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Remarks on the n-dimensional geometric measure
of compacta

by
[X. Borsuk |, S. Nowak and S. Spiez (Warszawa)

Ab By the n-di ional geometric measure of a compactum X lying in the Hilbert
space E¥, one understands the lower bound p,(X) of all positive numbers « such that for every
&> 0 there is an ¢-translation f X — E® such that f(X) lies in a polyhedron P = E® for which
the n-dimensional measure |P|, (in the elementary sense) is < «. If dim P <n, we assume |Pl,
=0, and if dimP > n, we assume |P|, = co.

Some relations between geometric measures of two compacta X, Y= E® and the pseudo-
measures of XUY, XnYand X xY are studied.

1. Introduction. In the elementary geometry one assigns to every n-
dimensional polyhedron P the number |P|,, defined as the sum of the
volumes of all n-dimensional simplices belonging to a triangulation of P. If
dimP < n, then one assumes that |P|, = 0, and if dimP > n, then |P|, = co.

One knows that |P|, does not depend on the choice of the triangulation
of P. Moreover, one sees easily that

k
(1.1) X Py, P,, ..., P, are polyhedra, then |P; U ... UP, < Y [P
i=1

Let E® denote the usual Hilbert space, i.e. the space consisting of all real

o0
sequences (X, X, -..), such that Y xi < co, metrized by the formula
i=1

Q((xl: Xz, ) (V1> V2s )) = /El (xr’}’:)z-

We may consider the Euclidean m-space E™ as the subset of E® consisting of
all points (xy, Xz, ++vs Xm» 0,0, ...) denoted also by (X, Xz, .., Xm)-

By the n-dimensional geometric measure of a compactum X < E®, we
understand the number u,(X) (finite or co) defined as the lower bound of all
numbers « > 0 such that for every & > 0, there is an e-translation f;: X — E®
(ie. a map f; satisfying the condition o(x, £,(X)) < & for every x& X) such that
£.(X) is a subset of a polyhedron P = E® with |P|, < «. It is known (see [2])
that:
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(1.2) If dimX < n, then p,(X)=0.

(1.3) If dimX >n, then p,(X) = .

(14 If X <Y, then p,(X) < p(Y). -

(15 If XnY=0, then p, (XU Y = p,(X)+ i (Y).

(1.6) . If P is a polyhedron, then u,(P)=|P),.

(1.7)  If X is a continuum, then p,(X)>d(X), where d(X) denotes the
diameter of X.

(1.8)  If Lis an arc, then p (L) is the length |L| of L.

- Observe, that (1.2) implies that for every arc Land n=2, 3, .., u,(L)
= 0. However there exist arcs Lc E® for which the n-dimensional measure
(in the sense of Hausdorff [3]) is positive for n =2, 3, ... In fact, it is well
known that there exists in E® a set C homeomorphic to the Cantor
discontinuum, for which the n-dimensional Hausdorff measure is positive, for
every n=1, 2, ... On the other hand, there is an arc L< E® containing C. It
follows that the n-dimensional Hausdorff measure of Lis positive for every n
=1,2, ... However p,(L) =0 for n=2, 3, ..., because of (1.2).

2. Geometric measure of n-dimensional compacta. First let us prove the
following

(2.1) Lemma. For any natural number m and for every positive number 8,
there is a positive real number § = §(e, m) such that for every n-dimensional
polyhedron R lying in E™, with |R|, <5, there is an e-translation g: R—E™
such that ¢(R) is contained in an (n—1)-dimensional polyhedron.

Proof. Let n be a positive real number such that the diameter of the m-

cube <0, )™ is less than e. Let § = §(e, m) be a positive real number such
that

where

() =mo

Let R be an n-dimensional polyhedron in E™ with IR, < 5. Assume that
R is contained in an m-cube <0, N- )™ where N is a natural number. Hence

<0, N-n>™ conmsists of all points (xy, x5, ..., x,)€ E™ with 0 <x, < Ny, for
i=1,2,..,m

Let § denote the family of all subsets 9 of the set {1,2,...,m}
consisting of n elements. Observe that & consists of (m sets . Assign to

. . n
every e § the n-dimensional face Fy of <0, N )™ consisting of all points
(x4, X3, ..., X, such that

0<x<N-nifieA and x =0, if PEA,
Denote by py the map assigning to every point (%1, X2, ..., X,,) of <O, N-yg>"
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the point (X1, X3, ..., X,,), Where x; = x; if ie ¥ and x{ =0, if i¢ . Thus py
is an ortogonal projection of the cube <0, N-#>™ onto its n-dimensional face
Fy.

! One sees easily that for every e &, the image py(R) of the polyhed.ron
Rc (0, N-yd™ is a polyhedron lying in Fy with |py(R)l, < |R},. Since

(’”).wn < (m>-(‘5 <", we infer that a
Y n
(2.2) Y Ipa(R), <"

e F

Divide every interval {(i—1)-n, i-n>, where i belongs to {1, 2, o N},
into s equal intervals. One gets a subdivision of the cube <0, N-#>" into

1
(N-s)" small m-cubes with the length of edges e Denote by ky the number
of all such small cubes, which lay in Fy and which imtersect the polyhedron
pu(R). It follows by (2.2) that for s sufficiently large

(2.3) Y kg < 5"

e F

Observe that there are s¥ subsets of {0, N-n) of the form
(24) A UA, ... UAy,

1, .
where A;,i=1,2,..., N, are intervals with the length ;‘11 in which the

interval {(i—1)-n, i-n) is divided. ‘
Moreover, there are s¥~! subsets of <0, N-n) of the form (2.4) which

1. . .
contain a given one of the intervals with the length 7 # in which the interval

<0, N-n) is divided. .
Let Ae §, and let Cj, for j=1,2,..., m be one of the s*N intervals
with the length —14-71 in which the interval <0, N-n} is‘divided. If B;, for
s

j=1,2,..,m, is a subset of <0, N'n) of the form (24) .then the se"t

Pu (B‘1 x By % ... X B,,) contains the set py(Cy XCz X ... x C,,) if and only if

the set B , contains the set C; for every jeA. Consequently, there are
(SN~1)n,(SN)m-n - S—n.SN-m

sets of the form

(25) By xByx ...

where B, is, for i =1, 2, ..., m, a subset of <0, N-u> of the form (24) wixth
the images under py containing the small n-cubei Pu (N(En] XCyX ... XCy) ly;nsg
in Fy. It follows that there are at most ky-s n.g¥m sets of the form (2.5)
with the images under py intersecting the polyhedron py (R).

X By, |
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There are s¥™ sets of the form (2.5). It follows by (2.3) that

Y kygsTmes¥m < SN,
e §

Consequently there is a set B of the form B; xB, x ...

py(B) N py(R) = @

Let B denote the interior of B in E™ Then the set
Y=o, N'n>"'\“gﬁpi’(mx(l§))

contains the polyhedron R.

Denote by S,, for k=0, 1, ..., m the union of all k-dimensional faces of
m-cubes of the following form

(26)  igon, (iy+1) 0> x iy, (f+1) ) x ...
where i;=0,1,...,N—1 for j=1,2,..., m. Let
o=YnS, for k=1,2,...,m

(in particular, S,, =<0, N-7>™ and Y,, = Y).
It is easy to see that for each k =n, n+1, ..., m there is a retraction
et Y= Y such that for every k-face K’ of any m-cube of the form (2.6)

K nh)=K'nYe-,.

x B, such that
for every e §.

X im0, (1) 1),

Consequently the map
F=TyTpp1 o'yl Y2 Y,
is' a retracti.on such that r(K nY) < K for every m-cube K of the form (2.6).
Since the diameter of any m-cube of the form (2.6) is less than &, we infer that
r: Y- Y, ; is an e-translation. Setting
9(x) =r()

one gets a map satisfying the required conditions. Thus the proof of Lemma
(2.1) is finished.

Denote by gq,,: E® — E™ the orthogonal projection

qm(xl’ X2y oen

for every xeR,

)=(xy, X3, ..., X} for every (x,, x5, ...)€E®.
Let us prove the following

' (2.7) THEOREM. .For every n-dimensional compactum X < E®, the n-
dimensional geometric measure is positive.

'Proof. If X is a compactum in E® with p,(X) =0, then for every
positive &, there is an integer m such that

o(x, gm(x)) <& for every xeX.
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Let & = 8(g, m) be the positive real number from Lemma (2.1). Since p,(X)
=0, there is an e-translation f* X — E® such that f(X) is a subset of a
polyhedron P < E® with dimP =n and |P|, < 4. Then

(%, @nf (%) < 0(%, gm(X)+ 0(dm(X)s gmf ()

for every xeX. So g,f: X —E™ is an 26-translation.

Observe that g, f(X) is a subset of the polyhedron R = g,,f(P) lying in
E" with |R|, < |P|, < é. By Lemma (2.1), there is an e-translation g: R — E™
such that g(R) is contained in an (n—1)-dimensional polyhedron. The map
gqmf: X = E™ is a 3c-translation. The image gg,f(X) is contained in an
(n—1)-dimensional polyhedron.

Thus, for every & > 0, there is a 3e-translation of X into E® with the
image contained in an (n— 1)-dimensional polyhedron. Hence dimX <n, and
the proof of Theorem (2.7) is finished.

(2.8) CoroLLARY. For compacta X < E® the vanishing of the n-
dimensional geometric measure is a topological invariant.

(2.9) QuesTioN. Is it true that for every & > O there is an 1, > 0 such that
for every compactum X < E° with p,(X) <, there is an e-translation f,: X
— E® such that dim f,(X) <n?

3. Geometric measures for Cartesian products. If P is an k-dimensional
polyhedron and R is an m-dimensional polyhedron, then P xR is a (k+m)-
dimensional polyhedron and we infer by (1.6) that

(3.1) Ptm(P X R) = pi (P} i (R).

Another situation is for arbitrary compacta. As has been shown by L. S.
Pontrjagin [4], there exist two 2-dimensional compacta X and Y such that
dim(X x ¥) =3. By Theorem (2.7), both numbers ji;(X) and Uy (Y) are
positive, however (1.2) implies that p, (X xY) = 0. Consequently

(32) There exist 2-dimensional compacta X and Y such that p,(X xY)
< pa(X)- pa (Y). )

However the following theorem holds true:

(3.3) TueoreM. If X, Y are compacta lying in E® and if dimX =k, dimY
=m, then tim(X xY) < h(X) 1t (Y).

Proof. Both numbers g, (X) and p,(Y) are positive. If at least one of
them is infinite, then py4m(X X ¥) < g4 (X)" i (Y). Thus we can assume that
both numbers g, (X) and p,(Y) are finite.

By the definition of u,, there exist for every n > 0 two polyhedra P and
R such that dimP = k, dimR = m, with

w(X)+n> [Py tm(¥)+7 > [Rln
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and that for every ¢ > O there exist two e-translations
fi X->P and g¢g: Y—R.
Setting
o(x, »=(f(x),g(y) for every xeX and yeY,

one gets a 2e-translation ¢: X x Y— P xR, Using (3.1) and (3.2), one infers
that

brim(X X Y) < #k+m(P><R) = 1 (P)* i (R) <'(ﬂk(X)+’7)'(l-‘m(Y)+'I)-
Hence

e m(X X V) < (1 (X) 1) (4m (V) +7)  for every 5> 0.

Consequently g1, (X x Y) < 14 (X) ,,(Y) and the proof of Theorem (3.3) is
finished.

4. Geometric measures of unions of compacta. First let us prove the
following

(4.1) LemMA. Let X and A be two compacia lying in E®. For every g-
translation f of X with values lying in a polyhedron P < E®, there exists a 2e-
translation g: X U A - E® and a polyhedron R = E® with dimR < dim4 such
that g(X UA) < PUR.

Proof. We may assume that P < E™ One sees easily that there exists
an extension f' of fto an e-translation f’: X U 4 — E®. Moreover, there is a
natural number k so large, that the orthogonal projection ¢: E® — E™*k
assigns to every point x=(x;, x,,...)eE® the point ()
= (X1, X2, -os Xm+i) EE™T, satisfying the condition

o(@f (x),f'(x)) <4 for every point xeX UA.
Then the set ¢f'(4) lies in-a polyhedron R’ = E™** and
of () =f"(x)=f(x) for every xeX.

Consider a triangulation T of the polyhedron PUR’ such that all
simplices 4eT with 4P # Q, together with their faces, constitute a

triangulation T, of P and all simplices 4 € Twith 4 "R’ # @ (and their faces)

constitute a triangulation Ty of R’

Let us say that two maps g,g": X UA—E® are Tassociated, if for
every xe X U A there is a simplex 4e T containing both points g(x) and
g'(x).

Let m = dimA and g4 = @f’. Consider a simplex 4 € Ty\Tp with dim4
=dimR. If dim4 > m, then there exists a map g’ of the set gg 1(A) into the
boundary 4 of 4 such that g, (x) = ¢’ (x) for every point xegg ((PuR)\zi)

_ (where A denotes the interior A\d of A) Applying this procedure step by step
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to all simplices 4 € Ty \Tp with dim4 > m, one gets a map g: X UA — E”
which is T-associated to the map g, and the set g(4) lies in the m-skeleton R
of R’ (by triangulation Tg/).
If the mesh of the triangulation T'is less than e, then g(go(x), g(x))
< ¢ for every xeX UA and g is a 2e-translation of X U A into PUR.
(4.2) TreoreM. If X, A are compacta lying in E® and if dimA < n, then
(X U A4) = 1y (X).

Proof. By (14), u,(X) < p,(X U A). It remains to show that

Ha(X U A) € (X))

We can assume that pu,(X) < 0. Consider a finite number o > u,(X). Then
for every & > 0 there is an s-translation f* X — E® such that f(X) is a subset
of a polyhedron P < E® with pu,(P) <o. By Lemma (4.1), there is a 2e-
translation g: X UA - E® and a polyhedron R < E® with dimR < n such
that g(Au X) = PUR. But |[PUR|, =|P|, and consequently u,(Xu ) <a
and the proof of Theorem (4.2) is finished.

(4.3) Tueorem. If X,, X, are compacta lying in E® and if
Hn-1 (X1 N X3) =0, then p,(X; U Xa) < sy (Xy)+ pt (X5).

Before giving the proof, we established some lemmas:

(44) LemMA. Let X, X, and Xy = X, n X, be compacta lying in E®.
Then for every &> 0 there exists a natural number m and an ¢-translation
fi X, v X, = E™ such that f(X) =f(X,) nf(X3) and f(X,), f(X,)., f(X,) are
polyhedra with dim f(X}) < dimX;, for i=0,1, 2 ’

Proof. Setting X = X, U X,, observe that there are a natural number n
and a Je-translation g': X — E" = E® such that g'(X) and g'(X,) are poly-
hedra and dimg’(X,) < dim X,.

It is known (see [1], p. 166) that there exists a Je-translation g: X — E"
such that dim(g(X;\X,)) < dim(X\Xo) for i=1,2 and g(x) =g'(x) for
xeX.

It follows that dimg(X;) <dimX; for i=0,1, 2.

We can also assume that g(X,), g(X,) and g(X,) are polyhedra.

By the general position argument, there are Je-translations hy: g(X,)
— E"! and h,: g(X,) — E"*! such that
hy(x} =hy(x) =x for xeX,
and
hy (X \Xo) Ny (X5\ Xg) =

Let m = n+1. The g-translation f: X — E satisfying the required con-
ditions can be defined by the formula

f(x) =hg(x) for every xeX; and i=1, 2.
This completes the proof.

A Fundamenta Mathematicae 121
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Assume that z is a real number and define the map
. 7,; E"— E™*! c E°
by the formula
To(Xys coes X = (X5 oo for every (xy, ..., Xn)€E™.

(4.5) Lemma. If X, and X, are polyhedra lying in E™ and if X,
= X, nX,, then for every ¢> 0 there is an e-translation

S X vX, ‘*T-a/4(X1)UTg/4(Xz)U‘ lgm’fz(xo)‘

s Xms Z)

Proof. Let Thbe a triangulation of the polybedron X = X, U X, such
that the mesh of Tis less than }e and that the subfamily T, of T, which
consists of all simplices 4eT with AnX; =@ and of their faces is a
triangulation of X;, for i =0, 1, 2.

Consider the polyhedron

Y, = T—s/4(X1) QTc/A(Xz) U U
|z| Se/4

7,(Xo U X™)

where X denotes the n-skeleton of X with respect to T
For i =1, 2 and for every simplex A€ T, the set

r,(A)u U t.(d), where y:g‘g«'s,
z<e/4
is a retract of (J t,(4).
|z] Se/4

Therefore for each n > 0 there is a retraction r, of the set ¥, to Y,
. such that

W U 1)< Y < (d) v, (a),

|z| <&/4 |z| <e/4

where 4 e(T\Ty) for i =1, 2 is an n-dimensional simplex.
Hence the map f: X — Y., which is the restriction of

ro...te U 1,(X)-Y_, s =dimX,

|z] <¢/4

where

is an e-translation. Thus the proof of Lemma (4.5) is finished.
Proof of Theorem (4.3). Suppose that

i=1,2.

(X)) oy <00 for
Consider %e-translations
fi: Xy —=E® and f;: X,—E®

such that f;(X;) is a polyhedron with |f;(X))l, <« for i=1, 2.
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For i =1, 2 there exists a neighborhood U; of X; and a Ze-translation
fir U; - E® such that f;(U) =f,(X,) and f is an extension of f.

Lemmas (4.4) and (4.5) imply that for every 8> 0 there exist S-
translations

g XX, =X ->g(X)=E® and g¢g; X;—E°fori=1,2

such that g,(X,), g,(X,) and g(X) 2 g,(X;) ug2(X,) are polyhedra with

dlm(g(X)\(g1(X1)ng(X )) n—1 and 91(X1)091(X2)=®‘
Assume that § > 0 is so small, that g(X) <« U; u U, and & < $e. Setting
Jx) =7

we obtain a Ze-translation f: g, (X;) U g, (X,) — E°. :
Using Lemma (4.1) for the case when X = g,(X,)ug,(X,), 4 is the
closure of the set g (X)\(g; (X ) U g2(X,)) and f =, we infer that there is a %&-

translation f': g(X) — E® such that the set Y, = f"(g(X)\(g, (X,) Ug,(X,) is
a polyhedron with dimY, < n—1. )

Since 4¢ > 6, the composition h =f"g: X; W X, — E® is an e-translation.
It is clear that h(X; U X,) cfi (X)) Ufi(X;) U Y, and

i (X)) ufa(Xa) 0 Yoly < Uy (Xl + 12 (X 2)la 1 Yolw <
Thus the proof of Theorem (4.3) is finished.

for every xeg;(X)), for i =1, 2,

oy +og.

5. A lemma. In Sections 7 and 8 we shall construct some compacta
showing that without the hypothesis dim(X N Y) <n—1, no simple relation
between w,(X), p,(Y), (X nY) and p,(X U Y) holds true. We start by the
following

(5.1) LemMA. If Z is a compactum (lying in E®) such that for every ¢ > 0
there exists a decomposition of Z into two disjoint compacta Z,, Z, such that
the diameter of every component of Z, is less than ¢ and that Z, can be
mapped by an g-translation onto a subset of a polyhedron P with |P|, <a, then
w(Z) <a.

Proof. Consider two neighborhoods U, of Z, and U, of Z, with
U,n0,=0.
By our hypothesis, there exists for every component C of Z; an open
neighborhood V < U, with diameter d(V) < ¢ and (V\V)nZ, = Q. Since Z;

is compact, there 1s a finite system V,, V,, ..., ¥; of such open sets with
Z, = ViU ... UV,. Setting

W,=V\UV, foreveryi=1,2,..,k,
i<i
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one gets open sets W, W,, ..., W, with diameters <&, covering Z,. If
W; # @, then we select a point b;eW,. Setting
@(z) = b
one gets an e-translation ¢ of Z, onto a finite set consisting of all points b;.
Moreover, there exists an e-translation y mapping Z, into a polyhedron P
with |P|, < a. The map f defined by the formulas:
f@) =0 for zeZ, "W, and f(z) =1 (2) for zeZ,

is an e-translation of Z into the polyhedron R = P U {by, ..., b}. Then |R],
< o and we infer that u,(Z) <a.

for every zeZ, nW,,i=1,2,..,k,

6. A preliminary construction. Consider a sequence Ay > 4, > ... of
positive numbers such that

Y mias< 1.
m=0
We have

k
1= 3 2™ Ay > Ay 2FY for every k=0, 1, ...
m=0

Assign to every integer k =0, 1, ... a system o, consisting of 2* disjoint
closed intervals A, ;, where i =1, ..., 2%, with lengths |4, | = 4, lying in the
open interval I = (0, 1). We define the system o, by the induction:
1—4g 144

272

that oy, ..., 0, are already defined and that 64U ... Uy consists of 1+2+
+ .o +26=2¥"1 -1 closed intervals A4, m=0,1,.. .k i=1,2,..,2
disjoint - one to another. with lengths |4, ,|=4,, and that the set

k am

g, consist of only one closed interval A, ; =< > Assume

IN'U U 4y is the union of 2**! open intervals I, j=1,2,..., 2¢*!

m=0 i=1
disjoint and equal one to another. Then the length of I; is equal to
1 k
2—kﬁ(1"— 202""1",)> ;Lk+1‘
m=
Consequently there exists for every j =1, 2, ..., 2*** a closed interval 4.,
with the length |4, ., )| = A4+, and with the center the same as the center of
I,;- The system oy, consisting of all intervals Ay,  j=1,2,..., 2¢*?
satisfies our conditions.
The intervals belonging to oy are said to be of order k. Observe, that the
measure (in the elementary sense of Lebesgue) of the closure A of the set

A= U U 4,

k=0j=1

is equal to Z 2" e
o

m=
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Moreover, one infers by our construction, that the closure I\4 of the set
I\A (with respect to <0, 1)) is a 0-dimensional compactum and its measure is
equal to 1— Y 2™-4,.

m=0

7. Construction of two compacta X, Y such that dim(X nY) = 0 and that
Un(X)+ 1, (Y) > p, (X UY). We preserve the notations of Section 6. In
order to construct compacta X, Y satisfying the required conditions, consider
in the space E" the n-dimensional unit cube Q" consisting of all points
(X1, coes X)eE" with 0< x; <1 for i=1,2, ..., n.

Let X = Q" The construction of Y is more complicated:

For every k=0, 1, ... and for every i = 1, 2, ..., 2", let us denote by g,
and b, the end points of A4,; (with g,; <b,) and let ¢,; denote the center
of Ay;.

Consider also the set By, k=0,1, ..., consisting of all points
(x1s ..., x,)€Q" such that x; belongs to the closure of the set

ko2m
INU U A4, foreveryi=1,..,n
m=0i=1

First we define (by the induction) a sequence Yy, Yi, ... of polyhedra in
E"! 5 E", Setting Y, = X = Q", assume that Y,,..., Y, are already con-
structed. The space Y; is homeomorphic to X and XNY,=B,_; for [
=1, ..., k. Forevery I =1, ..., k—1 every point x = (X, ..., X, X,4 )€ E"" %,
where x,4, > 4,1, belongs to Y if and only if xeY,_,.

Let us denote by H;, for all natural indices j < n and for i < 2*, the set
consisting of all points (xy, ..., X, X,+1)€E"* such that 0< x <1 for
every < n and x; =¢; and X,.; = 4. -

Denote by W; ; (respectively by Z; ;) the union of all closed intervals with
endpoints (X, ..., Xy Xpr1)€X < E"*' and (yy, ..., Yar1)€H;j, where x
=y, for every Isj, n+1 and x;=a;, or x; =b,; (respectively the set
consisting of all points (xg, ..., Xy Xp+1) €X such that a; < x; < byy)-
Setting

(D(xl, ey Xps xn+1) =(xl: (RRE} xn):

one obtains the orthogonal projection ¢: E"*! — E" Every polyhedron W
lying in E"*! is mapped by ¢ onto a polyhedron @ (W) < E” 'such that
| @(W )y € [ Wiy m=10,1, ...

Let

n 2k i 2k
Uppr = (Yk\};)' .91 Zi,j)u (jgl ‘_91 VV;,;).

Let us observe that U, , is a polyhedron which is mapped by ¢ onto X
and that there exists a subpolybedron ¥, of U, such that ¢ restricted to
Y4+, is an embedding onto X and XY, =B, A point x
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=(Xg, ors Xy Xps1) EE™ Y with X4 1 > 4, belongs to Y., if and only if
xeY,.

Consider the setB consisting of all points (xy, ..., x,)€Q" such that x,
belongs to the closure of the set I\A for every i =1, 2, ..., n. Observe that B
o0

= 0 B,.
k=0

Since B is homeomorphic to the Cartesian product (I\4) x
and dimI\A = 0, we infer that dimB = 0.

It is clear that the sequence {4,};%, may be chosen so that [Y], < 14
<2 and that |B|, >, where f>a >0 and k=0,1, ...

Let M be the set consisting of all points (x;, Xy, ..., X,s1) €E"™! with
<2 forl=1,2,...,n+1.

The polyhedra Y,, Y;, ... can be considered as points of the space 2" of
all non-empty subcompacta of M (with the Hausdorff metric). In the space
2M the sequence of polyhedra Y, converges to a compactum Y. Assign to

x(I_\Z)

every X = (X1, ..., X, Xp+1)€Y @ point X =(%, ..., X,41) of Y, such that
x; =X, for every I=1,2,...,n.
Now let us define the maps p,: Y— Y, and ¢ XU Y- XU Y, by the .
formulas:
(x)=% for xeY

and

g (x)—-%x for xeX,

EY 7 1% for  xeY.

It is clear. that p, is a homeomorphism for every &, and that for every
g > 0 there exists an index k such that p, and g, are e-translations. Therefore

tn(Y) S 1+
and

(X UY) <IX U Yy = |Xlp+ Gla= X 0 Kl < 24— < 2.
In order to finish the proof that p,(X U Y} % p,(X),+ u,(Y) it suffices to

show that u,(Y) > 1.
Let us assume that there is a positive y such .that

(7.1) m(Y) <y<1
and let ¢ > 0.
Consider a positive number ¢ such that if x and y are points of M and

o(x, y) < 8, then ¢{p(x), ¢(y) <e. It follows by (7.1) that there exists an 5-

tsran§lation fs: Y— M such that f;(Y) is a polyhedron with |f;(Y)|, <y < 1.
etting

gx) =@fsp™'(9) for xeX,
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one gets an e-translation g: X — E"*! such that

lg (Xl < 1fs(Nls <7 <1.

Thus for every & > 0 there exists an s-translation g: X — E"*! such that
g(X) is a polyhedron and |g(X)|, < y. Hence ,(X) <y <1. This contradicts .
(1.6). Therefore u,(Y)> 1. '

Since X Y= B and dimB = 0, we conclude that X and Y satisfy the
required conditions.

8. Construction of compacta X, Y such that dm(X nY)=0 and
P (XU Y) > py (X)+p, (Y).

Preserving the notations of Section 6, let us set 4, = 6=+ 1 and let us
call the interval A, ; even, if k is an even number, and odd — if k is odd. By
X we denote the closure of the union of all even intervals, and by ¥ — the
closure of the union of all odd intervals. Observe that every component of

the compactum 1\Y is either an even interval, or a singleton. For every

positive ¢ there exists only a finite collection of intervals A, ..., A, with

diameters >e¢. Moreover, for every even interval A there is an

e-neighborhood which is an open interval with both endpoints belonging to

odd intervals. It follows, that there exist open intervals Uy, ..., U, disjoint

one to another with endpoints belonging to odd intervals such that U; is an

e-peighborhood of A4; for i=1,2, ... Consequently, there exists an

e-translation f of the set U, u... uU, onto the polyhedron 4; v ... U A,.
w 2k

Since py (A; U ... UA,) is less than Y 3 |4y, we infer by Lemma (5.1) that
k=0i=1

p;(X) < 1. By an analogous argument, one shows that g, (Y) <t

Since X U Y =T, we infer that p; (X)+p; (Y) < gy (X 0 Y). Moreover, all
components of the set X Y are singletons and consequently dim(X nY)
=0.
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