80

H. Schirmer

Proof. Let m be the dimension of X; we can assume m > 0. Choose a simplicial complex K with |K| = X and

$$\mu(K) < \min\left(\frac{\gamma(\varphi)}{2(1+2m)}, \frac{\varepsilon}{4m}\right),$$

and use Lemma 3 to obtain an n-valued simplicial multifunction

$$\varphi': |K'| \to |K|$$
 with $\gamma(\varphi') \geqslant \gamma(\varphi) - 2\mu(K)$ and $\bar{d}(\varphi, \varphi') < \mu(K)$.

Now proceed as in the proof of Theorem 2, pp. 118-119, of [2], i.e. apply the Hopf construction of Lemma 5 repeatedly on simplexes of increasing dimension until a simplicial multifunction $\psi \colon |K'| \to |K|$ is obtained, where K' is a refinement of K so that ψ is fixed point free on all non-maximal simplexes. An argument parallel to the one in [2], p. 119 implies that the image of each point is changed at most m times. Hence Lemma 5 iii) shows that

$$\gamma(\psi) \geqslant \gamma(\varphi') - 4m\mu(K) \geqslant \gamma(\varphi) - 2\mu(K) - 4m\mu(K) > 0$$

so ψ is *n*-valued. Similarly we see that each intermediate simplicial multifunction φ'' which is fixed point free on all *p*-simplexes (p < m) satisfies the assumption $\gamma(\varphi'') > 4\mu(K)$ of Lemma 5. It follows that

$$\overline{d}(\varphi,\psi) \leqslant \overline{d}(\varphi,\varphi') + \overline{d}(\varphi',\psi) < \frac{1}{4}\varepsilon + m \cdot \frac{\varepsilon}{2m} < \varepsilon.$$

The verification that ψ satisfies i) and ii) is analogous to the one in [2], pp. 118–119.

References

- [1] C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh and London, 1963,
- [2] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Ill., 1971.
- [3] R. Jerrard, Homology with multiple-valued functions applied to fixed points, Trans. Amer. Math. Soc. 213 (1975), pp. 407-427.
- [4] C. R. F. Maunder, Algebraic Topology, van Nostrand Reinhold Co., London 1970.
- [5] B. O'Neill, Induced homology homomorphism for set-valued maps, Pacific J. Math. 7 (1957), pp. 1179-1184.

CARLETON UNIVERSITY
Ottawa, Canada

Received 26 October 1981

A universal metacompact developable T_1 -space of weight m

by

Józef Chaber (Warszawa)

Abstract. For each cardinal number m we construct a metacompact developable T_1 -spaces $T(\mathfrak{m})$. If m is infinite, then $T(\mathfrak{m})^{\aleph_0}$ is universal for all metacompact developable T_1 -spaces of weight m. The space T(0) is the set of irrational numbers with a weaker topology and $T(0)^{\aleph_0}$ is universal for all perfect T_1 -spaces of countable weight. Each $T(\mathfrak{m})$ is built of m copies of T(0). Moreover, each mapping of a closed subset of a perfect space T(0) can be extended to a mapping of T(0).

In [3] we have introduced a method of constructing mappings into metacompact developable T_1 -spaces. More precisely, we have constructed, for a point-finite open cover $\mathscr U$ of a perfect space X, a continuous mapping p of X onto a metacompact developable T_1 -space Z such that each element of $\mathscr U$ is an inverse image of an open subset of Z.

The examination of this construction shows that the space Z can be regarded as a subspace of a metacompact developable T_1 -space T which depends only on the cardinality of \mathcal{U} .

In the first section of this paper we give a modification of the construction from [3]. The ideas of the first section are used in the second section to construct, for each cardinal number \mathfrak{M} , a metacompact developable T_1 -space $T(\mathfrak{m})$ and a point-finite collection \mathscr{G} of open subsets of $T(\mathfrak{m})$ such that, for any perfect space X and any point-finite collection \mathscr{U} of cardinality \mathfrak{m} consisting of open subsets of X, there exists a mapping $f: X \to T(\mathfrak{m})$ satisfying $\mathscr{U} = \{f^{-1}(G): G \in \mathscr{G}\}$.

The weight of T(m) is $m + \aleph_0$ and it follows that, for infinite m, $T(m)^{\aleph_0}$ is universal for all metacompact developable T_1 -spaces of weight m.

A space with properties similar to the properties of T(0) is constructed in [6]. Our construction of T(0) is more direct and can be regarded as a simplification of the construction in [6]. We prove an extension theorem for mappings into T(m) (Theorem 2) and obtain a number of corollaries showing that T(0) can be considered to be a D-line (see Remarks 3 and 4).

We shall use the terminology and notation from [5]. By a mapping we always mean a continuous function. Metacompact spaces are not necessarily Hausdorff but all spaces we consider are T_1 -spaces. If $\mathcal D$ is a family of subsets

of X and $x \in X$, then $\mathcal{D}(x) = \{D \in \mathcal{D}: x \in D\}$. The set of non-negative integers will be denoted by N and the set of positive integers by N_{+} .

1. Mappings onto metacompact developable spaces. The results of this section are implicitly contained in Section 2 of [3]. We include them here in order to clarify the construction of spaces T(m).

PROPOSITION. Let $\mathcal U$ be a point-finite open cover of a perfect space X. There exists a metacompact developable space Z and a mapping p of X onto Z such that each element of $\mathcal U$ is an inverse image of an open subset of Z.

Proof. The sets $U(i) = \{x: |\mathscr{U}(x)| \ge i\}$ are open in X. Since X is a perfect space, we can define, by induction on $n \ge 1$, for each $\tau \in N^n$, an open subset $U(\tau)$ of X such that

(1)
$$U(\tau) = U(i) \quad \text{for} \quad \tau = (i) \in \mathbb{N}^1,$$

(2)
$$X \setminus U(\tau) = \bigcap \{U((\tau, j)): j \in N\},$$

where (τ, j) denotes the extension of τ by j. We shall often write $U(\tau, j)$ instead of $U((\tau, j))$.

Put $\mathscr{B} = \mathscr{U} \cup \{U(\tau): \tau \in N^n, n \ge 1\}$ and consider a relation $x \sim x'$ iff $\mathscr{B}(x) = \mathscr{B}(x')$. Clearly, \sim is an equivalence relation.

We define Z to be the set of the equivalence classes of \sim and p to be the natural function from X onto Z. We generate a topology of Z by taking $p(\mathcal{B}) = \{p(B): B \in \mathcal{B}\}$ to be a subbase. From the definition of \sim it follows that Z is a T_0 -space and $p^{-1}(p(B)) = B$ for $B \in \mathcal{B}$. Thus p is a continuous function and each element of \mathcal{U} is an inverse image of an open subset of Z.

In order to show that Z is a metacompact developable T_1 -space, we need a lemma.

Lemma. A T_0 -space Z is a metacompact developable T_1 -space if and only if Z has a subbase $\mathscr{P} = \bigcup_{k \geqslant 0} \mathscr{P}_k$, where each \mathscr{P}_k is a point-finite collection and

 $z \in P \in \mathscr{P}$ implies that, for a certain $k \ge 0$, $Z \setminus \bigcup (\mathscr{P}_k \setminus \mathscr{P}_k(z)) \subset P$.

Before proving the lemma, we shall show that the space Z and its subbase $p(\mathcal{B})$ satisfy the conditions of the lemma. This will reduce the proof of our proposition to the proof of the lemma.

We shall carry out our reasoning in X with $p(\mathcal{B})$ replaced by \mathcal{B} . This will simplify the notation and is justified by the definition of Z and p.

Consider the countable family consisting of the following point-finite collections of subsets of X: \mathscr{U} , $\mathscr{U}_{i,j} = \mathscr{U} \cup \{U(i,j)\}$ for $i,j \ge 0$ and $\mathscr{U}(\tau) = \{U(\tau)\}$ for $\tau \in \mathbb{N}^n$ and $n \ge 1$. Clearly, \mathscr{B} is the union of this family.

Assume that $x \in B \in \mathcal{B}$. We have to distinguish two cases. If $B \in \mathcal{U}$, then we take $i = |\mathcal{U}(x)|$ and a $j \ge 0$ satisfying $x \notin U(i, j)$. The existence of such a j is assured by (2). It is easy to see that

$$X\setminus \bigcup (\mathscr{U}_{i,j}\setminus \mathscr{U}_{i,j}(x))=X\setminus (U(i,j)\cup \bigcup (\mathscr{U}\setminus \mathscr{U}(x)))\subset B.$$

If $B = U(\tau)$, then, by virtue of (2), $x \notin U(\tau, j)$ for a certain $j \ge 0$ and $X \setminus \bigcup (\mathcal{U}(\tau, j) \setminus \mathcal{U}(\tau, j)(x)) = X \setminus U(\tau, j) \subset B$.

Thus the lemma implies that Z is a metacompact developable T_1 -space. Proof of the Lemma. The "only if" part is obvious. In order to prove the "if" part, consider a T_0 -space Z with a subbase $\mathscr{P} = \bigcup_{k \geqslant 0} \mathscr{P}_k$ satisfying the conditions of the lemma.

Put $P_k(z) = \bigcap \mathscr{P}_k(z)$, $D_k(z) = \bigcap P_{k'}(z)$ and $\mathscr{D}_k = \{D_k(z): z \in Z\}$. Each \mathscr{D}_k is a point-finite open cover of Z and, since developable T_0 -spaces are T_1 , it follows that it is sufficient to prove that $\{\mathscr{D}_k\}_{k\geqslant 0}$ is a development for Z.

Let $z \in Z$ and let P be an open subset of Z containing z. We want to find a $k \ge 0$ such that $\operatorname{St}(z, \mathcal{D}_k) \subset P$. Since \mathcal{D}_{k+1} refines \mathcal{D}_k for $k \ge 0$, we can assume that $P \in \mathcal{P}$. Then $P \in \mathcal{P}_{k_1}$ for a $k_1 \ge 0$ and $Z \setminus \bigcup (\mathcal{P}_{k_2} \setminus \mathcal{P}_{k_2}(z)) \subset P$ for a $k_2 \ge 0$. Take $k = k_1 + k_2$. If $z \in D_k(z') \in \mathcal{D}_k$, then $z \in P_{k_2}(z')$, which implies $z' \in P$ and $D_k(z') \subset P_{k_1}(z') \subset P$. Thus, $\operatorname{St}(z, \mathcal{D}_k) \subset P$.

Observe that the space Z depends on $\mathscr B$ rather than on X. It is clear that in order to obtain a space $T(\mathfrak m)$ with the properties mentioned in the introduction it is sufficient to apply the above construction to a space X with a point-finite open cover $\mathscr U$ of cardinality $\mathfrak m$ such that the relation \sim described above has as many equivalence classes as possible. In particular, each i-element subcollection of $\mathscr U$ has to have a non-empty intersection. This intersection should intersect both U(i',j) and $X\setminus U(i',j)$ for $i' \leq i$ (for i'>i this intersection has to be contained in U(i',j)) and so on.

In the next section we shall construct a space with such a cover and a collection $\mathcal B$ such that each of the equivalence classes of \sim will be a one-point set.

2. Universal spaces. The main step in the construction of our universal spaces will be the following.

THEOREM 1. Let m be a cardinal number. There exists a metacompact developable T_1 -space $T(\mathfrak{m})$ of weight $\mathfrak{m}+\aleph_0$ with a point-finite collection $\mathscr G$ of open subsets such that any perfect space X with a point-finite open collection $\mathscr U$ of cardinality $\mathfrak m$ can be mapped into $T(\mathfrak m)$ by a mapping f satisfying $\mathscr U = \{f^{-1}(G): G \in \mathscr G\}$.

As an immediate consequence, we obtain

COROLLARY 1. If m is an infinite cardinal number, then $T(m)^{\aleph_0}$ is universal for all metacompact developable T_1 -spaces of weight m.

Proof of Theorem 1. Let m be a fixed cardinal number and let Fin(m) denote the set of all finite subsets of m.

We define the set of points of T(m) (since m is fixed, we write T instead of T(m))

$$T = \operatorname{Fin}(\mathfrak{m}) \times N^{N+}$$

Thus each element of T is a sequence (t(0), t(1), ...) such that t(0) is a finite subset of m and $t(n) \in N$ for $n \ge 1$.

For $\alpha \in \mathfrak{m}$, let $G_{\alpha} = \{t \in T: \alpha \in t(0)\}$ and put $\mathscr{G} = \{G_{\alpha}: \alpha \in \mathfrak{m}\}.$

If $a \in \text{Fin}(m)$ is identified with its characteristic function, then Fin(m) with the topology generated by the projections of the sets G_{α} is a subspace of the Alexandroff cube $\{0, 1\}^m$ (1 is the isolated point of $\{0, 1\}$) [5, 2.3.26]. The factor N^{N+} will make T perfect and, consequently, metacompact, developable and T_1 .

Let $G_0(i) = \{t \in T: |t(0)| \ge i\}$, $G_n(i) = \{t \in T: t(n) \ge i\}$ for $n \ge 1$ and $G_n(i,j) = \{t \in T: t \in G_n(i) \Rightarrow t(n+1) \ge j\}$ for $n \ge 0$.

It is easy to see that

(i) $G_0(i) = \{t \in T: |\{\alpha: t \in G_\alpha\}| \geqslant i\} \text{ for } i \geqslant 0,$

(ii) $G_n(i, j) = (T \setminus G_n(i)) \cup G_{n+1}(j)$ for $n, i, j \ge 0$ and, for each $n \ge 0$,

(iii) $\{G_n(i)\}_{i\geq 0}$ is decreasing, $G_n(0) = T$ and $\bigcap_{i\geq 0} G_n(i) = \emptyset$.

We consider T with the topology generated by assuming that $\mathscr{B} = \mathscr{G} \cup \{G_n(i): n, i \geq 0\} \cup \{G_n(i, j): n, i, j \geq 0\}$ is a subbase of T(1).

To see that T is a T_0 -space, take two different points $t, t' \in T$. If t(n) > t'(n) for an $n \ge 1$, then $G_n(t(n))$ contains t but does not contain t'. If

 $t(0) \neq t'(0)$ and $\alpha \in t(0) \setminus t'(0)$, then G_{α} contains t but does not contain t'.

From (ii) and (iii) it follows that $T \setminus G_n(i) = \bigcap_{j \geqslant 0} G_n(i, j)$ and $T \setminus G_n(i, j) = G_n(i) \cap T \setminus G_{n+1}(j) = G_n(i) \cap \bigcap_{k \geqslant 0} G_{n+1}(j, k)$. Thus $\mathscr{B} \setminus \mathscr{B}$ satisfies (see Remark 3)

(1) $\{t \in T: |\{\alpha: t \in G_{\alpha}\}| \ge i\} \in \mathcal{B} \setminus \mathcal{G} \text{ for } i \ge 0,$

(2) if $B \in \mathcal{B} \setminus \mathcal{G}$, then $T \setminus B = \bigcap_{j \ge 0} B(j)$ for some $B(j) \in \mathcal{B} \setminus \mathcal{G}$.

Consequently, the lemma of the first section implies that T is a metacompact developable T_1 -space (the proof that T satisfies the assumptions of the lemma is the same as the proof for Z). Clearly, the weight of T is $m + \aleph_0$ and $\mathscr G$ is a point-finite collection of open subsets of T.

Let X be a perfect space and let $\mathscr U$ be a point-finite collection of open subsets of X such that $|\mathscr U|=\mathfrak m$. We can represent $\mathscr U$ as $\{U_\alpha\}_{\alpha\in\mathfrak m}$ in such a way that $\{\alpha\colon x\in U_\alpha\}$ is finite for $x\in X$.

We shall construct a mapping $f: X \to T$ satisfying $f^{-1}(G_{\alpha}) = U_{\alpha}$ by defining sets $V_n(i)$, open in X, which will be the inverse images of the sets $G_n(i)$. Our construction will be by induction on $n \ge 0$ and will be based on

the fact that

(iv) $G_{n+1}(j) = \bigcup_{i \geq 0} (G_n(i) \cap G_n(i,j)).$

We are going to construct sets $V_n(i)$ such that

(i') $V_0(i)=\left\{x\in X\colon |\{\alpha\colon\, x\in U_\alpha\}|\geqslant i\right\}$ for $i\geqslant 0$ and, for $n\geqslant 0$,

(ii') $(X \setminus V_n(i)) \cup V_{n+1}(j)$ is open in X for $i, j \ge 0$,

(iii') $\{V_n(i)\}_{i\geq 0}$ is decreasing, $V_n(0) = X$ and $\bigcap_{i\geq 0} V_n(i) = \emptyset$.

We start with (i'). Assume that the sets $V_n(i)$ are given and satisfy (iii'). We shall construct sets $V_{n+1}(j)$ for $j \ge 0$, satisfying (iii') and (iii').

In order to apply a condition corresponding to (iv), we take, for each $i \ge 0$, a decreasing sequence $\{U_n(i,j)\}_{j\ge 0}$ of open subsets of X such that $U_n(i,0)=X$ and $\bigcap_{i\ge 0}U_n(i,j)=X\setminus V_n(i)$. Let

(iv')
$$V_{n+1}(j) = \bigcup_{i \ge 0}^{n+1} (V_n(i) \cap U_n(i,j)).$$

We have $U_n(i, j) \subset (X \setminus V_n(i)) \cup V_{n+1}(j)$. Thus

$$(X \setminus V_n(i)) \cup V_{n+1}(j) = U_n(i, j) \cup V_{n+1}(j)$$

and (ii') is satisfied.

To see that (iii') holds it is sufficient to check that $\bigcap_{j\geq 0} V_{n+1}(j) = \emptyset$.

Assume that x is in this intersection. Then, for each $j \ge 0$, there is an i_j such that $x \in V_n(i_j) \cap U_n(i_j, j)$. Since $\bigcap_{i \ge 0} V_n(i) = \emptyset$, it follows that, for a certain $i \ge 0$, $i_j = i$ for infinitely many j and we obtain a contradiction with the definition of the sequence $\{U_n(i,j)\}_{j\ge 0}$.

Now we can define the mapping $f: X \to T$. We put $f(x)(0) = \{\alpha: x \in U_{\alpha}\}$

and $f(x)(n) = \max\{j: x \in V_n(j)\}$ for $n \ge 1$.

Clearly, $f^{-1}(G_{\alpha}) = U_{\alpha}$ and consequently $f^{-1}(G_0(i)) = V_0(i)$. Moreover, $f^{-1}(G_n(i)) = V_n(i)$ for $n \ge 1$. Thus (ii) and (ii') imply that the sets $f^{-1}(G_n(i,j))$ are open in X, which proves that f is a continuous function.

The construction of f given above shows that we have some freedom in choosing f(x). In fact, Theorem 1 can be strengthened as follows (we use the notation introduced in the proof of Theorem 1):

THEOREM 2. Let A be a closed subset of a perfect space X and $\{U_\alpha\}_{\alpha\in\mathbb{M}}$ a collection of open subsets of X such that $\{\alpha\colon x\in U_\alpha\}$ is finite for $x\in X$. If $g\colon A\to T(\mathfrak{m})$ satisfies $g^{-1}(G_\alpha)=U_\alpha\cap A$ for $\alpha\in\mathfrak{m}$, then g has an extension $f\colon X\to T(\mathfrak{m})$ satisfying $f^{-1}(G_\alpha)=U_\alpha$ for $\alpha\in\mathfrak{m}$.

Proof. We proceed as in the proof of Theorem 1. We construct the sets $V_n(i)$ by induction on $n \ge 0$ in such a way that (i'), (ii') and (iii') are satisfied. Moreover, since f should extend g, we also require

(v')
$$V_n(i) \cap A = g^{-1}(G_n(i)).$$

We shall indicate modifications necessary to obtain (v'). We fix a

⁽¹⁾ In view of the results of the first section, it is more natural to define sets $G(\tau)$ for $\tau \in N^n$ with $n \ge 1$ by putting $G(\tau) = G_0(i)$ for $\tau = (i) \in N^1$ and $G(\tau, j) = \{t \in T: t \in G(\tau) \Rightarrow t(n) \ge j\}$ for $\tau \in N^n$. In fact, the sets $G(\tau)$ are open in T and, together with \mathscr{G} , form a subbase of T containing \mathscr{G} . However, in the proof of the continuity of $f: X \to T$, it is convinient to deal with a smaller subbase of T.

86

decreasing sequence $\{W(j)\}_{j\geq 0}$ of open subsets of X such that W(0)=X and $A=\bigcap W(j)$.

The sets $V_0(i)$ defined by (i') satisfy (v') because, for $\alpha \in \mathfrak{m}$, $U_{\alpha} \cap A = g^{-1}(G_{\alpha})$. Assume that the sets $V_n(i)$ for $i \ge 0$ are given and satisfy (iii') and (v'). We shall construct sets $V_{n+1}(j)$ for $j \ge 0$, satisfying (ii'), (iii') and (v').

We take, for $i \ge 0$, a decreasing sequence $\{U'_n(i,j)\}_{j\ge 0}$ of open subsets of X such that $U'_n(i,0) = X$ and $X \setminus V_n(i) = \bigcap_{j\ge 0} U'_n(i,j)$. In order to obtain (v'), we replace $U'_n(i,j)$ with

$$U_n(i,j) = (U'_n(i,j) \cup W(j)) \cap (g^{-1}(G_n(i,j)) \cup X \setminus A).$$

Clearly, $U_n(i,j) \cap A = g^{-1}(G_n(i,j))$ and the inductive assumption (v') implies that $\{U_n(i,j)\}_{j\geq 0}$ still has the properties of $\{U'_n(i,j)\}_{j\geq 0}$. Thus we can define the sets $V_{n+1}(j)$ satisfying (ii') and (iii') by using (iv'). Moreover, we have

$$V_{n+1}(j) \cap A$$

$$=\bigcup_{i\geq 0} (V_n(i)\cap U_n(i,j)\cap A)=\bigcup_{i\geqslant 0} g^{-1}\big(G_n(i)\cap G_n(i,j)\big)=g^{-1}\big(G_{n+1}(j)\big).$$

Thus (v') is satisfied too.

By virtue of (v'), the mapping f defined as in the proof of Theorem 1 is an extension of g.

COROLLARY 2. Let A be a closed subset of a perfect space X. If $g: A \to T(0)$, then y has an extension $f: X \to T(0)$.

COROLLARY 3. Any two disjoint closed subsets of a perfect space X can be separated by a mapping into T(0) (see [6]).

Corollary 4. The space $T(0)^{\aleph_0}$ is universal for all perfect T_1 -spaces of weight \aleph_0 (see [6]).

COROLLARY 5. A subset A of a perfect space X is closed if and only if $A = h^{-1}(0)$ for a mapping $h: X \to T(0)$, where $0 = (\emptyset, 0, 0, ...) \in T(0)$ (see [6]).

Proof. In order to obtain the non-trivial implication, we apply Theorem 2 for m=1, $U_0=X\setminus A$ and $g\colon A\to T(1)$ sending A to $(\emptyset,\ 0,\ \dots)\in T(1)$. We take $h=i\cdot f$, where f is an extension of g given by Theorem 2 and $i\colon T(1)\to T(0)$ is a natural embedding defined by $i(t)=(\emptyset,|t(0)|,t(1),t(2),\dots)$.

We can strengthen the non-trivial part of Corollary 5 as follows:

COROLLARY 6. If A is a closed subset of a perfect space X and $t \in T(0)$, then $A = h_t^{-1}(t)$ for a mapping $h_t: X \to T(0)$.

Proof. Let $h: X \to T(0)$ satisfy $h^{-1}(0) = A$. For $t' \in T(0)$ define $p_t(t') = (\emptyset, t(1) + t'(1), t(2) + t'(2), \dots)$. Clearly, $p_t: T(0) \to T(0)$ is continuous and $h_t = p_t \cdot h$ satisfies $h_t^{-1}(t) = A$.

Corollary 6 can also be obtained as a consequence of the following strengthening of Corollary 3:

COROLLARY 7. Let A and B be disjoint closed subsets of a perfect space X.

If $t, s \in T(0)$, then there exists a mapping $h: X \to T(0)$ such that $h^{-1}(t) = A$ and $h^{-1}(s) = B$.

Proof. Let m = t(1) + s(1). Define $t', s' \in T(m+1)$ as follows: $t' = (\{1, ..., t(1)\}, t(2), t(3), ...)$ and $s' = (\{t(1) + 1, ..., m\}, s(2), s(3), ...)$. Furthermore, put $U_0 = X \setminus (A \cup B)$, $U_k = X \setminus B$ for $k \in t'(0)$ and $U_k = X \setminus A$ for $k \in s'(0)$.

We apply Theorem 2 to the collection $\{U_k\}_{k=0,\ldots,m}$ and the mapping $a: (A \cup B) \to T(m+1)$ sending A to t' and B to s'.

Let f be an extension of g such that $f^{-1}(G_k) = U_k$ for k = 0, ..., m and let $p: T(m+1) \to T(0)$ be given by $p(t'') = (\emptyset, |t''(0)|, t''(1), ...)$. It is easy to see that $h = p \cdot f$ satisfies $h^{-1}(t) = A$ and $h^{-1}(s) = B$.

COROLLARY 8. Let $H(\mathfrak{m}) = \{t \in T(\mathfrak{m}): t = (\emptyset, 0, 0, ...) \text{ or } |t(0)| = 1\}$. The space $H(\mathfrak{m})^{\aleph_0}$ is universal for all perfect T_1 -spaces with a σ -disjoint base of cardinality \mathfrak{m} (see [5, 4.4.9]).

3. Final remarks.

Remark 1. Corollary 7 implies that no two points of T(0) can be separated by disjoint open sets. Spaces $T(\mathfrak{m})$ have the same property. It is easy to observe that any finite intersection of elements of a subbase \mathscr{P} of $T(\mathfrak{m})$ contains a non-empty set of the form $\bigcap_{k=1}^{n} G_{\alpha_k} \cap \bigcap_{k=1}^{n} H_k(j_k)$. From [4], it follows that there is no universal space for developable Hausdorff spaces of the weight of the continuum.

Remark 2. The subspace $\{\emptyset\} \times \{0, 1\}^{N+}$ of T(0) has the topology of the Cantor cube.

Remark 3. Call a subset A of X a D-closed subset if A is an element of a collection $\mathscr A$ of closed subsets of X such that $A' \in \mathscr A$ implies $X \setminus A' = \bigcup \{A(j): j \in N\}$ for some $A(j) \in \mathscr A$. The complements of D-closed sets are D-open sets (see [1]). It is easy to check that all the results of this paper can be generalized by replacing the assumption that X is perfect by the weaker assumptions that certain open subsets of X are D-open and closed subsets of X are D-closed. In particular, any mapping g of a D-closed subset of an arbitrary space X into T(0) can be extended to a mapping $f: X \to T(0)$. Moreover, D-closed (D-open) subsets of X can be characterized as inverse images of closed (open) subsets of X can be replaced by a perfect space X depending on X and the D-closed (D-open) subset of X.

Remark 4. A space X is said to be a D-normal space [2] if any two disjoint closed subsets of X can be separated by disjoint closed G_{δ} -sets(2). It is easy to check that closed G_{δ} -subsets of D-normal spaces are D-closed.

⁽²⁾ It can be shown that a space X is D-normal if and only if any two disjoint closed subsets of X can be separated by disjoint subsets of which the first is open and the second a G_{δ} -set in X.

Thus, the generalization of Corollary 3 (7) for D-closed sets shows that any two disjoint closed subsets of a D-normal space X can be separated by a mapping $f: X \to T(0)$ (see [6]) (sending each of these sets into an arbitrarily chosen point of T(0)). We do not known whether a mapping $g: A \to T(0)$, where A is a closed subset of a D-normal space X, can always be extended to $f: X \to T(0)$. Obviously, it can be extended if A is a closed G_{δ} -subset of X.

Remark 5. From Corollary 2 it follows that any T_1 -space with a σ -discrete network of cardinality not greater than the continuum has a one-to-one mapping onto a subspace of $T(0)^{\aleph_0}$.

Remark 6. One can modify the construction of $T(\mathfrak{m})$ in order to obtain an orthocompact developable T_1 -space $T'(\mathfrak{m})$ with a locally finite collection \mathscr{F} of closed subsets such that any perfect space X with a locally finite collection \mathscr{E} of cardinality \mathfrak{m} consisting of closed subsets of X can be mapped into $T'(\mathfrak{m})$ by a mapping f satisfying $\mathscr{E} = \{f^{-1}(F): F \in \mathscr{F}\}$.

The space T'(m) has the same underlying set as T(m) but its subbase consists of sets $G'_a = \{t \in T: t(0) \subset a\}$ for $a \in Fin(m)$ and of sets $G'_0(i) = \{t \in T': |t(0)| \le i\}$, $G'_n(i) = \{t \in T': t(n) \ge i\}$ for $n \ge 1$ and $G'_n(i, j) = \{t \in T': t \in G'_n(i) \Rightarrow t(n+1) \ge j\}$ for $n \ge 0$.

The collection \mathscr{F} is equal to $\{F_{\alpha}: \alpha \in m\}$, where $F_{\alpha} = \{t \in T: \alpha \in t(0)\}$ (see [3, Theorem 2.1.A and Lemma 2.2.A]). As a consequence, we infer that any T_1 -space with a σ -discrete network of cardinality m has one-to-one mapping onto a subspace of $T'(m)^{\aleph_0}(3)$.

Added in proof. Another construction of Heldermann's space with the proofs of Corollaries 2-4 is given by H. Brandenburg, An extension theorem for D-normal spaces, Topology and Appl. 15 (1983), pp. 223-229.

References

- [1] H. Brandenburg, On spaces with a G₈-basis, Archiv. Math. 35 (1980), pp. 544-547.
- [2] Separating closed sets by continuous mappings into developable spaces, Canad. J. Math. 33 (1981), pp. 1420-1431.
- [3] J. Chaber, Mappings onto metric spaces, Topology and Appl. 14 (1982), pp. 31-41.
- [4] E. K. van Douwen, There is no universal separable Moore space, Proc. Amer. Math. Soc. 76 (1979), pp. 351-352.
- [5] R. Engelking, General Topology, PWN, Warszawa 1977.
- [6] N. C. Heldermann, The category of D-completely regular spaces is simple, Trans. Amer. Math. Soc. 262 (1980), pp. 437-446.

INSTYTUT MATEMATYKI UNIWERSYTETU WARSZAWSKIEGO INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW

Received 23 November 1981

⁽³⁾ If \mathcal{F} is discrete, then T'(m) can be replaced by its subspace $H'(m) = \{t \in T'(m): t = (\{\alpha\}, 0, 0, ...) \text{ or } |t(0)| = 0\}$ (see [6]).