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Proof. Let m be the dimension of X; we can assume m > 0. Choose a
simplicial complex K with |K| = X and

(o) e
ﬂ(K) < mm(m, m),

and use Lemma 3 to obtain an n-valued simplicial multifunction
¢ K|~ |K]  with  y(¢) 2 y(@)~2u(K) and  d(p, ¢) < u(K).

Now proceed as in the proof of Theorem 2, pp. 118-119, of [2], ie.
apply the Hopf construction of Lemma 5 repeatedly on simplexes of increas-
ing dimension until a simplicial multifunction y: |[K’'| —|K| is obtained,
where K’ is a refinement of K so that i is fixed point free on all non-
maximal simplexes. An argument parallel to the one in [2], p. 119 implies
that the image of each point is changed at most m times. Hence Lemma 5 iii)
shows that

YY) = y(@)—4mu(K) = y(0)— 2u(K) —4mu(K) > 0,

SO t//.is n-valued. Similarly we see that each intermediate simplicial multi-
functlon_ ¢" which is fixed point free on all p-simplexes (p < m) satisfies the
assumption y(¢") > 4u(K) of Lemma 5. It follows that

do. V) <, @)+1(@, Y) < hotm - <.

The verification that s satisfies i) and ii) is analogous to the ome in [2],
pp. 118-119.

References

[1] C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh and London, 1963
[2] ?11 F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview.
., 1971. '

[3] R. Jerrard, Homology with multiple-valued functions applied to fixed points, Trans. Amer,
Math. Soc. 213 (1975), pp. 407427,

[4]C. R. F. Maunder, Algebraic Topology, van Nostrand Reinhold Co., London 1970,

(5] B. O’Neill, Induced homology homomorphism for set-valued maps, Pacific J. Math, 7
(1957). pp. 1179~1184,

CARLETON UNIVERSITY
Ottawa. Canada

Received 26 October 1981

icm

A universal metacompact developable T;-space
of weight m

by

Jozef Chaber (Warszawa)

Abstract. For each cardinal number m we construct a metacompact developable 7;-space
T(m). If m is infinite, then T(m) © is universal for all metacompact developable T,-spaces of
weight m. The space T(0) is the set of irrational numbers with a weaker topology and T(0) 0 js
universal for all perfect Tj-spaces of countable weight. Each T(m) is built of m copies of T'(0).
Moreover, each mappimg of a closed subset of a perfect space X into T(0) can be extended to a
mapping of X into T(0).

In [3] we have introduced a method of constructing mappings into
metacompact developable Tj-spaces. More precisely, we have constructed, for
a point-finite open cover % of a perfect space X, a continuous mapping p of
X onto a metacompact developable T;-space Z such that each element of %
is an inverse image of an open subset of Z.

The examination of -this construction shows that the space Z can be
regarded as a subspace of a metacompact developable T;-space T which
depends only on the cardinality of %.

In the first section of this paper we give a modification of the construc-
tion from [3]. The ideas of the first section are used in the second section to
construct, for each cardinal number m, a metacompact developable T;-space
T(m) and a point-finite collection ¥ of open subsets of T(m) such that, for
any perfect space X and any point-finite collection % of cardinality m
consisting of open subsets of X, there exists a mapping f: X — T(m) satisfy-
ing % ={f"'(G): Ge¥}. .

The weight of T(m) is m+N, and it follows that, for infinite m, T(m) 0
is universal for all metacompact developable T;-spaces of weight m.

A space with properties similar to the properties of T/(0) is constructed
in [6]. Our construction of T(0) is more direct and can he regarded as a
simplification of the construction in [6]. We prove an extension theorem for
mappings into T(m) (Theorem 2) and obtain a number of corollaries
showing that T'(0) can be considered to be a D-line (see Remarks 3 and 4).

We shall use the terminology and notation from [5]. By a mapping we
always mean a continuous function. Metacompact spaces are not necessarily
Hausdorff but all spaces we consider are T;-spaces. If 2 is a family of subsets
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of X and xe X, then @(x) = {DeP: xeD}. The set of non-negative integers
will be denoted by N and the setsof positive integers by N..

1. Mappings onto metacompact developable spaces. The results of this

section are implicitly contained in Section 2 of [3]. We include them here in
order to clarify the construction of spaces T(m).

ProrosiTiON. Let % be a point-finite open cover of a perfect space X.
There exists a metacompact developable space Z and a mapping p of X onto Z
such that each element of U is an inverse image of an open subset of Z.

Proof. The sets U(i)= {x: |%(x)| =i} are open in X. Since X is a
perfect space, we can define, by induction on n > 1, for each t € N", an open
subset U(r) of X such that

) Uk)=U() for ©=()eN?,
2 X\U(@) = N{U((x,)): je N},

where (z, ) denotes the extension of t by j. We shall often write Uf(z, j)
instead of U((z, j)). -
Put #=#u{U(): teN", nz1} and consider a relation x ~ x' iff
B(x) = AB(x). Clearly, ~ is an equivalence relation. :
We define Z to be the set of the equivalence classes of ~ and p to be
the natural function from X onto Z. We generate a topology of Z by taking
p(%#) = {p(B): Be®} to be a subbase. From the definition of ~ it follows
that Z is a Ty-space and p™*(p(B)) = B for Be 4. Thus p is a continuous
function and each element of % is an inverse image of an open subset of Z.
In order to show that Z is a metacompact developable T,-space, we
need a lemma. . ‘
LemMma. A Ty-space Z is a metacompact developable T, -space if and only

if Z has a subbase P = \) P, where each P, is a point-finite collection and
. k=0

zePe?P implies that, for a certain k =0, Z \U(.%\Q’,,(z))qc P.

Before proving the lemma, we shall show that the space Z and its
subbase p(4) satisfy the conditions of the lemma. This will reduce the proof
of our proposition to the proof of the lemma, ’

We shall carry out our reasoning in X with p(#) replaced by 4. This
will simplify the notation and is justified by the definition of Z and p.

Consider the countable family comsisting of the following point-finite”

collections of subsets of X: %, % ;=W u{U(i,j)} for i,j >0 and %(7)
= {U(z)} for teN" and n> 1, Clearly, & is the union of this family.

Assume. that xe Be #. We have to distinguish two cases. If Be %, then
we take i = |%(x)| and a j > O satisfying x¢ U (i, j). The existence of such a j
is assured by (2). It is easy to seé that

X\ (#,\%,(x) = X\(U i, ) O U (2% (x)) < B.
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If B=Uf(z), then, by virtue of (2), x¢U(z, j) for a certain j > 0 and
X\U(% (@, )\ (@, ) (%)) = X\U (z, j) = B.

Thus the lemma implies that Z is a metacompact developable T-space.

Proof of the Lemma. The “only if” part is obvious. In order to

prove the “if” part, consider a Ty-spdce Z with a subbase 2= {J &
k20
satisfying the conditions of the lemma.

Put P.(z) = N\ P(2), Di(2) = kaP,‘l (z) and 2, = {D\(2): z.e Z}. Each

" &, is a point-finite open cover of Z and, Since dévelopable Ty-spaces are T,

it follows that it is sufficient to prove that {2, },» is a development for Z.

Let zeZ and let P be an open subset of Z containing z. We want to
find a k > 0 such that St(z, 2,) < P. Since 9., refines 9, for k > 0, we can
assume that Pe 2. Then Pe 2, for a k; > 0 and Z\U (#,\Py, (2) = P for a
k, = 0. Take k=ky+k,. If zeDy(z)e%,, then zeP,,(z), which implies
z’eP and D,(z) = P, (z') = P. Thus, St(z, %)) = P.

Observe that the space Z depends on # rather than on X. It is clear
that in order to obtain a space T(m) with the properties mentioned in the
introduction it is sufficient to apply the above construction to a space X with
a point-finite open cover % of cardinality m such that the relation ~
described above has as many equivalence classes as possible. In particular,
each i-element subcollection of % has to have a non-empty intersection. This
intersection should intersect both U (i, j) and X\U (', j) for i <i (for i’ >1i
this intersection has to be contained in U (', j)) and so on.

In the next section we shall construct a space with such a cover and a
collection # such that each of the equivalence classes of ~ will be a one-
point set.

2. Universal spaces. The main step in the construction of our universal
spaces will be the following’

TueoreM 1. Let m be a cardinal number. There exists a metacompact
developable T,-space T(m) of weight m+No with a point-finite collection ¥ of
open subsets such that any perfect space X with a point-finite open collection
WU of cardinglity m can be mapped into T(m) by a mapping f satisfying U
={f"Y(G): Ge¥%}. :

As an immediate consequence, we obtain

CoroLLARY 1. If m is an infinite cardinal number, then T is
universal for all metacompact developable T;-spaces of weight m.

Proof of Theorem 1. Let m be a fixed cardinal number and let
Fin(m) denote the set of all finite subsets of m. !

We define the set of points of T'(m) (since m is fixed, we write Tinstead

T=Fin(m)x N"*.
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Thus each element of Tis a sequence (¢(0), t(1), ...) such that 1(0) is a finite
subset of m and t(neN for n>1.

For aem, let G, = {teT aet(0)} and put ¥ = {G,: aem}.

If aeFin(m) is identified with its characteristic function, then Fin(m)
with the topology generated by the projections of the sets G, is a subspace of
the Alexandroff cube {0, 1} (1 is the isolated point of {0, 1}) [5, 2.3.26]. The
factor N'* will make T perfect and, consequently, metacompact, developable
and T;.

Let Go(i) = {teT |t(Q) =i}, G,()={teT t(n=i} for nz1 and
G,(i,j) ={teT teG,() = t(n+1)=j} for n=0.

It is easy to see that

() Go()) ={teT |{w: teG,} =i} for i 20,
() Gyi, J) = (T\Gy()) U Gysq () for n,i,j>0
and, for each n =0,
(iii) {G,(D)};»0 Is decreasing, G,(0) =T and () G,(i) =D.
20

We consider T with the topology. generated by assuming that #
=90 {G,(0): n, 120} U {G,(i,)): n,i;j =0} is a subbase of T(!).

To see that T is a Ty-space, take two different points ¢, t'eT, If
t(n) > 1'(n) for an n> 1, then G,(t(n)) contains ¢ but does not contain t'. If
t(0) #t'(0) and o et(0)\t'(0), then G, contains ¢ but does not contain .

From (ii) and (iii) it follows that T\G,() = () G,(,)) and T\G,(,))

jz0

=G,()) "T\Gps1 () = G, ()N (). Gpse1 (G, k).  Thus - #\& satisfies (see
. k>0
Remark 3)

(1) {teT: Hu: teG) = i}eB\Y for i >0,
2) if Be®\¥, then T\B = () B(j) for some B(j)e #\%.
. jz0
Consequently, the lemma of the first section implies that T is a metacompact
developable T;-space (the proof that Tsatisfies the assumptions of the lemma
is the same as the proof for Z). Clearly, the weight of Tis m+N, and ¥ is a
point-finite collection of open subsets of T.
Let X be a perfect space and let' % be a point-finite collection of open
_subsets of X such that |#] = m, We can represent % as {U,},e. in such a
way that {a: xeU,} is finite for xeX.
We - shall construct a mapping f: X — T satisfying f~!(G,) = U, by
defining sets V,(i), open in X, which will be the inverse images of the sets
G,(i). Our construction will be by induction on n > 0 and will be based on

(') In view of the results of tHe first section, it is more natural to define sets G (z) for te N*
with n> 1 by putting G(r) = Go (i) for v = (i))eN* and ‘G(r, j) = {teT teG(r) = t(n) =} for
TeN" In fact, the sets G(r) are open in Tand, together with %, form a subbase of T containing
2. However, in the proof of the continuity of f* X — T} it is convinient to deal with a smaller
subbase of T.
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_the fact that

(V) Guer () = U (G Gy (i)

We are going to construct sets V,(i) such that
(i) Vo) = (xeX: [{u: xeU,}| =i} for iz 0
and, for n =0,
(i) (X\V,())w Vps1 () is open in X for i,j =0,
(i) {V,()}izo is decreasing, ¥,(0)= X and () V,(i) = Q.
iz0

We start with (i'). Assume that the sets V(i) are given and satisfy (iii’).
We shall construct sets V,.;() for j > 0, satisfying (ii") and (iii).

In order to apply a condition corresponding to (iv), we take, for each i
>0, a decreasing sequence {U,(i, )};»o of open subsets of X such that
U,(i, 0) =X and :D U,@, ) = X\V,(i). Let

20
(i) Varr1 () = EU (V) n U, G, ).

50
We have U,(i, ) =(X\V,(0)V V41 (). Thus
(X\V @)U V1 () = Unis ) U Vars ()

and (il) is satisfied.
To see that (iii’) holds it is sufficient to check that N\ V,.,() = .
jz0
Assume that x is in this intersection. Then, for each j > 0, there is an i; such
that xe V, (i) " U, (i, j). Since [ ¥,(i) = Q, it follows that, for a certaini > 0,
iz0

i; =i for infinitely many j and we obtain a contradiction with the definition
of the sequence {U,(i, )};>o-

Now we can define the mapping f: X - T. We put £ (x)(0) = {a: xeU,}
and f (x)(n) = max {j: xeV,()} for n>1. - '

Clearly, f~1(G,) = U, and consequently f~*(Go (i) = Vo (i). Moreover,
774(G,()) = V,() for n > 1. Thus (ii) and (ii) imply that the sets f 4G, G, )
are open in X, which proves that f is a continuous function.

The construction of f given above shows that we have some freedom in
choosing f (x). In fact, Theorem 1 can be strengthened as follows (we use the
notation introduced in the proof of Theorem 1):

Trrorem 2. Let A be a closed subset of a perfect space X and {U,}sem @
collection of open subsets of X such that {a: xeU,} is finite for xeX. If
g: A - T(m) satisfies g~*(G,) = U,nA for aem, then g has an extension
fi X = T(m) satisfying f~1(G,) = U, for aem.

Proof. We proceed as in the proof of Theorem 1. We construct the sets
¥,(i) by induction on n > 0 in such a way that (i'), (ii') and (iii") are satisfied.
Moreover, since f should extend g, we also require

V) V) A A = g7 (G, (). .

We shall indicate modifications necessary to obtain (v). We fix a
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decreasing sequence {W(j)};» o of open subsets of X such that W(0) = X and
A= ﬂ W (). ‘

The sets V,(i) defined by (i') satisfy (v') because, for aem, U, N4
=y~ '(G,). Assume that the sets V,(i) for i > 0 are given and satisfy (iii') and
(v'). We shall construct sets V,,,(j) for j = 0, satisfying (ii’), (iii") and (v).

We take, for i > 0, a decreasing sequence {U, (i, j)};» o of open subsets of
X such that U,(i, 0) = X and X\V,(i) = () U,(i, ). In order to obtain (v,

jz0

we replace U, (i, j) with

Ua(i, ) = (Unti, ) 0 WD) (g™ (G, )0 X\4).
Clearly, U, (i, ) n A = ¢~ "(G,(i, j)) and the inductive assumption (v') implies
that (U, (i, )\ ;5 still has the properties of {U,(i, j)};50. Thus we can define
the sets V,.,(j) satisfying (ii') and (ili') by using (iv'). Moreover, we have

Vi 1) A4

= Y U604 = U g7 (G N Gy, ) = 47 (Cur 1 0)-

Thus (v) is satisfied too.
By virtue of (v'), the mapping f defined as in the proof of Theorem 1 is
an extension of g.
COROLLARY 2. Let A be a closed subset of a perfect space X. If g: A
— T(0), then gy has an extension f: X — T(0).
COROLLARY 3. Any two disjoint closed subsets of a perfect space X can be
separated by a mapping into T(0) (see [6]). )
CoroLLARY 4. The space T(O)NO is universal for all perfect T,-spaces of
weight R, (see [6]).
CoOROLLARY 5. A subset A of a perfect space X is closed if and only if 4
~1(0) for a mapping h: X - T(0), where 0 = (Q, 0, 0, ...)e T{0) (see [6]).
Proof. In order to obtain. the non-trivial implication, -we apply
Theorem 2 for m=1, Uy = X\A and 'g: 4~ T(1) sending A to (D, 0,
0,..)eT(l). We take h=i-f, where f is an extension of g given by
Theorem 2 and i: T(1)— T(0) is a natural embedding defined by i(t)
=(®, [t(0), £ (1), t(D), ...). '
We can strengthen the non-trivial part of Corollary 5 as follows:
CoroLLARY 6. If A is a closed subset of a perfect space X and teT(0),
then A = h71(t) for a mapping h: X — T(0).
Proof. Let h; X — T(0) satisfy h™*(0) =
=(0, t()+t'(1), t(D+1'(2), .
h, = p,*h satisfies h*(t) = 4.
Corollary 6 can also be obtained as a consequence.of the following
strengthening of Corollary 3:
" CorROLLARY 7. Let A and B be disjoint closed subsets of a perfect space X.

A. For t'e T(0) define p,(t)
..). Clearly, p,: T(0)~ T(0) is continuous and
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If t, seT(0), then there exists a mapping h: X — T(0) such that h™1(1) = A
and h™*(s) = B.
Proof. Let m =1t(1)+s(l). Define t', s'e T(m+1) as follows:

v =({1, ..., r(1)}, r(2),} t(3),...) and ¢ =({t(H+1,...,m}, s(2,s03), ...).
Furthermore, put Uy = X\(Au B), U, = X\B for ket’ (0 and U, = X\A for
kes'(0).

We apply Theorem 2 to the collection {U,}i~o,..., and the mapping
g: (AuB) = T(m+1) sending 4 to ¢ and B to s'.

Let f be an extension of g such that f~!(G,) = U, for k =0, ...
let p: T(m-1) - T(0) be given by p(t") = (@, [¢"(0), " (1), ..
see that h = p-f satisfies h"!(t) = 4 and k™' (s) = B.

" COROLLARY &5 Let Him)= {reT(m): t=(0,0,0,...) or [t(0)=1}.
The space H(m) © is universal for all perfect T,-spaces with a o-disjoint base
of cardinality m (see [5, 4.4.9]).

3. Final remarks.

Remark 1. Corollary 7 implies that no two points of T(0) can be
separated by disjoint open sets. Spaces T(m) have the same property. It is
easy to observe that any finite 1ntersect10n of elernents of a subbase & of

,m and
.). It is easy to

T(m) contains a non~empty set of the form ﬂ G, N ﬂ H,(j,). From [4],

it follows that there is no universal space for developable Hausdorff spaces
of the weight of the continuum.

Remark 2. The subspace {@} x {0, I}N*' of T(0) has the topology of
the Cantor cube.

Remark 3. Call a subset A of X a D-closed subset if A is an element of
a collection &/ of closed subsets of X such that A'e./ implies X\A'
={J{A4(j): je N} for some A(j)es/. The complements of D-closed sets are
D-open sets (see [1]). It is easy to check that all the results of this paper can
be generalized by replacing the assumption that X is perfect by the weaker
assumptions that certain open subsets of X are D-open and closed subsets of
X are D-closed. In particular, any mapping g of a D-closed subset of an
arbitrary space X' into T'(0) can be extended to a mapping f: X — T(0).
Moreover, D-closed (D-open) subsets of X can be characterized as inverse
images of closed (open) subsets of T(0) under mappings of X into T(0).
Obviously, T(0) in the above characterization can be replaced by a perfect
space Z depending on X and the D-closed (D-open) subset of X.

Remark 4. A space X is said to be a D-normal space [2] if any two
dlS]Omt closed subsets of X can be separated by disjoint closed Gj-sets(?). It
is easy to check that closed Gy-subsets of D-normal spaces are D-closed.

(%) 1t can be shown that a space X is D-normal if and only if any two disjoint closed
subsets of X can be separated by disjoint subsets of which the first is open and the second a Gy
set in X,
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Thus, the generalization of Corollary 3 (7) for D-closed sets shows that any
two disjoint closed subsets of a D-normal space X can be separated by a
mapping f: X — T(0) (see [6]) (sending each of these sets into an arbitrarily
chosen point of T(0)). We do not known whether a mapping g: 4 — T(0),
where A4 is a closed subset of a D-normal space X, can always be extended to
f: X - T(0). Obviously, it can be extended if 4 is a closed G,-subset of X.

Remark 5. From Corollary 2 it follows that any T;-space with a o-
discrete network of cardinality not greater than the continuum has a one-to-
one mapping onto a subspace of T(0) °.

Remark 6. One can modify the construction of T(m) in order to
obtain an orthocompact developable Tj-space T'(m) with a locally finite
collection & of closed subsets such that any perfect space X with a locally
finite collection & of cardinality m consisting of closed subsets of X can be
mapped into T'(m) by a mapping f satisfying & = {f~(F): Fe ).

The space T'(m) has the same underlying set as T'(im) but its subbase
consists of sets G, ={teT: t(0) ca} for acFin(m) and of sets Gj(i)
={teT:tO) <i}, G,@)={teT:tm=i} for nx=1 and G,(,))
={teT": teG,(i) = t(n+1) =j} for n>0.

The collection & is equal to {F,: aem}, where F, = {te T: aet(0)}

"(see [3, Theorem 2.1.A and Lemma 2.2.A7). As a consequence, we infer that
any T -space with a o-discrete network of cardinality m has one-to-one
mapping onto a subspace of T'(m)"°(3).

Added in proof. Another construction of Heldermann’s space with the proofs of Corollaries

2-4 is given by H. Brandenburg, An extension theorem for D-normal spaces, Topology and
Appl. 15 (1983), pp. 223-229.
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* I #Fis discrete, then T'(m) can be replaced by its subspace H(m) = {teT'(m):
=({o}, 0,0,...) or |t(0) = 0} (see [6]).
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