

Fix-finite approximation of *n*-valued multifunctions

by

Helga Schirmer (Ottawa)

Abstract. We call a multifunction φ : $X \to Y$ *n-valued* if $\varphi(x)$ consists, for all $x \in X$, of n points, and show that an n-valued continuous multifunction from a compact polyhedron to itself has an arbitrarily close approximation by an n-valued continuous multifunction which has only finitely many fixed points. The proof includes multivalued analogues of the Simplicial Approximation Theorem and of the Hopf construction. A basic tool is the Splitting Lemma, which shows that n-valued continuous multifunctions are locally equivalent to n single-valued continuous functions, and implies that every n-valued continuous multifunction from a compact, Hausdorff, path connected and simply connected space with the fixed point property to itself has at least n fixed points.

1. Introduction. B. O'Neill [5] studied continuous multifunctions $\varphi \colon X \to Y$ which have the property that, for all $x \in X$, $\varphi(x)$ is either acyclic or consists of n acyclic components. He showed that if X and Y are compact polyhedra, then an induced homomorphism $\varphi_* \colon H_*(X) \to H_*(Y)$ can be defined. Hence if X = Y, there exists a Lefschetz number $L(\varphi)$ with the usual property that $L(\varphi) \neq 0$ implies that the fixed point set $\text{Fix} \varphi = \{x \in X | x \in \varphi(x)\}$ is not empty.

Here we consider a special case of such multifunctions, namely those where, for all $x \in X$, $\varphi(x)$ consists of n points. Such multifunctions, which we call n-valued, inherit some of the properties of single-valued functions. Our main purpose is to show that $\operatorname{Fix}\varphi$ is generically finite (Theorem 6). To accomplish it, we first prove a multivalued analogue of the simplicial approximation theorem (Theorem 4), and then carry out a "Hopf construction" for n-valued simplicial multifunctions (Lemma 5). A crucial tool in all proofs is the Splitting Lemma (Lemma 1), which shows that n-valued continuous multifunctions are locally (but not necessarily globally) equivalent to n single-valued continuous functions. The proof of the Splitting Lemma uses a lemma by O'Neill [5], but otherwise this paper is independent of his work. Theorem 3 could, in fact, be used to define for an n-valued continuous multifunction φ an induced homomorphism φ_* : $H_*(X) \to H_*(Y)$ in a way different from the one given by O'Neill, but we do not persue this topic.

It seems likely that the Simplicial Approximation Theorem (Theorem 4) and the Fix-Finite Approximation Theorem (Theorem 6) still hold if the *n*-valued multifunction is only upper semi-continuous rather than continuous,

but our method of proof fails in this case. For consider the 2-valued upper semi-continuous multifunction ψ : $[-1, 1] \rightarrow [-1, 1]$ given by

$$\psi(x) = \begin{cases} \{x+1, 1\} & \text{if } -1 \le x \le 0, \\ \{-1, x-1\} & \text{if } 0 \le x \le 1. \end{cases}$$

The Splitting Lemma is false for ψ , and so is Theorem 2, which states that if X is a compact, Hausdorff, path connected and simply connected space with the fixed point property, then every n-valued continuous multifunction φ : $X \to X$ has at least n fixed points.

It may also be possible to extend Theorems 4 and 6 to a continuous multifunction φ for which the number of points in $\varphi(x)$ is finite but not independent of x. But again there is no analogue of the Splitting Lemma and of Theorem 2, as an unpublished example by R. Dunn (see O'Neill [5], p. 1183) shows that there exists such a multifunction from the 2-cell to itself without a fixed point.

2. Splitting *n*-valued multifunctions. The proofs in this paper depend heavily on the fact that the multifunctions considered here can locally be "split" into single-valued functions. We give the necessary background in this paragraph. A basic reference for multifunctions is e.g. the book by C. Berge [1], especially Chapter VI.

A multifunction $\varphi\colon X\to Y$ from a topological space X to a topological space Y is a correspondence which assigns to each point of X at least one point of Y. The multifunction $\varphi\colon X\to Y$ is called upper semi-continuous if $\varphi(x)$ is closed for all $x\in X$ and if for each open set $V\subset Y$ with $\varphi(x)\subset V$ there exists an open set $U\subset X$ with $x\in U$ and $\varphi(U)\subset V$. It is called lower semi-continuous if for every $x\in X$ and open set $V\subset Y$ with $\varphi(x)\cap V\neq \emptyset$ there exists an open set $U\subset X$ with $x\in U$ and $\varphi(x')\cap V\neq \emptyset$ for all $x'\in U$. If φ is both upper and lower semi-continuous, then it is called continuous. If X and Y are compact Hausdorff spaces, then $\varphi\colon X\to Y$ is upper semi-continuous if and only if its graph $\Gamma_{\varphi}=\{(x,y)\in X\times Y|y\in \varphi(x)\}$ is closed in $X\times Y$ (see [1], p. 112). We will reserve the term map for a single-valued continuous function.

We define that a multifunction $\varphi \colon X \to Y$ splits into maps if there exist finitely many maps $f_i \colon X \to Y$, where i = 1, 2, ..., n, so that $\varphi(x) = \{f_1(x), f_2(x), ..., f_n(x)\}$ for all $x \in X$. If $f_i(x) \neq f_j(x)$ for all $x \in X$ and i, j = 1, 2, ..., n with $i \neq j$, then we say that φ splits into distinct maps, and write $\varphi = \{f_1, f_2, ..., f_n\}$. Clearly a multifunction which splits into maps is continuous.

LEMMA 1 (Splitting Lemma). Let X and Y be compact Hausdorff. If X is path connected and simply connected and $\varphi: X \to Y$ is n-valued and continuous, then φ splits into distinct maps.

Proof. It follows from [5], Lemma 4 that the graph $\Gamma_{\varphi} \subset X \times Y$ consists of n components, say C_i , with i=1,2,...,n. As φ is continuous, each projection $p_i\colon C_i\to X$ induced by the projection of $X\times Y$ onto X is a surjection. Hence we can define functions $f_i\colon X\to Y$ by $f_i(x)=p_i^{-1}(x)$, and as φ is n-valued, the f_i are single-valued. The graphs C_i of the f_i are closed, so the f_i are continuous, and therefore $\varphi=\{f_1,f_2,...,f_n\}$ splits into distinct maps.

O'Neill [5], Theorem 9 proved that if X is an acyclic compact polyhedron and $\varphi: X \to X$ a continuous multifunction such that, for all $x \in X$, $\varphi(x)$ is acyclic or consists of n acyclic components, then $\operatorname{Fix} \varphi \neq \emptyset$. We can strengthen this result if φ is n-valued.

THEOREM 2. Let X be a compact Hausdorff, path connected and simply connected space with the fixed point property. Then every n-valued continuous multifunction $\varphi \colon X \to X$ has at least n fixed points.

Proof. Lemma 1 implies that $\varphi = \{f_1, f_2, ..., f_n\}$. Each f_i has at least one fixed point, and these fixed points are distinct.

Remark. Using [5], Lemma 4 and generalizations of Kakutani's Theorem it is possible to obtain analogues for Lemma 1 and Theorem 2 for continuous multifunctions $\varphi \colon X \to X$, where for all $x \in X$, $\varphi(x)$ consists of n acyclic components. It is, however, not possible to drop the assumption in Lemma 1 that X is simply connected. To see this, let $S^1 = \{e^{it} | 0 \le t < 2\pi\}$ be the unit circle in the complex plane and $\psi \colon S^1 \to S^1$ be the multifunction given by $\psi(e^{it}) = \{e^{it/2}, e^{it/2 + i\pi}\}$ for all $0 \le t < 2\pi$. Then ψ is 2-value and continuous, but does not split into distinct maps. It has one fixed point.

3. Simplicial approximation of *n*-valued multifunctions. We now consider *n*-valued continuous multifunctions $\varphi \colon X \to Y$ in the case where X and Y are compact polyhedra, and show that they have a simplicial approximation. Denote by |K| a polyhedron which is the realization of a finite simplicial complex K, by σ an open simplex of |K|, by $\overline{\sigma}$ the corresponding closed simplex, and by $\dot{\sigma}$ the boundary of σ . The (open) star $\operatorname{st}_K \sigma$ is the union of all simplexes of |K| which have σ as a face. We shall write $\overline{\operatorname{st}_K \sigma}$ for the closure of $\operatorname{st}_K \sigma$.

We call a multifunction $\varphi\colon |K|\to |L|$ from a polyhedron |K| to a polyhedron |L| a simplical multifunction if, for every $\overline{\sigma}\in |K|$, the restriction $\varphi|\overline{\sigma}$ splits into maps f_1,f_2,\ldots,f_n so that each f_i maps $\overline{\sigma}$ affinely onto a simplex $\overline{\tau}_i\in |L|$. It is easy to check that a simplicial multifunction is continuous. We use d_K and d_L to denote the barycentric metric of |K| and |L|, ϱ_L to denote the Hausdorff metric on |L| induced by d_L , and

$$\overline{d}(\varphi, \varphi') = \sup \{ \varrho_L(\varphi(x), \varphi'(x)) | x \in |K| \}$$

for the distance between two multifunctions φ , φ' : $|K| \rightarrow |L|$.

If $\varphi: |K| \to |L|$ is *n*-valued and continuous, then we define a function from |K| into the reals by

$$\gamma(x) = \inf \left\{ d_L(y_i, y_j) | y_i, y_j \in \varphi(x), y_i \neq y_j \right\}$$

for all $x \in |K|$, and the gap of φ by

$$\gamma(\varphi) = \inf \{ \gamma(x) | x \in |K| \}.$$

The continuity of φ implies that $\gamma(x)$ depends continuously on x. Hence if |K| is compact, then it follows from $\gamma(x) > 0$ for all $x \in |K|$ that $\gamma(\varphi) > 0$.

The symbol $\mu(K)$ denotes the mesh of |K|. We first describe the simplicial approximation of φ in the form of a detailed lemma needed later on.

Lemma 3. Let |K| and |L| be compact polyhedra and $\varphi: |K| \to |L|$ an n-valued continuous multifunction. If L^s is a subdivision of L with $\mu(L^s) < \frac{1}{4}\gamma(\varphi)$, then there exist a subdivision K^r of K and an n-valued simplicial multifunction $\varphi': |K^r| \to |L^s|$ so that

i)
$$\gamma(\varphi') \geqslant \gamma(\varphi) - 2\mu(L^s)$$
, ii) $\overline{d}(\varphi, \varphi') \leqslant \mu(L^s)$.

Proof. According to Lemma 1 the restriction $\varphi|_{\mathsf{St}_K v}$ splits into n distinct maps for every vertex $v \in |K|$. Write $\varphi|_{\mathsf{St}_K v} = \{f_{r,1}, f_{r,2}, \dots, f_{r,n}\}$, let $\lambda_i(v)$, for $i = 1, 2, \dots, n$, be the Lebesgue number of the open cover

$$\{f_{v,i}^{-1}(\operatorname{st}_{L^s}b)|\ b \text{ is a vertex of } |L^s|\}$$

of $st_K v$, and let

$$\lambda = \inf \{ \lambda_i(v) | v \text{ is a vertex of } |K| \text{ and } i = 1, 2, ..., n \}.$$

As |K| is compact, we have $\lambda > 0$. Now each $f_{v,i}$: $\overline{\operatorname{st}_K v} \to |L|$ is uniformly continuous, therefore we can for every $v \in |K|$ choose $\delta(v) > 0$ so that $d_L(f_{v,i}(x), f_{v,i}(x')) < \frac{1}{4}\gamma(\varphi)$ for all $x, x' \in \operatorname{st}_K v$ with $d_K(x, x') < \delta(v)$ and all $i = 1, 2, \ldots, n$. Let

$$\delta = \inf \{ \delta(v) | v \text{ is a vertex of } |K| \}.$$

and let K^r be a subdivision of K so that $\mu(K^r) < \min(\delta, \lambda/2)$.

We now construct φ' on the vertices of |K'|. Select for every vertex $a \in |K'|$ a vertex $v = v(a) \in |K|$ so that $\operatorname{st}_{K'} a \subset \operatorname{st}_{K} v$. As the diameter diam $(\operatorname{st}_{K'} a) < \lambda \leq \lambda_i(v)$ for all $i = 1, 2, \ldots, n$, we see that

$$= \{f'_{1}(a_{l}), f'_{2}(a_{l}), ..., f'_{n}(a_{l})\} \text{ so that}$$

$$f_{v,l}|\overrightarrow{\operatorname{st}_{K}v} \cap \overrightarrow{\operatorname{st}_{K}v(a_{l})} = f_{v(a),l}|\overrightarrow{\operatorname{st}_{K}v} \cap \overrightarrow{\operatorname{st}_{K}v(a_{l})}$$

for i = 1, 2, ..., n. Then

$$\bigcap_{l=0}^{p} \operatorname{st}_{K^{r}} a_{l} = \operatorname{st}_{K^{r}} \sigma \neq \emptyset$$

implies

$$\emptyset \neq f_{v,i} \left(\bigcap_{l=0}^{p} \operatorname{st}_{K^{r}} a_{l} \right) \subseteq \bigcap_{l=0}^{p} f_{v(a_{l}),i} \left(\operatorname{st}_{K^{r}} a_{l} \right).$$

But by construction of $f_i'(a_l)$ we have

$$\operatorname{st}_{K^r} a_l \subset f_{v(a_l),i}^{-1} (\operatorname{st}_{L^s} f_i'(a_l)),$$

so

$$\bigcap_{l=0}^{p} \operatorname{st}_{L^{s}} f_{i}'(a_{l}) \neq \emptyset.$$

Thus the set $\{f_i'(a_0), f_i'(a_1), \ldots, f_i'(a_p)\}$ spans, for each $i=1, 2, \ldots, n$, a simplex $\tau_i \in |L^i|$, and hence we can extend each f_i' from the vertices of σ to an affine map $f_{\sigma,i}'$: $\bar{\sigma} \to \bar{\tau}_i$. Define ϕ' : $|K^r| \to |L^s|$ by $\phi'(x) = \{f_{\sigma,1}'(x), f_{\sigma,2}'(x), \ldots, f_{\sigma,n}'(x)\}$ if $x \in \bar{\sigma}$.

To show that φ' is well defined, it is necessary to show that if $\overline{\sigma} \subset \overline{\sigma}^*$, where σ , σ^* are simplexes of |K'|, then $f_{\sigma,i}$ and $f'_{\sigma^*,j}$ can be indexed so that $f'_{\sigma,i}(x) = f'_{\sigma^*,i}(x)$ for all $x \in \overline{\sigma}$. The construction of the $f'_{\sigma,i}$ from the $\varphi'(a)$ depends only on the choice of the vertex $v \in |K|$ with $\operatorname{st}_{K'} \sigma \subset \operatorname{st}_K v$. Hence it suffices to show that if $\varphi'(\overline{\sigma}) = \{\overline{\tau}_1, \overline{\tau}_2, ..., \overline{\tau}_n\}$, then the simplexes $\tau_i \in |L^s|$ are independent of v up to order. To see this, take a vertex $f'_i(a_i) \in \overline{\tau}_i$. As $f_{v(a_i),i}(\operatorname{st}_{K'} a_i) \subset \operatorname{st}_{L^s} f'_i(a_i)$, we have

$$d_L(f_{v(a_l),i}(a_l), f_i'(a_l)) \leqslant \mu(L^s).$$

So if $f'_j(a_k) \in \overline{\tau}_j$ and $i \neq j$, then $f_{v(a_l),i}(a_l) = f_{v,i}(a_l)$ and $f_{v(a_k),j}(a_k) = f_{v,k}(a_k)$ imply

$$\begin{split} d_{L}\big(f_{i}'(a_{l}),f_{j}'(a_{k})\big) &\geqslant d_{L}\big(f_{v,l}(a_{l}),f_{v,j}(a_{l})\big) - d_{L}\big(f_{v,l}(a_{l}),f_{v,j}(a_{k})\big) - \\ &- d_{L}\big(f_{v,l}(a_{l}),f_{i}'(a_{l})\big) - d_{L}\big(f_{v,j}(a_{k}),f_{j}'(a_{k})\big) \\ &\geqslant \gamma(\varphi) - \frac{1}{4}\gamma(\varphi) - 2 \cdot \frac{1}{4}\gamma(\varphi) = \frac{1}{4}\gamma(\varphi) > \mu(L^{s}). \end{split}$$

· 1 CITS -- (1/-) 25 : / ; and col ic

 $f_{v,i}(x) \in \bigcap_{l=0}^{p} f_{v,i}(\operatorname{st}_{K^{r}}(a_{l})) \subseteq \bigcap_{l=0}^{p} \operatorname{st}_{L^{s}} f_{i}'(a_{l}) = \operatorname{st}_{L^{s}} \tau_{i}$

for i = 1, 2, ..., n, and as $f'_{\sigma,i}(x) \in \tau_i$, we have

$$d_L(f'_{\sigma,i}(x), f_{v,i}(x)) \leq \mu(L^s)$$

and therefore if $i \neq j$

$$d_L(f'_{\sigma,i}(x), f'_{\sigma,i}(x)) \ge d_L(f_{\nu,i}(x), f_{\nu,i}(x)) - 2\mu(L^s).$$

As $\varphi(x) = \{f_{v,1}(x), f_{v,2}(x), \dots, f_{v,n}(x)\}, \quad \varphi'(x) = \{f'_{\sigma,1}(x), f'_{\sigma,2}(x), \dots, f'_{\sigma,n}(x)\},\$ it follows that $\gamma(\varphi') \ge \gamma(\varphi) - 2\mu(L^p)$ and $\overline{d}(\varphi, \varphi') \le \mu(L^p)$.

An immediate consequence of Lemma 3 is

THEOREM 4 (Simplicial approximation for n-valued multifunctions). Let |K| and |L| be compact polyhedra and $\varphi: |K| \to |L|$ an n-valued continuous multifunction. Given $\varepsilon > 0$, there exist subdivisions K^r of K and L^s of L and an n-valued simplicial multifunction $\varphi': |K^r| \to |L^s|$ such that $\bar{d}(\varphi, \varphi') < \varepsilon$.

Proof. In Lemma 3 choose L^s so that $\mu(L^s) < \min(\frac{1}{4}\gamma(\varphi), \varepsilon)$.

Remark. A simplicial approximation theorem for certain finite-valued multifunctions — the so-called *m*-functions — was proved by R. Jerrard [3], Theorem 5.2, but he only showed that piecewise linear *m*-functions (defined as *m*-functions with a polyhedral graph) have a simplicial approximation.

4. Fix-finite approximation of *n*-valued multifunctions. It is the purpose of this paragraph to show that every *n*-valued continuous multifunction $\varphi: |K| \to |K|$ from a compact polyhedron to itself has an arbitrarily close approximation by an *n*-valued continuous multifunction $\varphi: |K| \to |K|$ which has only finitely many fixed points. Our method consists of a repeated use of a Hopf construction performed on an *n*-valued simplicial multifunction approximating φ . The Hopf construction for *n*-valued continuous multifunctions, described in the rather technical Lemma 5, is modelled on the Hopf construction for maps which can be found in [2], pp. 117-118.

We use K'_L to denote the barycentric subdivision of the simplicial complex K modulo the subcomplex L (see e.g. [2], p. 116, or [4], p. 49). A refinement of K is a simplicial complex obtained by means of a finite number of subdivisions modulo subcomplexes. A simplex $\sigma \in |K|$ is maximal if $\operatorname{st}_K \sigma = \sigma$. K^p denotes the p-skeleton of K, and hence K^p the p-skeleton of K'_L .

Lemma 5 (Hopf construction for n-valued multifunctions). Let K' be a refinement of the finite simplicial complex K, let $\varphi\colon |K'| \to |K|$ be an n-valued simplicial multifunction with $\gamma(\varphi') > 4\mu(K)$, and let $\sigma \in |K'|$ he a p-dimensional simplex which is not maximal. If $\dot{\sigma} \cap \operatorname{Fix} \varphi' = \emptyset$ but $\sigma \cap \operatorname{Fix} \varphi' \neq \emptyset$, then there exists an n-valued simplicial multifunction $\varphi''\colon |K'_L| \to |K|$, where $|L| = |K'| - \operatorname{st}_{K'} \sigma$, so that

- i) all fixed points of $\varphi''|K_L^p|$ lie in |L|,
- ii) $\varphi'(x) = \varphi''(x)$ for all $x \in |L|$,

- iii) $\gamma(\varphi'') \geqslant \gamma(\varphi') 4\mu(K)$
- iv) $\bar{d}(\varphi', \varphi'') \leq 2\mu(K)$.

Proof. Select a vertex $v \in |K'|$ so that $\operatorname{st}_{K'} \sigma \subset \operatorname{st}_{K'} v$. It follows from Lemma 1 that $\varphi'|\overline{\operatorname{st}_{K'} v} = \{f'_1, f'_2, \ldots, f'_n\}$ splits into n distinct maps, and as φ' is simplicial, each f'_i maps $\bar{\sigma}$ affinely onto a simplex $\bar{\tau}_i \in |K|$. Note that the $\bar{\tau}_i$ are distinct, for if $x, x' \in \bar{\sigma}$ and $i \neq j$, then

$$d_{L}(f'_{i}(x), f'_{j}(x')) \ge d_{L}(f'_{i}(x), f'_{j}(x)) - d_{L}(f'_{j}(x), f'_{j}(x'))$$

$$\ge \gamma(\varphi') - \mu(K) > 3\mu(K).$$

But $\overline{\tau}_i \cap \overline{\tau}_j \neq \emptyset$ would imply

$$d_L(f_i'(x), f_j'(x')) \leq 2\mu(K),$$

so this is impossible. Hence it follows from $\sigma \cap \operatorname{Fix} \varphi' \neq \emptyset$ that there exists exactly one $k \in \{1, 2, ..., n\}$ with $\sigma \cap \operatorname{Fix} f_K' \neq \emptyset$. Let S be the subcomplex of K_L' underlying $\operatorname{st}_{K'} v$. If we apply the Hopf construction [2], pp. 117–118 to the map f_k' : $\operatorname{st}_{K'} v \to |K|$, then we obtain a simplicial map f_k'' : $|S| \to |K|$ so that $f_k'(x) = f_k''(x)$ for all $x \in |L| \cap |S|$, all fixed points of $f_k''||S^p||$ lie in |L|, and $d_L(f_k'(x), f_k''(x)) \leq 2\mu(K)$ for all $x \in |S|$.

Now take any map f_i'' : $\overline{\operatorname{st}_{k'}v} \to |K|$ with $i=1,\,2,\,\ldots,\,n$, and $i\neq k$, and define a function f_i'' on the vertices of |S| as follows: if $v\in |L|$, let $f_i''(v)=f_i'(v)$, and if $v\notin |L|$, let $f_i''(v)$ be any vertex of $\overline{\tau}_i$. It is easy to check that f_i'' can be extended to a simplicial map f_i'' : $|S|\to |K|$.

 f_i'' has no fixed points on $\bar{\sigma}$, for if $x \in \bar{\sigma}$, then $f_i''(x) \in \bar{\tau}_i$. But one can see as in [2], p. 117 that $\operatorname{Fix} f_k' \cap \sigma \neq \emptyset$ implies $\bar{\sigma} \subset \bar{\tau}_k$, and so it follows from $\bar{\tau}_i \cap \bar{\tau}_k = \emptyset$ that $f_i''(x) \neq x$. If we now consider a point $x \in \operatorname{st}_{K'} \sigma - \sigma$ which lies in $|S^p|$, then $x \notin |K^p|$ but $f_i''(x) \in |K^p|$, so $f_i''(x) \neq x$ also. Hence all fixed points of f_i'' on $|S^p|$ lie in |L|. Note that $f_i''(x) = f_i'(x)$ for all $x \in |L| \cap |S|$, and that $d_L(f_i'(x), f_i''(x)) \leq 2\mu(K)$ for all $x \in |S|$.

As $d_L(f_i''(x), f_j''(x)) \ge \gamma(\varphi') - 4\mu(K) > 0$ for all i, j = 1, 2, ..., n, with $i \ne j$, the multifunction $\varphi'': |K'_L| \to |K|$ given by

$$\varphi''(x) = \begin{cases} \varphi'(x) & \text{if } x \in |L|, \\ \{f_1''(x), f_2''(x), \dots, f_n''(x)\} & \text{if } x \notin |L| \end{cases}$$

shows that Lemma 5 is true.

THEOREM 6. (Fix-finite approximation of n-valued multifunctions). Let X be a compact polyhedron and $\varphi\colon X\to X$ be an n-valued continuous multifunction. Given $\varepsilon>0$, there exists an n-valued continuous multifunction $\psi\colon X\to X$ so that

- i) ψ has only finitely many fixed points,
- ii) there exists a triangulation of X so that each fixed point of ψ lies in a maximal simplex,
 - iii) $\bar{d}(\varphi, \psi) < \varepsilon$.

80

H. Schirmer

Proof. Let m be the dimension of X; we can assume m > 0. Choose a simplicial complex K with |K| = X and

$$\mu(K) < \min\left(\frac{\gamma(\varphi)}{2(1+2m)}, \frac{\varepsilon}{4m}\right),$$

and use Lemma 3 to obtain an n-valued simplicial multifunction

$$\varphi': |K'| \to |K|$$
 with $\gamma(\varphi') \geqslant \gamma(\varphi) - 2\mu(K)$ and $\bar{d}(\varphi, \varphi') < \mu(K)$.

Now proceed as in the proof of Theorem 2, pp. 118-119, of [2], i.e. apply the Hopf construction of Lemma 5 repeatedly on simplexes of increasing dimension until a simplicial multifunction $\psi \colon |K'| \to |K|$ is obtained, where K' is a refinement of K so that ψ is fixed point free on all non-maximal simplexes. An argument parallel to the one in [2], p. 119 implies that the image of each point is changed at most m times. Hence Lemma 5 iii) shows that

$$\gamma(\psi) \geqslant \gamma(\varphi') - 4m\mu(K) \geqslant \gamma(\varphi) - 2\mu(K) - 4m\mu(K) > 0$$

so ψ is *n*-valued. Similarly we see that each intermediate simplicial multifunction φ'' which is fixed point free on all *p*-simplexes (p < m) satisfies the assumption $\gamma(\varphi'') > 4\mu(K)$ of Lemma 5. It follows that

$$\overline{d}(\varphi,\psi) \leqslant \overline{d}(\varphi,\varphi') + \overline{d}(\varphi',\psi) < \frac{1}{4}\varepsilon + m \cdot \frac{\varepsilon}{2m} < \varepsilon.$$

The verification that ψ satisfies i) and ii) is analogous to the one in [2], pp. 118–119.

References

- [1] C. Berge, Topological Spaces, Oliver & Boyd, Edinburgh and London, 1963,
- [2] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Ill., 1971.
- [3] R. Jerrard, Homology with multiple-valued functions applied to fixed points, Trans. Amer. Math. Soc. 213 (1975), pp. 407-427.
- [4] C. R. F. Maunder, Algebraic Topology, van Nostrand Reinhold Co., London 1970.
- [5] B. O'Neill, Induced homology homomorphism for set-valued maps, Pacific J. Math. 7 (1957), pp. 1179-1184.

CARLETON UNIVERSITY
Ottawa, Canada

Received 26 October 1981

A universal metacompact developable T_1 -space of weight m

bv

Józef Chaber (Warszawa)

Abstract. For each cardinal number m we construct a metacompact developable T_1 -spaces $T(\mathfrak{m})$. If m is infinite, then $T(\mathfrak{m})^{\aleph_0}$ is universal for all metacompact developable T_1 -spaces of weight m. The space T(0) is the set of irrational numbers with a weaker topology and $T(0)^{\aleph_0}$ is universal for all perfect T_1 -spaces of countable weight. Each $T(\mathfrak{m})$ is built of m copies of T(0). Moreover, each mapping of a closed subset of a perfect space T(0) can be extended to a mapping of T(0).

In [3] we have introduced a method of constructing mappings into metacompact developable T_1 -spaces. More precisely, we have constructed, for a point-finite open cover $\mathscr U$ of a perfect space X, a continuous mapping p of X onto a metacompact developable T_1 -space Z such that each element of $\mathscr U$ is an inverse image of an open subset of Z.

The examination of this construction shows that the space Z can be regarded as a subspace of a metacompact developable T_1 -space T which depends only on the cardinality of \mathcal{U} .

In the first section of this paper we give a modification of the construction from [3]. The ideas of the first section are used in the second section to construct, for each cardinal number \mathfrak{M} , a metacompact developable T_1 -space $T(\mathfrak{m})$ and a point-finite collection \mathscr{G} of open subsets of $T(\mathfrak{m})$ such that, for any perfect space X and any point-finite collection \mathscr{U} of cardinality \mathfrak{m} consisting of open subsets of X, there exists a mapping $f: X \to T(\mathfrak{m})$ satisfying $\mathscr{U} = \{f^{-1}(G): G \in \mathscr{G}\}$.

The weight of T(m) is $m + \aleph_0$ and it follows that, for infinite m, $T(m)^{\aleph_0}$ is universal for all metacompact developable T_1 -spaces of weight m.

A space with properties similar to the properties of T(0) is constructed in [6]. Our construction of T(0) is more direct and can be regarded as a simplification of the construction in [6]. We prove an extension theorem for mappings into T(m) (Theorem 2) and obtain a number of corollaries showing that T(0) can be considered to be a D-line (see Remarks 3 and 4).

We shall use the terminology and notation from [5]. By a mapping we always mean a continuous function. Metacompact spaces are not necessarily Hausdorff but all spaces we consider are T_1 -spaces. If $\mathcal D$ is a family of subsets