idy. I do not know of an example of
a 2-homogeneous continuum that does not admit a primitively stable
homeomorphism other than the identity, or even of an example of such
a homogeneous continuum.

A space X is representable means that if xeX and u is open such that
x€u, then there is an open set v such that xev S u and if yewv, then there is
he H(X) such that h(x) =y and h(z) = z for every z¢u. (I would like to note
that this notion, which was introduced by Peter Fletcher in [6], is equivalent
to the notion of strong local homogeneity, which was introduced by L. R.
Ford in [7]. John Bales, [2], proved this equivalence.)
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If a is a collection of subsets of X, then a* = {xeX| xeA for some
Aea}.

Proof of the theorem. First we need some lemmas. For all lemmas
and the theorem, assume that X is a 2-homogeneous continuum and X
admits a primitively stable homeomorphism which is not the identity. Let d
denote a metric on X which is compatible with the topology on X, and for
every ¢ >0, xeX, let D,(x) = {yeX)| d(x, y) <e}.

LemmA 1. Suppose x€X. Then there is a primitively stable homeomor-
phism he H(X) such that x¢ N where N= {0 < X| o is open and hlo
= ido}*.

Proof. Let f denote a primitively stable homeomorphism of H (X) such
that f # idy. Let P = {0 = X| o is open and f | 0 = ido }* There is z in X — P
such that f (z) # z. Suppose pe P, and y # x, y # p. Then there is @ ¢ H(X) such
that @ (p) = y,and #(z) = x,and h = # of 0 ®~ ! is the desired homeomorphism.

LeMMA 2. Suppose h is a primitively stable homeomorphism other than the
identity on X, and N = {0 open in X| h|o =id,}*. Then suppose M is open
such that M € M = N. If x¢N there is u, open in X such that xeu, and if
zeu, there is ge H(X) such that g(x) =z, and g | M =idyg.

Proof. There is a positive number § such that if ke H(X) such that
keN,(id), k(M) = N and k~*(M) < N. Either x = h(x) or x # h(x).

Case i. Suppose x # h(x). Now T,y (N,(id)) is open in F?(X) and
contains (x, h(x)). There is an open subset u’ of X such that xeu’,
W xh(W) € T (Ns(id)), and &' " h(w) = (. Then there is an open set i such
that xe#l < @ < u'. There s a positive number o less than § such that if k e N, (id),
k(@ <, and hok(%) < h(v) and, finally, there is an open set u such that
xeit S and uxh(u) S T, (N, (id)).

Suppose zeu, z # x. (X, h(z))eux h(u) S T, p»{N,(id)). There is @ in
N, (id) such that @(x) = x and ®(h(x)) = h(z). Now &~ '(z) # x, so denote
@~'(z) by r. Since ®'eN,(id), ¢ 1(z2) =rew’. Since (z, h(r)eu x h(¥),
there is I'e N4(id) such that I'(x) = z and I'(h(x)) = h(r). Then ’

Foh™'oI' ‘oho® *oh™*o®oh(x)=Toh ol *ohod~oh ! (h(2)
=Toh 'ol '*ohod Yz =Toh oI ' (h(r)) = Toh™*(h{x)) =z.
If seM,
roh™'or~‘oho® 'oh lodoh(s)
=Toh 'ol *ohod 'oh™lod(s) =Ioh oI ' oh(s)
=Toh™loI' 1(s)=s.
(Recall that ®(s)e N and I'"'(s)eN)

Thus g=Toh ‘oIl 'ohod loh 'odoh is the desired homeomor-
phism and u is the desired open set u,.
Case ii: Suppose x =h(x). There is an open set M' such that
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M <M <M< N. There is a positive number & such that if ke Nj (id),
k(M) = N and k™*(M') = N. Since T (N (id)) is open in X, there is an open
set v such that xew =i < T,(Ny(id)). There is u open in X such that
xeu S Su' and if weu, h(w)eu'. Pick z out of u such that z £ h(z). Then
there is @' € H(X) such that @' (x) = h(z) and ¢ € N, (id). Now h(z) # x and
@'~ (z) # x. Further

@ loh lod oh(x) =& 1 oh tod (x) = ¥ Loh™! (h(z) = D' (z) # x

and if seM’,
& loh lod'oh(s)=P tohTlod'(s) =P " Lod'(s) =s.

Let a=¢ 'oh™'od'oh. Then al M =idy, a(x)#x and
M = M < M. Now apply case (i) to a, M, and M’ to finish the proof of the
lemma. '

Lemma 3. Suppose that h is a primitively stable homeomorphism other
than the identity, and N = {0 open in X| h|o = id,}*. Suppose further that M
is open such that M < N. Then if D is a component of X —N and x and z are
points of D, there is g in H(X) such that g(x) =z and g | M =idy.

Proof. Since X is locally connected, D is locally connected and open.
Suppose xeD. Let A, = {yeD] there is feH(X) such that f(x) =y and
FIM=idg}. A, # & for A, contains the open set u, "D where u, is as in
Lemma 2. In fact, this gives that A, is open in D, for if yeA,, uNnDcA,:
I weu, N D, there is € H(X) such that &(y) =w and & | M = id;z. There is
BeH(X) such that B(x)=y and B|M =idgz. Then ®oB(x)=w and
Pof M =idyg, so wed,. :

Also, A, is closed in D: zeA,nD implies that there is a point
yeu, N A,. There is a e H(X) such that a(x) =y and o | M = idg and there
is o such that o(z)=y and oM =idg. Then o 'oa(x) =z and
6" oa | M =idy. Thus ze4,. '

A, is both open and closed in a connected set D, so A, =D.

LemMA 4. Suppose x # y. Then there is an open set E such that 1)
E+# X, (2) ye N°(N° denotes the interior of N) where N = X-E, (3) X€E,
(4) E is connected, and (5) if z€E there is he H (X) such that h(x) =z and
h| N =idy. Further, if weE, ¢ > 0, there is an open set o such that weo and
if teo, there is fe H(X) such that f(w) =1, feN,(id), and f | N = idy.

Proof. From Lemma 1 it follows that there is a primitively stable
homeomorphism I' in H(X) which is not the identity such that I'(x) # x and
yeG ={oopenin X| I'fo =idy}*.

Suppose that N’ is an open set such that N' < G and yeN'. There is
a positi\fe number ¢ such that D,(N") < G. For every positive integer i, let N,

" =D, (N), and let 4, ={weX—N| there is feH(X) such that f)=w

and f I N; =idz,}. Let D be the component of X —G that contains x. Then
xeD ' A4; for every i and D is an open set.
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Suppose we 4; for some i. There is a homeomorphism & in H(X) such
that 6(x) =% and 6 | N; = idy,. Then W¢N;, and there is an open set oy
such that We oy, and 6, \N;=Q; and if w'eo,, there is fe H (X) such that
pW)=w and B N,,, =idg,_,-

Pick w'eo,. There is f'e H(X) such that f'(W)=w and B | N,
=idy;;7- Then fod(x) = W', and foS [ Ny, = idy;;7- Then o, € 4,4, and

a0
A=) 4, is open in X—N".
i=1

Now suppose ze A~ A. Suppose further that ge H(X) such that g [ N,
= idy, for some i. Then g(z) = z:

Suppose not. Then there is g’ H(X) such that ¢’ I N, = idy, for some i
and g'(z) = I' # z. Applying Lemma 2 we get that there is an open set v, of
X such that zev, and if z'ev, there is de H(X) such that d(z) =z and

@[ Ni+y = idy 7. The fact that there is W in A'nv, means that weA; for
some j and there is fe H(X) such that B(x) =% and f| N, = idy,. There is
deH (X) such that &(z) =W and & | Ny, =id5 7. Then & *0f(x) = z and
& '0pIN = ide, for some positive integer j'. Thus ze 4, < A, which is a
contradiction.

Let E denote the component of 4 that contains x. E is both open and
closed in 4. Then E—~E'=A4—4 and if teE—E and feH(X) such that
fIN; =idy, for some i, then f() =t Let N"=X—E. Now yeN" ‘but
possibly, X —N" # E, so let N* denote X—E.

Suppose zeE. There is he H(X) such that (x) =z and A | N, = idy, for
some i. Define h as follows: If seX,

h(s) if seE,
his) = if S¢E.

Therefore, if z€E, there is he H(X) such that h(x) =z and h [(X —E)
=idx_p. The first part of the lemma is proved.

Suppose weE and £>0. Let H'={heH(X) h|N* =id 4}. H is
a closed subgroup of H(X); so (H’, X) is a transformation group with both
H' and X complete separable metric spaces. For every xeX, let G
={geH g(x) = x} and Gx' = {a(x)| acH’}. Now xeX means that either
xeN* or xeE; and xe N* means that Gx' = {x}, xe E means that Gx' = E.
Then each orbit Gx' is a Gy-set in X, so the map gG, - g(x) of H'/G, onto
Gx' is a homeomorphism for every xe X (Effros’ Theorem).

Then the map T;: H'— E defined for xe E by T;(g) = g(x) (for ge H') is
open. (Recall that the map &: H'— H'/G/ is open where &(g) = ¢G. and
T:(9) = I'o ®(g) where I'(gG;) =g(x). Thus I' is a homeomorphism, & is
open given that T is open.)

Pick weE=X~N* T;(N,(id)nH') is open in E and contains w.
Hence if zeT,{N,(id)~H'), there is feH' AN,(id) such that f(w)=z.
T, (N, (id) " H') is the desired o.
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LeMMA 5. Suppose xe X, and I' is a primitively stable homeomorphism
such that I'(x)# x. Let G ={o openin X| I' o =id o}*, and suppose M is
open such that M = G. Then there are open sets E and N in X such that (1)
x€E, (2) N = X—E, (3) E is connected, and (4) if zcE there is he H(X) such
that h(x) =z and h| N =idy, and (5) M < N. Further, if weE, ¢ > O, there is
an open set o0 such that weo and if teo, there is f € H(X) such that f(w) =1t,
feN,(id), and f | N =idy.

Proof. This follows from the proof of Lemma 4. (Note that the N° of
Lemma 4 is the N of this lemma).

Lemma 6. If u is open in X, there is an open subset v of u such that if
x,y are in v, there is he H(X) such that h(x) =y and h [ (X —u) =idy_,.

Proof. If Ais asubset of X let bd A denote the boundary of 4. Suppose u is
open in X such that if # X. Pick xeu. For every y in bd u there are sets Ny, Ey
such that (1) ye Ny°,(2) xe Ey, and (3) Ey and Ny are as the E and N in Lemma 4.
Let Ny* = X—Ey for every y.

There is a finite subcollection {y, y,, .
{Ny{, Ny3, ..., Nyn} covers bdu. For convenience rename {N)9, ..., Ny5},
{Nla”" Nm}a {Ny;*ys Ny:}’ {N1#’~, N:}r {Eyly"'vEym}>
{E,, ..., E,}. There is a collection {M, ..., M,,} of open sets that covers bd u
such that for every i, M! < N,. .

Either bdu = N, or bdu ¢ Nf. If bdu s N{, E, cu (remember
that it is connected) and E, is the desired v. Otherwise bdu ¢ N},
There is j, in {2,...,m} such that Mj, nbdun(X—N{) # 0.
Let u =[X- (U N, uN, )] nu. Pick zleM,znbdunE, Since E, is

.+s Ym} of the bdu such that

connected and locally connected, there is an arc from x to z, in E,, and thus,
there is a point w,€E; nbdu; nN;_ for some j, # 1.

There is an open set o,,, such that wi€o,, =0, SE; andift, ware in
o,,, then there is he H(X) such that h(w) =1, h[ Nf = idy¥, h(M}Z) SN,
and h™1(M},) € N;,. Pick t, €0, N(uy—N}). Then there is a homeomor-
phism hy such that hy(t;) =w,, b INT =idy#, hy(Mj) S N;, and
by l(sz) SN, There is an open set o, such that t,€0, 0, = ~N}) o,
and such that if seo,, there is keH(X) such that k(t;) =s, k(M)
SNy, k(M) N,, and kIN 1d~

Pick s; from o, such that 31 #1y. There 1s ke H(X) such that k,(t)
=5, k(M) S N, and ki'(M)S N, k, I N ——1de4; Then

hi'ok,ohyoki!(s)) = hi ' ok, ohy(t;) = hi! Oky (W) = hi Y(wy) =1ty.

If seM;j, hi*okjoh oki'(s) = hi ok, oki*(s)=s; and if
hitokyohy okyt(s)=hi ok, 0h,(s) =s.

Let {M3,..., M2} be an open cover of bdu such that for every

seM;j,,
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< m, M} < M}, From Lemma 5 it follows that there are open sets P, and
Fy such that (1) F, is connected, (2) t,eF,, (3) P,UF; =X, (4 P, nF,
=0, (5 (M} UM}) < Py; and (6) if X, y are in F there is a homeomorphrsm
le H(X) such that (%) =9, INX=F,) =idix_p,)

Let P} =X—F,, PI M UM}, Either bdu < P{ or bdu & Pf.
If bducPf,F, cu and is the desired v. Otherwise bdu ¢ | P¥. Let
{M32, ..., M%) be an open cover of bd u such that for every i<m M?c M2

There is an integer j; such that M2 Abdun(X—PH =@ and
3aé10r}2 Letu, =u; n(X~ U N— Pl)Thenuzgulgu u, < F, and
ty EU,. w2

Now since F, is connected and locally connected, there is an arc from ¢,
to z, (where z;eM% nbdunF,) and there is a point w, in F; N
~bd uzmﬁjs for some j3¢{1,j,}. There is an open set o,, such that
W, €0,, S 0,, S F, suchthatif t, w are in owz, thereis he H (X) such that h(w)
=t h fPl =idp}#, h(Mj3) SM;}, and h~ M %) € M7,

There is t;e€0,, N(u;—N j;), and thus there is a_homeomorphism
hy such that hy(t;) =w,, hy [ P{ =idp#, hy(M},) = M}, and
hs ' (M ) s M; Jar
Then there is an open set o, such that t,€0,, S0, S (U~ Nja)mow2 and
such that if seo,, there is keH(X) such that k() =s,
k(Py)= Py, k™ (P}) = P,, and k[N} =idy¥. Pick s,eo,, such that
§, %ty and let k2 denote the guaranteed homeomorphxsm above. Then
hilok,oh,0ky(sy) =t,, and if sePj U J3’ h3lokyoh,0k;i(s)=>s.

Let {M3,..., M3} be an open cover of bdu such that for every
i< m, M} = M?. From Lemma 5 it follows that there are open sets P, and
F, such that (1) F, is connected, (2) t,eF,, (3) P,uF,=X, (4 P,NnF,
=@;and (5)if £, y arein F, thereis a homeomorphisrn le H(X) such that /(%)
=9, INX—Fy) =idx_r,, and M} UM}, UM}, S P, < X—F,.

Continue this process. It is a finite one with at most m steps: for some

m—1, bdu < P¥ and F, is the desired v.

Proof of the theorem. Since X is complete and homogeneous, it
now follows easily that X is representable.

The corollaries. Gerald Ungar has defined a space X to be homeo-
topically homogeneous if for every x and y in X there is an isotopy F: X x[
— X such that (1) F, =idy, (2) F,(x) =y, and (3) for every tel, F,e H(X).
Ungar [11] proved that a countable product of compact homeotopically
homogeneous spaces, or a countable product of locally compact, locally
connected, homeotopically homogeneous spaces is n-homogeneous for all n.
With his results in [10] he gets the theorem that follows: A countable product of
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homeotopically homogeneous continua is countable dense homogeneous and n-
homogeneous for each n.

CoroOLLARY 1. Suppose that for every ic A (where A is either a finite or
a countably infinite set, but A does have at least 2 members), X; is

a homeotopically homogeneous, nondegenerate continuum. Then T[] X; is

. ied
representable.

Proof. [] X; is 2-homogeneous, connected, and it admits a primitively

ied
stable homeomorphism which is not the identity: Suppose aeAd. Let Z
= J] X. Then Z is homeotopically homogeneous. Suppose x #y are
ied - {a} .
points of Z. There is an isotopy F: Z x [0, 1] — Z such that Fy =id,, F(x)
=y, and F,eH(Z) for every te[0, 1]. .

Suppose d, is a metric on X, compatible with its topology. Pick e X,.
There is ¢ > 0 such that D,(e) G X, where D,(e) = {xe X, d,(x, ¢) <&}
There is a continuous function @: X, — [0, 1] such that $(e) =1, and &()
=0 for every teX,—D,(e). Define g as follows: g(d, z) = (d, Foq)(2)) for
(d,2)eX,xZ =[] X;. Then geH([] X)), g #idx, (for g(e, x) ={(e, W,

ied ied ied
and g [ [(X,— D,(e))x Z] = idix, p,eny xz- Thus, the product space admits a
primitively stable homeomorphism other than the identity, and so it must be
representable.

CoRroLLARY 2. Suppose X and Y are continua, X XY is 2-homogeneous,
and X admits a primitively stable homeomorphism other than the identity. Then
X xY is representable.

Proof. Suppose he H(X) such that h # idy but h is primitively stable.
Then hxidye H(X xY), is primitively stable, and is not the identity. Thus
X x Y is representable.

A loop in a space X is a map from S, the circle, into X. A map is said to
be essential if it is not homotopic to a constant map. Otherwise it is
inessential.

In their paper [8] the Kuperbergs and Transue give the following
lemma, which will be needéd here:

Lemma KKT. If X is a 1-dimensional continuum and if f, and f, are
the two essential loops in X such that f, (S) Nf,(S) = @, then f, and f, are not
homotopic.

Lemwma 3. If M is the Menger universal curve and X is a continuum, then
M x X is not representable.

Proof. Suppose that M x X is representable. Then M x X is connected
and locally connected, which implies that X is locally connected and locally
arcwise connected.

icm

2-homogeneity and representability in continua .97

Suppose that (1) x = (x;, x;)e M x X, (2) u, is an open subset of M such
that x; euy and @, # M, and (3) u, is an open subset of X such that x,cu,
and @, # X. Let u=uy xu,. There is an open set v in M xX such that
xev &P Su and if tev, there is a homeomorphism @ e H (M x X) such that
@(x) =t and if we(M x X)—u, ®(w) =w. Pick y = (y,, y,) out of v such that
Xy #y; and x; # y,. There is a homeomorphism heH (X x M) such that
h(x) =y and h(w) =w for each we(M x X)—u.

- Pick z out of X—u,. There is an arc P from x, to z. Let I,
denote the projection of MxX onto M. Now IIy,oh(xy, x;) =y,
and Iy oh(xy,z) =x;, so there is a positive. number ¢ such that
My oh(D,(x)) "I 0h(D,(x;, z)) = @ (where d represents a metric on M x X
compatible with its topology and if weM x X, ¢ >0, D,(w) = {te M x X|

d(t, w) <e}.

There is an essential loop L: S —» M such that (1) x;eL(S), (2) if
peP,L,: S >MxX defined by L,(s)=(L(s), p) has the property that
L,(S) € D,(x;, p), and (3) L,(s) nu = Q.

Now hoL,=L,, and so ITy,ohoL, = IT,, 0 L, is essential. Since L, and
L,, are homotopic, Iy ohoL,, and II,yoho L, are homotopic. Also, each is
essential, since II 0hoL, is essential. But ITyy0hoL,(S)nIlyohoL,,(S)
= (), which is a contradiction to Lemma K,K,T. Then the assumption that
M x X is representable must be a bad one.

CoroLLARY 4. M x X is not 2-homogeneous if M is the Menger universal
curve and X is a continuum.

Proof. Assume M x X is 2-homogeneous. Now M is itself representable
[1], so it admits many primitively stable homeomorphisms. By Corollary 2,
M x X is representable. But in Lemma 3, it was proved that M x X is not
representable, so we have a contradiction.

Last comments. I do not know if the requirement that X admit
a primitively stable homeomorphism other than the identity can be omitted.
I wish I knew that. I do know that the 2-homogeneity requirement cannot be
weakened to just homogeneity, or even homogeneity plus local connected-
ness. This is because M x M and M xS are both homogeneous and locally
connected, but are not 2-homogeneous [8], and thus not representable.
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A generalized version of the singular cardinals problem

by
Arthur W. Apter (Newark, N.J)

Abstract. We show that it is consistent, relative to the existence of an unbounded class of
cardinals each of which possesses a certain degree of supercompactness, for every limit cardinal
to be a strong limit cardinal and for the wth successor of any cardinal to violate GCH.

The behaviour of the power sets of singular cardinals has long been of
interest to set theorists. Shortly after Cohen invented forcing, Easton in his
thesis [2] showed that, roughly speaking, the power sets of regular cardinals
could be anything desired within the technical restrictions of 2! <22 if
%, < %, and cof (2¥) > x. No such results, however, were known for singular
cardinals for quite a while. Indeed, the famous singular cardinals problem
asks whether it is consistent to have 2" = N, for all natural numbers n
and yet also have Mo = .+2, o more generally, whether or not it is
consistent for a singular cardinal to be the least cardinal that violates GCH.

Much light has been shed on the singular cardinals problem within the
last few years. It is of course now known by the work of Silver [13] that if a
singular cardinal of uncountable cofinality violates GCH, then there is a
stationary set of cardinals less than it which also violates GCH. This settles
the generalized version of the singular cardinals problem. It is also known,
by the work of Jensen [1], that if a singular cardinal (by necessity of
cofinality ) is the first cardinal to violate GCH, then there is an inner
model with a measurable cardinal.

Magidor was the first person who obtained positive results in the
direction of the singular cardinals problem: Starting with models in which s
possessed a certain degree of supercompactness and violated GCH, he was
able to force and obtain a model in which ¥, is a strong limit cardinal and
yet violates GCH [8]. Then, starting with an enormously powerful hy-
pothesis, namely the existence of a supercompact cardinal with a huge
cardinal above it, Magidor was able to get a model in which 2N = N,+1 for
every natural number n and yet Mo = N, +2 [9], i.e, Magidor was able to solve


GUEST




