G. S. Skordev

58

- [17] J. Leray, Theorie des points fixes: indice total et nombre de Lefschetz, Bull. Soc. Math. France 87 (1959), pp. 221-233.
- [18] Sur la position d'un ensemble ferme de points d'un espace topologique. Sur les equationes et les transformations, J. Math. Pures et Appl. 24 (1945), pp. 169-248.
- [19] A. Mas-Colell, A note on a theorem of F. Browder, Math. Progr. 6 (1974), pp. 229-233.
- [20] W. Massey, Homology and cohomology theory, Marcel Dekker Inc., N. Y., 1978.
- [21] A. D. Myškis, Generalization of the theorem on a fixed point of a dynamical system inside of a closed trajectory, Mat. Sbornik 34 (1954), pp. 525-540 (in Russian).
- [22] B. O'Neil, Essential sets and fixed points, Amer. J. Math. 75 (1953), pp. 497-509.
- [23] Induced homology homomorphism for set maps, Pacific J. Math. 7 (1957), pp. 1179-1184.
- [24] H. O. Peitgen, On the Lefschetz number for iterates of continuous mappings, Proc. Amer. Math. Soc. 54 (1976), pp. 441-444.
- [25] Methoden der topologische Fixpunkttheorie in der nichtlinearen Funktionalanalysis, Habilitationsschrift, Univ. Bonn, 1976.
- [26] M. Powers, Lefschetz fixed point theorem for a new class of multi-valued maps, Pacific J. Math. 42 (1972), pp. 211-220.
- [27] H. W. Siegberg and G. S. Skordev, Fixed point index and chain approximations, Pacific J. Math. 102 (1982), pp. 455-486.
- [28] G. S. Skordev, Incidence and coincidence of acyclic maps, Serdica, Bulgarian Math. J. 1 (1975), pp. 29-41 (in Russian).
- [29] Equivariant multi-valued maps of the sphere, Ann. de l'Univ. Sofia, Fac. Math. Mech. 67 (1972/73), pp. 113-137 (in Russian).
- [30] Fixed points of acyclic maps, Ann. de l'Univ. Sofia, Fac. Math. Mech. 67 (1972/73), pp. 7-18 (in Russian).
- [31] On a coincidence of mappings of compact spaces in topological groups, Fund. Math. 104 (1979), pp. 111-125.
- [32] Coincidence of maps in Q-simplicial spaces, Fund. Math. 103 (1981), pp. 67-79.
- [33] E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.
- [34] H. Steinlein, Ein Satz über der Leray-Schuder Abbildungsgrad, Math. Z. 126 (1972), pp. 176-208.
- [35] R. Thompson, A unified approach to local and global fixed point indices, Adv. Math. 3 (1969), pp. 1-72.
- [36] L. Victoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhanastreuen Abbildungen, Math. Ann. 97 (1927), pp. 454-472.
- [37] P. Zabreiko and M. Krasnosel'skii, Iterations of operators and fixed points, Dokl. Akad. Nauk. USSR 196 (1971), pp. 1006-1009.

UNIVERSITY OF BREMEN, FACHBEREICH MATHEMATIK FORSCHUNGSSCHWERPUNKT "DYNAMISCHE SYSTEME" Permanent Address: CENTER OF MATHEMATICS AND MECHANICS 1090 Sofia, P. O. 373, Bulgaria

Received 7 September 1981

Remarks on the *n*-dimensional geometric measure of compacta

by

K. Borsuk, S. Nowak and S. Spież (Warszawa)

Abstract. By the *n*-dimensional geometric measure of a compactum X lying in the Hilbert space E^ω , one understands the lower bound $\mu_n(X)$ of all positive numbers α such that for every $\varepsilon > 0$ there is an ε -translation $f\colon X \to E^\omega$ such that f(X) lies in a polyhedron $P \subset E^\omega$ for which the *n*-dimensional measure $|P|_n$ (in the elementary sense) is $\leqslant \alpha$. If dim P < n, we assume $|P|_n = 0$. and if dim P > n, we assume $|P|_n = \infty$.

Some relations between geometric measures of two compacts $X, Y \subset E^{\omega}$ and the pseudomeasures of $X \cup Y, X \cap Y$ and $X \times Y$ are studied.

1. Introduction. In the elementary geometry one assigns to every n-dimensional polyhedron P the number $|P|_n$, defined as the sum of the volumes of all n-dimensional simplices belonging to a triangulation of P. If $\dim P < n$, then one assumes that $|P|_n = 0$, and if $\dim P > n$, then $|P|_n = \infty$.

One knows that $|P|_n$ does not depend on the choice of the triangulation of P. Moreover, one sees easily that

(1.1) If
$$P_1, P_2, ..., P_k$$
 are polyhedra, then $|P_1 \cup ... \cup P_k|_n \le \sum_{i=1}^k |P_i|_n$.

Let E^{ω} denote the usual Hilbert space, i.e. the space consisting of all real sequences $(x_1, x_2, ...)$, such that $\sum_{i=1}^{\infty} x_i^2 < \infty$, metrized by the formula

$$\varrho((x_1, x_2, ...)(y_1, y_2, ...)) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}.$$

We may consider the Euclidean *m*-space E^m as the subset of E^{ω} consisting of all points $(x_1, x_2, ..., x_m, 0, 0, ...)$ denoted also by $(x_1, x_2, ..., x_m)$.

By the *n*-dimensional geometric measure of a compactum $X \subset E^{\omega}$, we understand the number $\mu_n(X)$ (finite or ∞) defined as the lower bound of all numbers $\alpha > 0$ such that for every $\varepsilon > 0$, there is an ε -translation $f_{\varepsilon} \colon X \to E^{\omega}$ (i.e. a map f_{ε} satisfying the condition $\varrho(x, f_{\varepsilon}(X)) < \varepsilon$ for every $x \in X$) such that $f_{\varepsilon}(X)$ is a subset of a polyhedron $P \subset E^{\omega}$ with $|P|_n < \alpha$. It is known (see [2]) that:

- (1.2) If dim X < n, then $\mu_n(X) = 0$.
- (1.3) If dim X > n, then $\mu_n(X) = \infty$.
- (1.4) If $X \subset Y$, then $\mu_n(X) \leq \mu_n(Y)$.
- (1.5) If $X \cap Y = \emptyset$, then $\mu_n(X \cup Y) = \mu_n(X) + \mu_n(Y)$.
- (1.6) If P is a polyhedron, then $\mu_n(P) = |P|_n$.
- (1.7) If X is a continuum, then $\mu_1(X) \ge d(X)$, where d(X) denotes the diameter of X.
- (1.8) If L is an arc, then $\mu_1(L)$ is the length |L| of L.

Observe, that (1.2) implies that for every arc L and $n=2, 3, \ldots \mu_n(L)=0$. However there exist arcs $L \subset E^\omega$ for which the n-dimensional measure (in the sense of Hausdorff [3]) is positive for $n=2, 3, \ldots$ In fact, it is well known that there exists in E^ω a set C homeomorphic to the Cantor discontinuum, for which the n-dimensional Hausdorff measure is positive, for every $n=1, 2, \ldots$ On the other hand, there is an arc $L \subset E^\omega$ containing C. It follows that the n-dimensional Hausdorff measure of L is positive for every $n=1, 2, \ldots$ However $\mu_n(L)=0$ for $n=2, 3, \ldots$, because of (1.2).

2. Geometric measure of *n*-dimensional compacta. First let us prove the following

(2.1) Lemma. For any natural number m and for every positive number ε , there is a positive real number $\delta = \delta(\varepsilon, m)$ such that for every n-dimensional polyhedron R lying in E^m , with $|R|_n < \delta$, there is an ε -translation $g: R \to E^m$ such that g(R) is contained in an (n-1)-dimensional polyhedron.

Proof. Let η be a positive real number such that the diameter of the m-cube $(0, \eta)^m$ is less than ε . Let $\delta = \delta(\varepsilon, m)$ be a positive real number such that

$$\delta \cdot {m \choose k} < \eta^k$$
 for $k = 1, 2, ..., m$,

where

$$\binom{m}{k} = \frac{m!}{k! \cdot (m-k)!}.$$

Let R be an n-dimensional polyhedron in E^m with $|R|_n < \delta$. Assume that R is contained in an m-cube $\langle 0, N \cdot \eta \rangle^m$, where N is a natural number. Hence $\langle 0, N \cdot \eta \rangle^m$ consists of all points $(x_1, x_2, ..., x_m) \in E^m$ with $0 \le x_i \le N \cdot \eta$, for i = 1, 2, ..., m.

Let \mathfrak{F} denote the family of all subsets \mathfrak{A} of the set $\{1, 2, ..., m\}$ consisting of n elements. Observe that \mathfrak{F} consists of $\binom{m}{n}$ sets \mathfrak{A} . Assign to every $\mathfrak{A} \in \mathfrak{F}$ the n-dimensional face $F_{\mathfrak{A}}$ of $\langle 0, N, \eta \rangle^m$ consisting of all points $(x_1, x_2, ..., x_m)$ such that

$$0 \le x_i \le N \cdot \eta$$
, if $i \in \mathfrak{A}$ and $x_i = 0$, if $i \notin \mathfrak{A}$.

Denote by $p_{\mathfrak{A}}$ the map assigning to every point $(x_1, x_2, ..., x_m)$ of $(0, N \cdot \eta)^m$

the point $(x'_1, x'_2, ..., x'_m)$, where $x'_i = x_i$ if $i \in \mathfrak{A}$ and $x'_i = 0$, if $i \notin \mathfrak{A}$. Thus $p_{\mathfrak{A}}$ is an ortogonal projection of the cube $\langle 0, N \cdot \eta \rangle^m$ onto its *n*-dimensional face $F_{-\infty}$

One sees easily that for every $\mathfrak{A} \in \mathfrak{F}$, the image $p_{\mathfrak{A}}(R)$ of the polyhedron $R \subset \langle 0, N, \eta \rangle^m$ is a polyhedron lying in $F_{\mathfrak{A}}$ with $|p_{\mathfrak{A}}(R)|_n \leq |R|_n$. Since $\binom{m}{n} |R|_n < \binom{m}{n} \cdot \delta < \eta^n$, we infer that

Divide every interval $\langle (i-1)\cdot \eta, i\cdot \eta \rangle$, where *i* belongs to $\{1, 2, ..., N\}$, into *s* equal intervals. One gets a subdivision of the cube $\langle 0, N\cdot \eta \rangle^m$ into $(N\cdot s)^m$ small *m*-cubes with the length of edges $\frac{1}{s}\eta$. Denote by $k_{\mathfrak{A}}$ the number of all such small cubes, which lay in $F_{\mathfrak{A}}$ and which intersect the polyhedron $p_{\mathfrak{A}}(R)$. It follows by (2.2) that for *s* sufficiently large

Observe that there are s^N subsets of $\langle 0, N \cdot \eta \rangle$ of the form

$$(2.4) A_1 \cup A_2 \dots \cup A_N,$$

where A_i , i=1,2,...,N, are intervals with the length $\frac{1}{s} \cdot \eta$ in which the interval $\langle (i-1) \cdot \eta, i \cdot \eta \rangle$ is divided.

Moreover, there are s^{N-1} subsets of $\langle 0, N \cdot \eta \rangle$ of the form (2.4) which contain a given one of the intervals with the length $\frac{1}{s} \cdot \eta$ in which the interval $\langle 0, N \cdot \eta \rangle$ is divided.

Let $\mathfrak{A} \in \mathfrak{F}$, and let C_j , for j=1,2,...,m be one of the $s\cdot N$ intervals with the length $\frac{1}{s}\cdot \eta$ in which the interval $\langle 0,N\cdot\eta\rangle$ is divided. If B_j , for j=1,2,...,m, is a subset of $\langle 0,N\cdot\eta\rangle$ of the form (2.4), then the set $p_{\mathfrak{A}}(B_1\times B_2\times ...\times B_m)$ contains the set $p_{\mathfrak{A}}(C_1\times C_2\times ...\times C_m)$ if and only if the set B_j contains the set C_j for every $j\in \mathfrak{A}$. Consequently, there are

$$(s^{N-1})^n \cdot (s^N)^{m-n} = s^{-n} \cdot s^{N \cdot m}$$

sets of the form

$$(2.5) B_1 \times B_2 \times \ldots \times B_m,$$

where B_i is, for i=1, 2, ..., m, a subset of $\langle 0, N \cdot \eta \rangle$ of the form (2.4) with the images under $p_{\mathfrak{A}}$ containing the small *n*-cube $p_{\mathfrak{A}}(C_1 \times C_2 \times ... \times C_m)$ lying in $F_{\mathfrak{A}}$. It follows that there are at most $k_{\mathfrak{A}} \cdot s^{-n} \cdot s^{N \cdot m}$ sets of the form (2.5) with the images under $p_{\mathfrak{A}}$ intersecting the polyhedron $p_{\mathfrak{A}}(R)$.

There are s^{N-m} sets of the form (2.5). It follows by (2.3) that

$$\sum_{\mathfrak{A} \in \mathfrak{F}} k_{\mathfrak{A}} \cdot s^{-n} \cdot s^{N \cdot m} < s^{N \cdot m}.$$

Consequently there is a set B of the form $B_1 \times B_2 \times ... \times B_m$ such that

$$p_{\mathfrak{A}}(B) \cap p_{\mathfrak{A}}(R) = \emptyset$$
 for every $\mathfrak{A} \in \mathfrak{F}$.

Let \mathring{B} denote the interior of B in E^m . Then the set

$$Y = \langle 0, N \cdot \eta \rangle^m \setminus \bigcup_{\mathfrak{A} \in \mathfrak{A}} p_{\mathfrak{A}}^{-1} (p_{\mathfrak{A}}(\mathring{B}))$$

contains the polyhedron R.

Denote by S_k , for k = 0, 1, ..., m the union of all k-dimensional faces of m-cubes of the following form

$$(2.6) \qquad \langle i_1 \cdot \eta, (i_1+1) \cdot \eta \rangle \times \langle i_2 \cdot \eta, (i_2+1) \cdot \eta \rangle \times \ldots \times \langle i_m \cdot \eta, (i_m+1) \cdot \eta \rangle,$$

where $i_i = 0, 1, ..., N-1$ for i = 1, 2, ..., m. Let

$$Y_k = Y \cap S_k$$
, for $k = 1, 2, ..., m$

(in particular, $S_m = \langle 0, N \cdot \eta \rangle^m$ and $Y_m = Y$).

It is easy to see that for each k = n, n+1, ..., m there is a retraction r_k : $Y_k o Y_{k-1}$ such that for every k-face K' of any m-cube of the form (2.6)

$$r_{k}(K'\cap Y_{k})=K'\cap Y_{k-1}.$$

Consequently the map

$$r = r_n \cdot r_{n+1} \cdot \ldots \cdot r_m \colon Y \to Y_{n-1}$$

is a retraction such that $r(K \cap Y) \subset K$ for every *m*-cube K of the form (2.6). Since the diameter of any *m*-cube of the form (2.6) is less than ε , we infer that $r: Y \to Y_{n-1}$ is an ε -translation. Setting

$$g(x) = r(x)$$
 for every $x \in R$,

one gets a map satisfying the required conditions. Thus the proof of Lemma (2.1) is finished.

Denote by $q_m: E^{\omega} \to E^m$ the orthogonal projection

$$q_m(x_1, x_2, ...) = (x_1, x_2, ..., x_m)$$
 for every $(x_1, x_2, ...) \in E^{\omega}$.

Let us prove the following

(2.7) Theorem. For every n-dimensional compactum $X\subset E^\omega$, the n-dimensional geometric measure is positive.

Proof. If X is a compactum in E^{ω} with $\mu_n(X) = 0$, then for every positive ε , there is an integer m such that

$$\varrho(x, q_m(x)) < \varepsilon$$
 for every $x \in X$.

Let $\delta = \delta(\varepsilon, m)$ be the positive real number from Lemma (2.1). Since $\mu_n(X) = 0$, there is an ε -translation $f: X \to E^{\omega}$ such that f(X) is a subset of a polyhedron $P \subset E^{\omega}$ with dim P = n and $|P|_n < \delta$. Then

$$\varrho(x, q_m f(x)) \leq \varrho(x, q_m(x)) + \varrho(q_m(x), q_m f(x))$$

for every $x \in X$. So $q_m f: X \to E^m$ is an 2δ -translation.

Observe that $q_m f(X)$ is a subset of the polyhedron $R = q_m f(P)$ lying in E^n with $|R|_n < |P|_n < \delta$. By Lemma (2.1), there is an ε -translation $g \colon R \to E^m$ such that g(R) is contained in an (n-1)-dimensional polyhedron. The map $gq_m f \colon X \to E^m$ is a 3ε -translation. The image $gq_m f(X)$ is contained in an (n-1)-dimensional polyhedron.

Thus, for every $\varepsilon > 0$, there is a 3ε -translation of X into E^{ω} with the image contained in an (n-1)-dimensional polyhedron. Hence dim X < n, and the proof of Theorem (2.7) is finished.

- (2.8) Corollary. For compacta $X \subset E^{\omega}$ the vanishing of the n-dimensional geometric measure is a topological invariant.
- (2.9) QUESTION. Is it true that for every $\varepsilon > 0$ there is an $\eta_n > 0$ such that for every compactum $X \subset E^{\omega}$ with $\mu_n(X) < \eta_n$ there is an ε -translation f_{ε} : $X \to E^{\omega}$ such that $\dim f_{\varepsilon}(X) < n$?
- 3. Geometric measures for Cartesian products. If P is an k-dimensional polyhedron and R is an m-dimensional polyhedron, then $P \times R$ is a (k+m)-dimensional polyhedron and we infer by (1.6) that

Another situation is for arbitrary compacta. As has been shown by L. S. Pontrjagin [4], there exist two 2-dimensional compacta X and Y such that $\dim(X \times Y) = 3$. By Theorem (2.7), both numbers $\mu_2(X)$ and $\mu_2(Y)$ are positive, however (1.2) implies that $\mu_4(X \times Y) = 0$. Consequently

(3.2) There exist 2-dimensional compacta X and Y such that $\mu_4(X \times Y) < \mu_2(X) \cdot \mu_2(Y)$.

However the following theorem holds true:

(3.3) THEOREM. If X, Y are compacta lying in E^{ω} and if $\dim X = k$, $\dim Y = m$, then $\mu_{k+m}(X \times Y) \leq \mu_k(X) \cdot \mu_m(Y)$.

Proof. Both numbers $\mu_k(X)$ and $\mu_m(Y)$ are positive. If at least one of them is infinite, then $\mu_{k+m}(X \times Y) \leq \mu_k(X) \cdot \mu_m(Y)$. Thus we can assume that both numbers $\mu_k(X)$ and $\mu_m(Y)$ are finite.

By the definition of μ_n , there exist for every $\eta > 0$ two polyhedra P and R such that $\dim P = k$, $\dim R = m$, with

$$\mu_{k}(X) + \eta > |P|_{k}, \quad \mu_{m}(Y) + \eta > |R|_{m}$$

and that for every $\varepsilon > 0$ there exist two ε -translations

$$f: X \to P$$
 and $g: Y \to R$.

Setting

$$\varphi(x, y) = (f(x), g(y))$$
 for every $x \in X$ and $y \in Y$,

one gets a 2ε -translation $\varphi: X \times Y \to P \times R$. Using (3.1) and (3.2), one infers that

$$\mu_{k+m}(X\times Y)\leqslant \mu_{k+m}(P\times R)=\mu_{k}(P)\cdot \mu_{m}(R)<(\mu_{k}(X)+\eta)\cdot (\mu_{m}(Y)+\eta).$$

Hence

$$\mu_{k+m}(X \times Y) < (\mu_k(X) + \eta) \cdot (\mu_m(Y) + \eta)$$
 for every $\eta > 0$.

Consequently $\mu_{k+m}(X\times Y)\leqslant \mu_k(X)\cdot \mu_m(Y)$ and the proof of Theorem (3.3) is finished.

- 4. Geometric measures of unions of compacta. First let us prove the following
- (4.1) LEMMA. Let X and A be two compacta lying in E^{ω} . For every ε -translation f of X with values lying in a polyhedron $P \subset E^{\omega}$, there exists a 2ε -translation $g\colon X \cup A \to E^{\omega}$ and a polyhedron $R \subset E^{\omega}$ with $\dim R \leqslant \dim A$ such that $g(X \cup A) \subset P \cup R$.

Proof. We may assume that $P \subset E^m$. One sees easily that there exists an extension f' of f to an ε -translation $f'\colon X\cup A\to E^\omega$. Moreover, there is a natural number k so large, that the orthogonal projection $\varphi\colon E^\omega\to E^{m+k}$ assigns to every point $x=(x_1,\,x_2,\,\ldots)\in E^\omega$ the point $\varphi(x)=(x_1,\,x_2,\,\ldots,\,x_{m+k})\in E^{m+k}$, satisfying the condition

$$\varrho(\varphi f'(x), f'(x)) < \frac{1}{2}\varepsilon$$
 for every point $x \in X \cup A$.

Then the set $\varphi f'(A)$ lies in a polyhedron $R' \subset E^{m+k}$ and

$$\varphi f'(x) = f'(x) = f(x)$$
 for every $x \in X$.

Consider a triangulation T of the polyhedron $P \cup R'$ such that all simplices $\Delta \in T$ with $\Delta \cap P \neq \emptyset$, together with their faces, constitute a triangulation T_P of P and all simplices $\Delta \in T$ with $\Delta \cap R' \neq \emptyset$ (and their faces) constitute a triangulation $T_{R'}$ of R'.

Let us say that two maps $g, g' \colon X \cup A \to E^{\omega}$ are T-associated, if for every $x \in X \cup A$ there is a simplex $A \in T$ containing both points g(x) and g'(x).

Let $m=\dim A$ and $g_0=\varphi f'$. Consider a simplex $\Delta\in T_{R'}\setminus T_P$ with $\dim \Delta=\dim R$. If $\dim \Delta>m$, then there exists a map g' of the set $g_0^{-1}(\Delta)$ into the boundary Δ of Δ such that $g_0(x)=g'(x)$ for every point $x\in g_0^{-1}((P\cup R)\backslash \Delta)$ (where Δ denotes the interior $\Delta\setminus \Delta$ of Δ). Applying this procedure step by step

to all simplices $\Delta \in T_R \setminus T_P$ with $\dim \Delta > m$, one gets a map $g: X \cup A \to E^{\circ}$ which is T-associated to the map g_0 and the set g(A) lies in the m-skeleton R of R' (by triangulation $T_{P'}$).

If the mesh of the triangulation T is less than $\frac{1}{2}\epsilon$, then $\varrho(g_0(x), g(x)) < \frac{1}{2}\epsilon$ for every $x \in X \cup A$ and g is a 2ϵ -translation of $X \cup A$ into $P \cup R$.

(4.2) THEOREM. If X, A are compacta lying in E^{ω} and if $\dim A < n$, then $\mu_n(X \cup A) = \mu_n(X)$.

Proof. By (1.4), $\mu_n(X) \leq \mu_n(X \cup A)$. It remains to show that

$$\mu_n(X \cup A) \leq \mu_n(X)$$
.

We can assume that $\mu_n(X) < \infty$. Consider a finite number $\alpha > \mu_n(X)$. Then for every $\varepsilon > 0$ there is an ε -translation $f \colon X \to E^\omega$ such that f(X) is a subset of a polyhedron $P \subset E^\omega$ with $\mu_n(P) < \alpha$. By Lemma (4.1), there is a 2ε -translation $g \colon X \cup A \to E^\omega$ and a polyhedron $R \subset E^\omega$ with $\dim R < n$ such that $g(A \cup X) \subset P \cup R$. But $|P \cup R|_n = |P|_n$ and consequently $\mu_n(X \cup A) < \alpha$ and the proof of Theorem (4.2) is finished.

(4.3) THEOREM. If X_1 , X_2 are compacta lying in E^{ω} and if $\mu_{n-1}(X_1 \cap X_2) = 0$, then $\mu_n(X_1 \cup X_2) \leq \mu_n(X_1) + \mu_n(X_2)$.

Before giving the proof, we established some lemmas:

(4.4) Lemma. Let X_1 , X_2 and $X_0 = X_1 \cap X_2$ be compacta lying in E^{ω} . Then for every $\varepsilon > 0$ there exists a natural number m and an ε -translation $f: X_1 \cup X_2 \to E^m$ such that $f(X_0) = f(X_1) \cap f(X_2)$ and $f(X_1)$, $f(X_2)$, $f(X_0)$ are polyhedra with $\dim f(X_i) \leq \dim X_i$, for i = 0, 1, 2.

Proof. Setting $X = X_1 \cup X_2$, observe that there are a natural number n and a $\frac{1}{4}\varepsilon$ -translation $g'\colon X \to E^n \subset E^\omega$ such that g'(X) and $g'(X_0)$ are polyhedra and $\dim g'(X_0) \leq \dim X_0$.

It is known (see [1], p. 166) that there exists a $\frac{1}{2}\varepsilon$ -translation $g\colon X\to E^n$ such that $\dim(g(X_i\backslash X_0))\leqslant \dim(X_i\backslash X_0)$ for $i=1,\ 2$ and g(x)=g'(x) for $x\in X$.

It follows that $\dim g(X_i) \leq \dim X_i$ for i = 0, 1, 2.

We can also assume that $g(X_0)$, $g(X_1)$ and $g(X_2)$ are polyhedra.

By the general position argument, there are $\frac{1}{2}\varepsilon$ -translations $h_1\colon g(X_1)\to E^{n+1}$ and $h_2\colon g(X_2)\to E^{n+1}$ such that

$$h_1(x) = h_2(x) = x \quad \text{for } x \in X_0$$

and

$$h_1(X_1 \setminus X_0) \cap h_2(X_2 \setminus X_0) = \emptyset.$$

Let m = n + 1. The ε -translation $f: X \to E^{\omega}$ satisfying the required conditions can be defined by the formula

$$f(x) = h_i g(x)$$
 for every $x \in X_i$ and $i = 1, 2$.

This completes the proof.

⁵ Fundamenta Mathematicae 121

Assume that z is a real number and define the map

$$\tau_{\pi} \colon E^{m} \to E^{m+1} \subset E^{\omega}$$

by the formula

$$\tau_{r}(x_{1},...,x_{m})=(x_{1},...,x_{m},z)$$
 for every $(x_{1},...,x_{m})\in E^{m}$.

(4.5) Lemma. If X_1 and X_2 are polyhedra lying in E^m and if $X_0 = X_1 \cap X_2$, then for every $\varepsilon > 0$ there is an ε -translation

$$f: X_1 \cup X_2 \to \tau_{-\varepsilon/4}(X_1) \cup \tau_{\varepsilon/4}(X_2) \cup \bigcup_{|z| \leq \varepsilon/4} \tau_z(X_0).$$

Proof. Let T be a triangulation of the polyhedron $X = X_1 \cup X_2$ such that the mesh of T is less than $\frac{1}{2}\varepsilon$ and that the subfamily T_i of T, which consists of all simplices $\Delta \in T$ with $\Delta \cap X_i = \emptyset$ and of their faces is a triangulation of X_i , for i = 0, 1, 2.

Consider the polyhedron

$$Y_{n} = \tau_{-\varepsilon/4}(X_{1}) \cup \tau_{\varepsilon/4}(X_{2}) \cup \bigcup_{|z| \leq \varepsilon/4} \tau_{z}(X_{0} \cup X^{(n)})$$

where $X^{(n)}$ denotes the *n*-skeleton of X with respect to T.

For i = 1, 2 and for every simplex $\Delta \in T_i$, the set

$$\tau_{\gamma}(\Delta) \cup \bigcup_{z \leq \varepsilon/4} \tau_{z}(\dot{\Delta}), \quad \text{where} \quad \gamma = \frac{(1)^{i}}{4} \cdot \varepsilon,$$

is a retract of $\bigcup_{|z| \le \varepsilon/4} \tau_z(\Delta)$.

Therefore for each $n \ge 0$ there is a retraction r_n of the set Y_n to Y_{n-1} such that

$$r_{\mathbf{n}}\left(\bigcup_{|z|\leq \varepsilon/4} \tau_{\mathbf{z}}(\Delta)\right) \subset \bigcup_{|z|\leq \varepsilon/4} \tau_{\mathbf{z}}(\Delta) \cup \tau_{\gamma}(\Delta),$$

where $\Delta \in (T_i \setminus T_0)$ for i = 1, 2 is an *n*-dimensional simplex. Hence the map $f: X \to Y_{-1}$ which is the restriction of

$$r_0 \dots r_s$$
: $\bigcup_{|z| \leq \varepsilon/4} \tau_z(X) \to Y_{-1}$, where $s = \dim X$,

is an ε -translation. Thus the proof of Lemma (4.5) is finished.

Proof of Theorem (4.3). Suppose that

$$\mu_n(X_i) \leqslant \alpha_i < \infty$$
 for $i = 1, 2$.

Consider 1/2-translations

$$f_1: X_1 \to E^{\omega}$$
 and $f_2: X_2 \to E^{\omega}$

such that $f_i(X_i)$ is a polyhedron with $|f_i(X_i)|_n \le \alpha_i$ for i = 1, 2.

For i = 1, 2 there exists a neighborhood U_i of X_i and a $\frac{2}{5}\varepsilon$ -translation $\hat{f_i}$: $U_i \to E^{\omega}$ such that $\hat{f_i}(U_i) = f_i(X_i)$ and $\hat{f_i}$ is an extension of f_i .

Lemmas (4.4) and (4.5) imply that for every $\delta > 0$ there exist δ -translations

$$g: X_1 \cup X_2 = X \rightarrow g(X) \subset E^{\omega}$$
 and $g_i: X_i \rightarrow E^{\omega}$ for $i = 1, 2$

such that $g_1(X_1), g_2(X_2)$ and $g(X) \supset g_1(X_1) \cup g_2(X_2)$ are polyhedra with

$$\dim \left(\overline{g(X)\backslash (g_1(X_1)\cup g_2(X_2))}\right)\leqslant n-1\quad \text{and}\quad g_1(X_1)\cap g_2(X_2)=\emptyset.$$

Assume that $\delta > 0$ is so small, that $q(X) \subset U_1 \cup U_2$ and $\delta < \frac{1}{5}\varepsilon$. Setting

$$\hat{f}(x) = \hat{f}_i(x)$$
 for every $x \in g_i(X_i)$, for $i = 1, 2$,

we obtain a $\frac{2}{5}\varepsilon$ -translation $\hat{f}: g_1(X_1) \cup g_2(X_2) \to E^{\omega}$.

Using Lemma (4.1) for the case when $X = g_1(X_1) \cup g_2(X_2)$, A is the closure of the set $g(X) \setminus (g_1(X_1) \cup g_2(X_2))$ and $f = \hat{f}$, we infer that there is a $\frac{4}{5}\varepsilon$ -translation $f' \colon g(X) \to E^\omega$ such that the set $Y_0 = f'\left(g(X) \setminus (g_1(X_1) \cup g_2(X_2))\right)$ is a polyhedron with dim $Y_0 \leqslant n-1$.

Since $\frac{1}{5}\varepsilon > \delta$, the composition $h = f'g: X_1 \cup X_2 \to E^{\omega}$ is an ε -translation. It is clear that $h(X_1 \cup X_2) \subset f_1(X_1) \cup f_2(X_2) \cup Y_0$ and

$$|f_1(X_1) \cup f_2(X_2) \cup Y_0|_n \le |f_1(X_1)|_n + |f_2(X_2)|_n + |Y_0|_n \le \alpha_1 + \alpha_2.$$

Thus the proof of Theorem (4.3) is finished.

- 5. A lemma. In Sections 7 and 8 we shall construct some compacta showing that without the hypothesis $\dim(X \cap Y) < n-1$, no simple relation between $\mu_n(X)$, $\mu_n(Y)$, $\mu_n(X \cap Y)$ and $\mu_n(X \cup Y)$ holds true. We start by the following
- (5.1) Lemma. If Z is a compactum (lying in E^{ω}) such that for every $\varepsilon > 0$ there exists a decomposition of Z into two disjoint compacta Z_1 , Z_2 such that the diameter of every component of Z_1 is less than ε and that Z_2 can be mapped by an ε -translation onto a subset of a polyhedron P with $|P|_n < \alpha$, then $\mu_n(Z) < \alpha$.

Proof. Consider two neighborhoods U_1 of Z_1 and U_2 of Z_2 with

$$\bar{U}_1 \cap \bar{U}_2 = \emptyset$$
.

By our hypothesis, there exists for every component C of Z_1 an open neighborhood $V \subset U_1$ with diameter $d(V) < \varepsilon$ and $(\bar{V} \setminus V) \cap Z_1 = \emptyset$. Since Z_1 is compact, there is a finite system V_1, V_2, \ldots, V_k of such open sets with $Z_1 \subset V_1 \cup \ldots \cup V_k$. Setting

$$W_i = V_i \setminus \bigcup_{j < i} \overline{V}_j$$
 for every $i = 1, 2, ..., k$,

one gets open sets $W_1, W_2, ..., W_k$ with diameters $\langle \varepsilon, \text{ covering } Z_1 \rangle$. If

$$\varphi(z) = b_i$$
 for every $z \in Z_1 \cap W_i$, $i = 1, 2, ..., k$,

 $W_i \neq \emptyset$, then we select a point $b_i \in W_i$. Setting

one gets an ε -translation φ of Z_1 onto a finite set consisting of all points b_i . Moreover, there exists an ε -translation ψ mapping Z_2 into a polyhedron P with $|P|_{n} < \alpha$. The map f defined by the formulas:

$$f(z) = \varphi(z)$$
 for $z \in Z_1 \cap W_i$ and $f(z) = \psi(z)$ for $z \in Z_2$

is an ε -translation of Z into the polyhedron $R = P \cup \{b_1, \ldots, b_k\}$. Then $|R|_{n}$ $< \alpha$ and we infer that $\mu_n(Z) < \alpha$.

6. A preliminary construction. Consider a sequence $\lambda_0 > \lambda_1 > \dots$ of positive numbers such that

$$\sum_{m=0}^{L} 2^m \cdot \lambda_m \leqslant 1.$$

We have

$$1 - \sum_{m=0}^{k} 2^{m} \cdot \lambda_{m} > \lambda_{k+1} \cdot 2^{k+1} \quad \text{for every } k = 0, 1, \dots$$

Assign to every integer k = 0, 1, ... a system σ_k consisting of 2^k disjoint closed intervals $A_{k,i}$, where $i=1,\ldots,2^k$, with lengths $|A_{k,i}|=\lambda_k$, lying in the open interval I = (0, 1). We define the system σ_k by the induction:

 σ_0 consist of only one closed interval $A_{0,1} = \left\langle \frac{1-\lambda_0}{2}, \frac{1+\lambda_0}{2} \right\rangle$. Assume that $\sigma_0, \ldots, \sigma_k$ are already defined and that $\sigma_0 \cup \ldots \cup \sigma_k$ consists of 1+2+ $+ \dots + 2^k = 2^{k+1} - 1$ closed intervals $A_{m,i}, m = 0, 1, \dots, k, i = 1, 2, \dots, 2^k$ disjoint one to another, with lengths $|A_{m,i}| = \lambda_m$, and that the set $I \setminus \bigcup A_{m,i}$ is the union of 2^{k+1} open intervals $I_{k,i}$, $j = 1, 2, ..., 2^{k+1}$ disjoint and equal one to another. Then the length of $I_{k,i}$ is equal to

$$\frac{1}{2^{k+1}}\left(1-\sum_{m=0}^{k}2^{m}\cdot\lambda_{m}\right)>\lambda_{k+1}.$$

Consequently there exists for every $j = 1, 2, ..., 2^{k+1}$ a closed interval $A_{k+1,j}$ with the length $|A_{k+1,j}| = \lambda_{k+1}$ and with the center the same as the center of $I_{k,j}$. The system σ_{k+1} consisting of all intervals $A_{k+1,j}$, $j=1, 2, ..., 2^{k+1}$ satisfies our conditions.

The intervals belonging to σ_k are said to be of order k. Observe, that the measure (in the elementary sense of Lebesgue) of the closure \overline{A} of the set

$$A = \bigcup_{k=0}^{\infty} \bigcup_{j=1}^{2^k} A_{k,j}$$

is equal to $\sum_{m=0}^{\infty} 2^m \cdot \lambda_m$.

Moreover, one infers by our construction, that the closure $I \setminus A$ of the set $I\setminus A$ (with respect to (0, 1)) is a 0-dimensional compactum and its measure is equal to $1 - \sum_{m=0}^{\infty} 2^m \cdot \lambda_m$.

7. Construction of two compacts X, Y such that $\dim(X \cap Y) = 0$ and that $\mu_n(X) + \mu_n(Y) > \mu_n(X \cup Y)$. We preserve the notations of Section 6. In order to construct compacta X, Y satisfying the required conditions, consider in the space E^n the n-dimensional unit cube Q^n consisting of all points $(x_1, ..., x_n) \in E^n$ with $0 \le x_i \le 1$ for i = 1, 2, ..., n.

Let $X = Q^n$. The construction of Y is more complicated:

For every k = 0, 1, ... and for every $i = 1, 2, ..., 2^k$, let us denote by $a_{k,i}$ and $b_{k,i}$ the end points of $A_{k,i}$ (with $a_{k,i} < b_{k,i}$) and let $c_{k,i}$ denote the center of A_{ki} .

Consider also the set B_k , k = 0, 1, ..., consisting of all points $(x_1, \ldots, x_n) \in Q^n$ such that x_i belongs to the closure of the set

$$I \setminus \bigcup_{m=0}^{k} \bigcup_{i=1}^{2^{m}} A_{m,i} \quad \text{for every } i = 1, ..., n.$$

First we define (by the induction) a sequence Y_0, Y_1, \dots of polyhedra in $E^{n+1} \supset E^n$. Setting $Y_0 = X = Q^n$, assume that Y_0, \ldots, Y_k are already constructed. The space Y_l is homeomorphic to X and $X \cap Y_l = B_{l-1}$ for I= 1, ..., k. For every l = 1, ..., k-1 every point $x = (x_1, ..., x_n, x_{n+1}) \in E^{n+1}$, where $x_{n+1} > \lambda_{l-1}$, belongs to Y_l if and only if $x \in Y_{l-1}$.

Let us denote by $H_{i,i}$, for all natural indices $j \le n$ and for $i \le 2^k$, the set consisting of all points $(x_1, ..., x_n, x_{n+1}) \in E^{n+1}$ such that $0 \le x_i \le 1$ for every $l \le n$ and $x_i = c_{k,i}$ and $x_{n+1} = \lambda_k$.

Denote by $W_{i,i}$ (respectively by $Z_{i,i}$) the union of all closed intervals with endpoints $(x_1, ..., x_n, x_{n+1}) \in X \subset E^{n+1}$ and $(y_1, ..., y_{n+1}) \in H_{i,j}$, where x_i $= v_l$ for every $l \neq j$, n+1 and $x_i = a_{k,i}$, or $x_i = b_{k,i}$ (respectively the set consisting of all points $(x_1, ..., x_n, x_{n+1}) \in X$ such that $a_{k,i} \leq x_i \leq b_{k,i}$. Setting

$$\varphi(x_1, \ldots, x_n, x_{n+1}) = (x_1, \ldots, x_n),$$

one obtains the orthogonal projection $\varphi: E^{n+1} \to E^n$. Every polyhedron W lying in E^{n+1} is mapped by φ onto a polyhedron $\varphi(W) \subset E^n$ such that $|\varphi(W)|_m \leq |W|_m, m = 0, 1, \dots$

Let

$$U_{k+1} = (Y_k \setminus \bigcup_{j=i}^n \bigcup_{i=1}^{2^k} Z_{i,j}) \cup (\bigcup_{j=1}^n \bigcup_{i=1}^{2^k} W_{i,j}).$$

Let us observe that U_{k+1} is a polyhedron which is mapped by φ onto Xand that there exists a subpolyhedron Y_{k+1} of U_{k+1} such that φ restricted to Y_{k+1} is an embedding onto X and $X \cap Y_{k+1} = B_k$. A point x

 $=(x_1,\ldots,x_n,x_{n+1})\in E^{n+1}$ with $x_{n+1}>\lambda_k$, belongs to Y_{k+1} if and only if $x\in Y_k$.

Consider the set B consisting of all points $(x_1, ..., x_n) \in Q^n$ such that x_i belongs to the closure of the set $I \setminus A$ for every i = 1, 2, ..., n. Observe that $B = \bigcap_{k=0}^{\infty} B_k$.

Since B is homeomorphic to the Cartesian product $(\overline{I \setminus A}) \times ... \times (\overline{I \setminus A})$ and $\dim \overline{I \setminus A} = 0$, we infer that $\dim B = 0$.

It is clear that the sequence $\{\lambda_k\}_{k=0}^{\infty}$ may be chosen so that $|Y_k|_n < 1 + \alpha < 2$ and that $|B|_n > \beta$, where $\beta > \alpha > 0$ and k = 0, 1, ...

Let M be the set consisting of all points $(x_1, x_2, ..., x_{n+1}) \in E^{n+1}$ with $|x_l| \le 2$ for l = 1, 2, ..., n+1.

The polyhedra Y_0 , Y_1 , ... can be considered as points of the space 2^M of all non-empty subcompacta of M (with the Hausdorff metric). In the space 2^M the sequence of polyhedra Y_m converges to a compactum Y. Assign to every $x = (x_1, \ldots, x_n, x_{n+1}) \in Y$ a point $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_{n+1})$ of Y_k such that $x_l = \hat{x}_l$ for every $l = 1, 2, \ldots, n$.

Now let us define the maps p_k : $Y \to Y_k$ and q_k : $X \cup Y \to X \cup Y_k$ by the formulas:

$$p_k(x) = \hat{x}$$
 for $x \in Y$

and

$$q_k(x) = \begin{cases} x & \text{for } x \in X, \\ \hat{x} & \text{for } x \in Y. \end{cases}$$

It is clear that p_k is a homeomorphism for every k, and that for every $\varepsilon > 0$ there exists an index k such that p_k and q_k are ε -translations. Therefore

$$\mu_n(Y) \leq 1 + \alpha$$

and

$$\mu_n(X \cup Y) \leq |X \cup Y_k|_n = |X|_n + |Y_k|_n - |X \cap Y_k|_n \leq 2 + \alpha - \beta < 2$$

In order to finish the proof that $\mu_n(X \cup Y) \neq \mu_n(X)_n + \mu_n(Y)$ it suffices to show that $\mu_n(Y) \geqslant 1$.

Let us assume that there is a positive y such that

and let $\varepsilon > 0$.

Consider a positive number δ such that if x and y are points of M and $\varrho(x, y) < \delta$, then $\varrho(\varphi(x), \varphi(y)) < \varepsilon$. It follows by (7.1) that there exists an δ -translation $f_{\delta} \colon Y \to M$ such that $f_{\delta}(Y)$ is a polyhedron with $|f_{\delta}(Y)|_{n} \leqslant \gamma < 1$. Setting

$$g(x) = \varphi f_{\delta} \varphi^{-1}(x)$$
 for $x \in X$,

one gets an ε -translation $g: X \to E^{n+1}$ such that

$$|g(X)|_n \leq |f_{\delta}(Y)|_n < \gamma < 1$$
.

Thus for every $\varepsilon > 0$ there exists an ε -translation $g: X \to E^{n+1}$ such that g(X) is a polyhedron and $|g(X)|_n < \gamma$. Hence $\mu_n(X) \le \gamma < 1$. This contradicts (1.6). Therefore $\mu_n(Y) > 1$.

Since $X \cap Y = B$ and dim B = 0, we conclude that X and Y satisfy the required conditions.

8. Construction of compacta X, Y such that $\dim(X \cap Y) = 0$ and $\mu_1(X \cup Y) > \mu_1(X) + \mu_1(Y)$.

Preserving the notations of Section 6, let us set $\lambda_n = 6^{-(n+1)}$ and let us call the interval $A_{k,i}$ even, if k is an even number, and odd - if k is odd. By X we denote the closure of the union of all even intervals, and by Y - the closure of the union of all odd intervals. Observe that every component of the compactum $\overline{1 \setminus Y}$ is either an even interval, or a singleton. For every positive ε there exists only a finite collection of intervals A_1, \ldots, A_n with diameters $\ge \varepsilon$. Moreover, for every even interval A there is an ε -neighborhood which is an open interval with both endpoints belonging to odd intervals. It follows, that there exist open intervals U_1, \ldots, U_n disjoint one to another with endpoints belonging to odd intervals such that U_i is an ε -neighborhood of A_i for $i=1,2,\ldots$ Consequently, there exists an ε -translation f of the set $U_1 \cup \ldots \cup U_n$ onto the polyhedron $A_1 \cup \ldots \cup A_n$.

Since $\mu_1(A_1 \cup ... \cup A_n)$ is less than $\sum_{k=0}^{\infty} \sum_{i=1}^{2^k} |A_{k,i}|$, we infer by Lemma (5.1) that $\mu_1(X) < \frac{1}{5}$. By an analogous argument, one shows that $\mu_1(Y) < \frac{1}{5}$.

Since $X \cup Y = \overline{I}$, we infer that $\mu_1(X) + \mu_1(Y) < \mu_1(X \cup Y)$. Moreover, all components of the set $X \cap Y$ are singletons and consequently $\dim(X \cap Y)$

References

[1] K. Borsuk, Theory of Retracts, Monografic Matematyczne 44, Warszawa 1967.

[2] - An alternative concept of the n-dimensional measure, Ann. Polon. Math. 42 (1983), pp. 17-24.

[3] F. Hausdorff, Dimension und ausseres Mass, Math. Ann. 79 (1919), pp. 81-89.

[4] L. S. Pontrjagin, Sur une hypothèse fondamentale de la théorie de la dimension, C. R. Acad. Paris 190 (1930), pp. 1105-1107.

Received 28 September 1981