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Fix-finite approximation of n-valued multifunctions
by

Helga Schirmer (Ottawa)

Abstract. We call a multifunction ¢; X — Y n-valued if ¢(x) consists, for all xeX, of n
points, and show that an n-valued continuous multifunction from a compact polyhedron to itself
has an arbitrarily close approximation by an n-valued continuous multifunction which has only
finitely many fixed points. The proof includes multivalued analogues of the Simplicial
Approximation Theorem and of the Hopf construction. A basic tool is the Splitting Lemma,
which shows that n-valued continuous multifunctions are locally equivalent to n single-valued
continuous functions, and implies that every n-valued continuous multifunction from a compact,
Hausdorff, path connected and simply connected space with the fixed point property to itself has
at least n fixed points.

1. Introduction. B. O’Neill [5] studied continuous muitifunctions ¢: X - Y
which have the property that, for all xe X, ¢(x) is either acyclic or consists
of n acyclic components. He showed that if X and Y are compact polyhedra,
then an induced homomorphism ¢, : H, (X) — H,(Y) can be defined. Hence
if X =Y, there exists a Lefschetz number L(¢) with the usual property that
L() # 0 implies that the fixed point set Fixe = {xeX| xe¢(x)} is not
empty.

Here we consider a special case of such multifunctions, namely those
where, for all xe X, ¢(x) consists of n points. Such multifunctions, which we
call n-valued, inherit some of the properties of single-valued functions. Our
main purpose is to show that Fix¢ is generically finite (Theorem 6). To
accomplish it, we first prove a multivalued analogue of the simplicial
approximation theorem (Theorem 4), and then carry out a “Hopf con-
struction” for n-valued simplicial multifunctions (Lemma 5). A crucial tool in
all proofs is the Splitting Lemma (Lemma 1), which shows that n-valued
continuous multifunctions are locally (but not necessarily globally) equivalent
to n single-valued continuous functions. The proof of the Splitting Lemma

_uses a lemma by O’Neill [5], but otherwise this paper is independent of his

work. Theorem 3 could, in fact, be used to define for an n-valued continuous
multifunction ¢ an induced homomorphism ¢,: H,(X)— H,(Y) in a way
different from the one given by O’Neill, but we do not persue this topic.

It seems likely that the Simplicial Approximation Theorem (Theorem 4)

and the Fix-Finite Approximation Theorem (Theorem 6) still hold if the n-

valued multifunction is only upper semi-continuous rather than continuous,
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but our method of proof fails in this case. For consider the 2-valued upper
semi-continuous multifunction y: [—1, 11— [—1, 1] given by

{ } if —1<x<0,
vo={ Ty E e

f—1,x—1) i <x<1.
The Splitting Lemma is false for , and so is Theorem 2, which states that if
X is a compact, Hausdorff, path connected and simply connected space with
the fixed point property, then every n-valued continuous multifunction ¢: X
— X has at least n fixed points.

It may also be possible to extend Theorems 4 and 6 to a continuous
multifunction ¢ for which the number of points in ¢(x) is finite but not
independent of x. But again there is no analogue of the Splitting Lemma and
of Theorem 2, as an unpublished example by R. Dunn (see O'Neill (5], p.
1183) shows that there exists such a multifunction from the 2-cell to itself
without a fixed point.

2. Splitting n-valued multifunctions. The proofs in this paper depend
heavily on the fact that the multifunctions considered here can locally be
“split” into single-valued functions. We give the necessary background in this
paragraph. A basic reference for multifunctions is e.g. the book by C. Berge
[1], especially Chapter VI.

A multifunction @: X — Y from a topological space X to a topological
space Y is a correspondence which assigns to each point of X at least one
point of Y. The multifunction ¢: X — Y is- called upper semi-continuous if
o (x) is closed for all xe X and if for each open set ¥ = Y with ¢(x) < V there
exists an open set U = X with xeU and ¢(U) < V. It is called lower semi-
continuous if for every xeX and open set V<= Y with @(x) NV @ there
exists an open set U = X with xeU and ¢(x)n V= @ for all xX'eU. If ¢ is
both upper and lower semi-continuous, then it is called continuous. If X and
Y are compact Hausdorff spaces, then ¢: X — Y is upper semi-continuous if
and only if its graph T, = {(x, y)e X x Y| yeo(x)} is closed in X x Y (see
[13, p. 112). We will reserve the term map for a single-valued continuous
function.

We define that a multifunction ¢: X — Y splits into maps if there exist
finitely many maps fi: X—7Y, where i=1,2,...,n so that ¢(x)
= {1, f2(x), ... f,(x)} for all xeX. If f(x) # f;(x) for all xeX and i,/
=1,2,...,n with i #j, then we say that ¢ splits into distinct maps, and
write @ = {f1,f2, .., fo}. Clearly a multifunction which splits into maps is
continuous.

Lemma 1 (Splitting Lemma). Let X and Y be compact Hausdorff. If X is
path connected and simply connected and ¢: X — Yis n-valued and continuous,
then ¢ splits into distinct maps.

icm

Fix-finite approximation of n-valued multifunctions 75

Proof. It follows from [5], Lemma 4 that the graph I', « X x Y consists
of n components, say C;, with i=1,2,...,n. As ¢ is continuous, each
projection p;: C; —> X induced by the projection of XxY omnto X is a
surjection. Hence we can define functions f;: X — Y by f;(x) = p;” !(x), and as
@ is n-valued, the f; are single-valued. The graphs C; of the f; are closed, so
the f; are continuous, and therefore ¢ = {f}, f3, ..., f; splits into distinct
maps.

O’Neill [5], Theorem 9 proved that if X is an acyclic compact polyhed-
ron and @: X — X a continuous multifunction such that, for all xe X, @(x)
is acyclic or consists of n acyclic components, then Fixe # . We can
strengthen this result if ¢ is n-valued.

TueoreM 2. Let X be a compact Hausdorff, path connected and simply
connected space with the fixed point property. Then every n-valued continuous
multifunction @: X — X has at least n fixed points.

Proof. Lemma 1 implies that ¢ = {f;, f3, ..., f,}. Each f; has at least
one fixed point, and these fixed points are distinct.

Remark. Using [5], Lemma 4 and generalizations of Kakutani’s
Theorem it is possible to obtain analogues for Lemma 1 and Theorem 2 for
continuous multifunctions @: X — X, where for all xe X, ¢(x) consists of n.
acyclic components. It is, however, not possible to drop the assumption in
Lemma 1 that X is simply connected. To see this, let §* = {¢"| 0 <t < 2r}
be the unit circle in the complex plane and : S* —S* be the multifunction
given by (") = {&¥?, &2%") for all 0 <t <2r. Then y is 2-value and
continuous, but does not split into distinct maps. It has one fixed point.

3. Simplicial approximation of n-valued multifunctions. We now consider
n-valued continuous multifunctions @: X — Y in the case where X and Y are
compact polyhedra, and show that they have a simplicial approximation.
Denote by |K| a polyhedron which is the realization of a finite simplicial
complex K, by ¢ an open simplex of |K|, by & the corresponding closed
simplex, and by ¢ the boundary of o. The (open) star stgo is the union of all
simplexes of |[K| which have ¢ as a face. We shall write sty o for the closure
of stxo.

We call a multifunction @: |[K|—|L from a polyhedron |K| to a
polyhedron |L| a simplical multifunction if, for every & e|K|, the restriction ¢|&
splits into maps f;, f2, ..., fo SO that each f; maps & affinely onto a simplex
7,e|L|. It is easy to check that a simplicial multifunction is continuous. We
use dg and d, to denote the barycentric metric of |[K| and |L], ¢, to denote
the Hausdorff metric on |L| induced by d,, and

(¢, ¢) =sup{oL(p(x), ¢’ (X)) x&|KI}
for the distance between two multifunctions ¢, @' |K| —|L}.
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If @: |K|—|L| is n-valued and continuous, then we define a function
from |K| into the reals by
7(0) = inf{d (i, ;) Yo i€ @(X), vi # 35}
for all xe|K]|, and the gap of ¢.by

(@) = inf {y(x)| xe|K[}.

The continuity of ¢ implies that y(x) depends continuously on x. Hence if
IK] is compact, then it follows from y(x) > 0 for all xe|K| that y(p) > 0.

The symbol u(K) denotes the mesh of |K|. We first describe the
simplicial approximation of ¢ in the form of a detailed lemma needed later
on.

Lemma 3. Let |K} and [L| he compact polyhedra and ¢: |K| —|L| an n-
valued continuous multifunction. If L is a subdivision of L with p(L¥) < +v(0),
then there exist a subdivision K™ of K and an n-valued simplicial multifunction
o' |K"| =|L% so that

) y(e) Zv(9)—2u(L), i) d(e, ¢) < u(L).

Proof. According to Lemma 1 the restriction g|styv splits into n
distinct maps for every vertex ve|K|. Write (p|§t',5 ={fiiSozs s fonls let
A(), for i=1,2,..., n, be the Lebesgue number of the open cover

/! (st D) b is a vertex of |L7)

of g{,?u, and let
A =inf{4(v)| v is a vertex of [K| and i=1, 2, ..., n}.

As |K]| is compact, we have 1> 0. Now each Joit ;f,::?-»]u is uniformly
continuous, therefore we can for every ve|K| choose é(v) >0 so that
dp(£,: (%), £ (x) < ¥y() for all x, x'estgy with dg(x, x') < §(v) and all.i.
=1,2,....n. Let

0 =inf{d(v)| v is a vertex of K|},
and let K" be a subdivision of K so that u(K") < min(8, 1/2).

We now construct ¢’ on the vertices of |K"|. Select for every vertex

ae|K’| a vertex v=v(a)e|K| so that st,a =stxv. As the diameter
diam (st a) <A< A4(v) for all i=1, 2, ..., n, we see that
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= [fia), f3(a), ..., fy (@)} so that
Joilstgv N stgo(a) = fap.ilstd N stgv(a)
for i=1.2.....n Then
P
(\ sty = st,,0 # O
1=0
implies

P P
(b #f;),i (IOO StKral) S loo.f;)(a,),i (StKral) .

But by construction of f;(a;) we have

Ste,a < foani (8t ff (@),
5o

160 Sthf;f’ (al) #* o .

Thus the set (f/(ao). f'(a;), ..., f/{a)} spans, for each i=1,2,...,n, a

simplex 7,&|L, and hence we can extend each f; from the verltices of, o to an
affine map f.,: G — 7. Define ¢z [K'~|L by ¢'(x) = {f51(x), f5,2(x), -
o fia()} if xed. ) B
) ’LT'"'O(xs)P’low that @' is well defined. it is necessary to show‘that if #ca*,
where o, o* are simplexes of |K'|, then f,; and f;. ; can lze indexed so t’hat
fii(x) =f;(x) for all xed. The construction 01." the f; from the ¢ (‘f)
depends only on the choice of the vertex ve|K] with stk,'a < stgv. Her;ce it
suffices to show that if ¢'(§) = {7y, T2, ..., Tn}, then the sxmplexels r,~e|E| are
independent of v up to order. To see this, take a vertex fi(a)et,. As

Sotapi Btyean) < sty fi (@), we have
' i (foapa (@), S} (@) < p(L).
So if fj (w) €T; and i # j, then fyqyi(a) =fy,i(a) and Sotapnilan) = fox () imply
dy, (fil (a), ff (ak)) =dy (fm (@), 1o (a))—dy (ﬁ: @, fog (“:.-)) -
—dy(foi (@), £ (@) —dp (. (@). 17 (a)
= 7(0)— 31(9) =2y (9) = 1y () > w(L?).

foavsl L L1 N 0 2 aed ol e


GUEST


78 ' H. Schirmer

foi(x)e léof;,i (st,er(an) = ’éo sty fi (@) = sty

for i=1,2,...,n, and as f,;(x)er;, we have

dy,(f,: (0, fo, () < (L)
and therefore if i s j

dp (fo: (%), £5,5(0) 2 dp(£3,6 (), £, (0)) = 20(L?).

As (p(x) = {f;:,l(x)uf;l,z(x)’ "'aj;),n(x)}: (P’(x) = {fa’.l(x)’/;,z(x)v "'7./.a/.n(x)j|'>
it follows that y(¢') = y(p)—2u(L?) and d(p, ¢') < u(L).

An immediate consequence of Lemma 3 is

THeEOREM 4 (Simplicial approximation for n-valued multifunctions). Ler
|K| and |L| be compact polvhedra and ¢: |K|—|L| an n-valued continuous
multifunction. Given ¢ > 0, there exist subdivisions K" of K and L* of L and
an n-valued simplicial multifunction ¢': |K'| —|L| such that d(@, @) <e.

Proof. In Lemma 3 choose L so that u(L) < min(4y(p), &).

Remark. A simplicial approximation theorem for certain finite-valued
multifunctions — the so-called m-functions — was proved by R. Jerrard [3],
Theorem 5.2, but he only showed that piecewise linear m-functions (defined
as m-functions with a polyhedral graph) have a simplicial approximation.

4. Fix-finite approximation of n-valued multifunctions. It i the purpose
of this paragraph to show that every n-valued continuous multifunction
¢: |K| —|K| from a compact polyhedron to itself has an arbitrarily close
approximation by an n-valued continuous multifanction ¢: [K| - |K| which
has only finitely many fixed points. Our method consists of a repeated use of
a Hopf construction performed on an n-valued simplicial multifunction
approximating ¢. The Hopf construction for n-valued continuous multifunc-
tions, described in the rather technical Lemma 5, is modelled on the Hopf
construction for maps which can be found in [2], pp. 117-118.

We use K to denote the barycentric subdivision of the simplicial
complex K modulo the subcomplex L(see e.g. [2], p. 116, or [4], p. 49). A
refinement of K is a simplicial complex obtained by means of a finite number
of subdivisions modulo subcomplexes. A simplex oe|K| is maximal if
stgo = g. K? denotes- the p-skeleton of K, and hence K7 the p-skeleton of
K. .

Lemma S (Hopf construction for n-valued multifunctions). Let K’ be a
refinement of the finite simplicial complex K, let ¢: |K'| = |K| be an n-valued
simplicial multifunction with y(¢') > 4u(K), and let c€|K'| he a p-dimensional
simplex which is not maximal. If ¢ "Fixe' = @ but ¢ NFix¢' # @, then there
exists an n-valued simplicial multifunction ¢": |Kiy| —|K|, where |L|
= |K'| —stg.0, so that

i) all fixed points of ¢"||K{| lie in |Li,

il) @' (x) = @"(x) for all xe|L|,
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iii) y(") 2 y(¢)—4u(K),

iv) d(¢', ¢") < 2u(K).

Proof. Select a vertex ve|K'| so that stgo =stgov. It follows from
Lemma 1 that ¢'|stgv = {f{,fs, ..., [} splits into n distinct maps, and as
¢’ is simplicial, each f; maps & affinely onto a simplex %;|K|. Note that the
7, are distinct, for if x, x'e& and i # j, then

dy (7 60, S () = di (£ (0, S} () —dp(f (), ff (x7)
= 7(¢)— p(K) > 3u(X).
But T, N7, % @ would imply

dp (£ (%), ff (x)) < 2u(K),

so this is impossible. Hence it follows from o A Fix¢’ s (3 that there exists
exactly one ke{l, 2, ..., n} with o N Fixfg # @. Let S be the subcomplex of
K}, underlying EFK—L; If we apply the Hopf construction [2], pp. 117-118 to
the map f: gt—,(_v - |K|, then we obtain a simplicial map £;": |S| — K] so that
Fx) =f'(x) for all xe|L|n|S|, all fixed points of f,,”||Sf’| lie in |L|, and
d (fi (%), £ (%)) < 2u(K) for all xelS|.

Now take any map f: Et—,ﬁ—»IKl with i=1,2,...,n, and i #k, and
define a function f/" on the vertices of |S| as follows: if ve|L|, let f;"(v)
= f'(v), and if v¢|L], let ;" (v) be any vertex of 7;. It is easy to check that f;”
can be extended to a simplicial map f;": S| —|K].

£ has no fixed points on &, for if xed, then f;"(x)€7;. But one can see
as in [2], p. 117 that Fixfy no # @ implies & = T,, and so it follows from
%, T, = O that £ (x) # x. If we now consider a point xesty.o—a which lies
in |87, then x¢|K?| but f”(x)€|K?|, so f(x) # x also. Hence all fixed points
of £ on |S?| lie in |L|. Note that f(x) = f/(x) for all xelL|n|S|, and that
di(fy (%), £ (%) < 2u(K) for all xelS]. .

As dy (" (), f; (%) = y(¢)—4p(K) > 0 for all i,j=1,2,....,n, with
i #j, the multifunction ¢ |Ky| —|K| given by

() = % @' (x) if xelLl,
’ 7S, o Sy (0} X1

shows that Lemma 5 is true.

TueoreM 6. (Fix-finite approximation of n-valued multifunctions). Let X
be a compact polyhedron and @: X — X be an n-valued continuous multifunc-
tion. Given ¢ > 0, there exists an n-valued continuous multifunction y: X - X
so that

i) W has only finitely many fixed points, o

ii) there exists a triangulation of X so that each fixed point of Y lies in

a maximal simplex,

iti) d(¢, ¥) <e.
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Proof. Let m be the dimension of X; we can assume m > 0. Choose a
simplicial complex K with |K| = X and

(o) e
ﬂ(K) < mm(m, m),

and use Lemma 3 to obtain an n-valued simplicial multifunction
¢ K|~ |K]  with  y(¢) 2 y(@)~2u(K) and  d(p, ¢) < u(K).

Now proceed as in the proof of Theorem 2, pp. 118-119, of [2], ie.
apply the Hopf construction of Lemma 5 repeatedly on simplexes of increas-
ing dimension until a simplicial multifunction y: |[K’'| —|K| is obtained,
where K’ is a refinement of K so that i is fixed point free on all non-
maximal simplexes. An argument parallel to the one in [2], p. 119 implies
that the image of each point is changed at most m times. Hence Lemma 5 iii)
shows that

YY) = y(@)—4mu(K) = y(0)— 2u(K) —4mu(K) > 0,

SO t//.is n-valued. Similarly we see that each intermediate simplicial multi-
functlon_ ¢" which is fixed point free on all p-simplexes (p < m) satisfies the
assumption y(¢") > 4u(K) of Lemma 5. It follows that

do. V) <, @)+1(@, Y) < hotm - <.

The verification that s satisfies i) and ii) is analogous to the ome in [2],
pp. 118-119.
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A universal metacompact developable T;-space
of weight m

by

Jozef Chaber (Warszawa)

Abstract. For each cardinal number m we construct a metacompact developable 7;-space
T(m). If m is infinite, then T(m) © is universal for all metacompact developable T,-spaces of
weight m. The space T(0) is the set of irrational numbers with a weaker topology and T(0) 0 js
universal for all perfect Tj-spaces of countable weight. Each T(m) is built of m copies of T'(0).
Moreover, each mappimg of a closed subset of a perfect space X into T(0) can be extended to a
mapping of X into T(0).

In [3] we have introduced a method of constructing mappings into
metacompact developable Tj-spaces. More precisely, we have constructed, for
a point-finite open cover % of a perfect space X, a continuous mapping p of
X onto a metacompact developable T;-space Z such that each element of %
is an inverse image of an open subset of Z.

The examination of -this construction shows that the space Z can be
regarded as a subspace of a metacompact developable T;-space T which
depends only on the cardinality of %.

In the first section of this paper we give a modification of the construc-
tion from [3]. The ideas of the first section are used in the second section to
construct, for each cardinal number m, a metacompact developable T;-space
T(m) and a point-finite collection ¥ of open subsets of T(m) such that, for
any perfect space X and any point-finite collection % of cardinality m
consisting of open subsets of X, there exists a mapping f: X — T(m) satisfy-
ing % ={f"'(G): Ge¥}. .

The weight of T(m) is m+N, and it follows that, for infinite m, T(m) 0
is universal for all metacompact developable T;-spaces of weight m.

A space with properties similar to the properties of T/(0) is constructed
in [6]. Our construction of T(0) is more direct and can he regarded as a
simplification of the construction in [6]. We prove an extension theorem for
mappings into T(m) (Theorem 2) and obtain a number of corollaries
showing that T'(0) can be considered to be a D-line (see Remarks 3 and 4).

We shall use the terminology and notation from [5]. By a mapping we
always mean a continuous function. Metacompact spaces are not necessarily
Hausdorff but all spaces we consider are T;-spaces. If 2 is a family of subsets
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